/* * Copyright 2008 Advanced Micro Devices, Inc. * Copyright 2008 Red Hat Inc. * Copyright 2009 Jerome Glisse. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: Dave Airlie * Alex Deucher * Jerome Glisse */ #include #include #include #include #include #include #include #include #include "radeon_reg.h" #include "radeon.h" #include "atom.h" static const char radeon_family_name[][16] = { "R100", "RV100", "RS100", "RV200", "RS200", "R200", "RV250", "RS300", "RV280", "R300", "R350", "RV350", "RV380", "R420", "R423", "RV410", "RS400", "RS480", "RS600", "RS690", "RS740", "RV515", "R520", "RV530", "RV560", "RV570", "R580", "R600", "RV610", "RV630", "RV670", "RV620", "RV635", "RS780", "RS880", "RV770", "RV730", "RV710", "RV740", "CEDAR", "REDWOOD", "JUNIPER", "CYPRESS", "HEMLOCK", "PALM", "SUMO", "SUMO2", "BARTS", "TURKS", "CAICOS", "CAYMAN", "ARUBA", "TAHITI", "PITCAIRN", "VERDE", "OLAND", "HAINAN", "BONAIRE", "KAVERI", "KABINI", "LAST", }; /** * radeon_program_register_sequence - program an array of registers. * * @rdev: radeon_device pointer * @registers: pointer to the register array * @array_size: size of the register array * * Programs an array or registers with and and or masks. * This is a helper for setting golden registers. */ void radeon_program_register_sequence(struct radeon_device *rdev, const u32 *registers, const u32 array_size) { u32 tmp, reg, and_mask, or_mask; int i; if (array_size % 3) return; for (i = 0; i < array_size; i +=3) { reg = registers[i + 0]; and_mask = registers[i + 1]; or_mask = registers[i + 2]; if (and_mask == 0xffffffff) { tmp = or_mask; } else { tmp = RREG32(reg); tmp &= ~and_mask; tmp |= or_mask; } WREG32(reg, tmp); } } /** * radeon_surface_init - Clear GPU surface registers. * * @rdev: radeon_device pointer * * Clear GPU surface registers (r1xx-r5xx). */ void radeon_surface_init(struct radeon_device *rdev) { /* FIXME: check this out */ if (rdev->family < CHIP_R600) { int i; for (i = 0; i < RADEON_GEM_MAX_SURFACES; i++) { if (rdev->surface_regs[i].bo) radeon_bo_get_surface_reg(rdev->surface_regs[i].bo); else radeon_clear_surface_reg(rdev, i); } /* enable surfaces */ WREG32(RADEON_SURFACE_CNTL, 0); } } /* * GPU scratch registers helpers function. */ /** * radeon_scratch_init - Init scratch register driver information. * * @rdev: radeon_device pointer * * Init CP scratch register driver information (r1xx-r5xx) */ void radeon_scratch_init(struct radeon_device *rdev) { int i; /* FIXME: check this out */ if (rdev->family < CHIP_R300) { rdev->scratch.num_reg = 5; } else { rdev->scratch.num_reg = 7; } rdev->scratch.reg_base = RADEON_SCRATCH_REG0; for (i = 0; i < rdev->scratch.num_reg; i++) { rdev->scratch.free[i] = true; rdev->scratch.reg[i] = rdev->scratch.reg_base + (i * 4); } } /** * radeon_scratch_get - Allocate a scratch register * * @rdev: radeon_device pointer * @reg: scratch register mmio offset * * Allocate a CP scratch register for use by the driver (all asics). * Returns 0 on success or -EINVAL on failure. */ int radeon_scratch_get(struct radeon_device *rdev, uint32_t *reg) { int i; for (i = 0; i < rdev->scratch.num_reg; i++) { if (rdev->scratch.free[i]) { rdev->scratch.free[i] = false; *reg = rdev->scratch.reg[i]; return 0; } } return -EINVAL; } /** * radeon_scratch_free - Free a scratch register * * @rdev: radeon_device pointer * @reg: scratch register mmio offset * * Free a CP scratch register allocated for use by the driver (all asics) */ void radeon_scratch_free(struct radeon_device *rdev, uint32_t reg) { int i; for (i = 0; i < rdev->scratch.num_reg; i++) { if (rdev->scratch.reg[i] == reg) { rdev->scratch.free[i] = true; return; } } } /* * radeon_wb_*() * Writeback is the the method by which the the GPU updates special pages * in memory with the status of certain GPU events (fences, ring pointers, * etc.). */ /** * radeon_wb_disable - Disable Writeback * * @rdev: radeon_device pointer * * Disables Writeback (all asics). Used for suspend. */ void radeon_wb_disable(struct radeon_device *rdev) { rdev->wb.enabled = false; } /** * radeon_wb_fini - Disable Writeback and free memory * * @rdev: radeon_device pointer * * Disables Writeback and frees the Writeback memory (all asics). * Used at driver shutdown. */ void radeon_wb_fini(struct radeon_device *rdev) { radeon_wb_disable(rdev); if (rdev->wb.wb_obj) { if (!radeon_bo_reserve(rdev->wb.wb_obj, false)) { radeon_bo_kunmap(rdev->wb.wb_obj); radeon_bo_unpin(rdev->wb.wb_obj); radeon_bo_unreserve(rdev->wb.wb_obj); } radeon_bo_unref(&rdev->wb.wb_obj); rdev->wb.wb = NULL; rdev->wb.wb_obj = NULL; } } /** * radeon_wb_init- Init Writeback driver info and allocate memory * * @rdev: radeon_device pointer * * Disables Writeback and frees the Writeback memory (all asics). * Used at driver startup. * Returns 0 on success or an -error on failure. */ int radeon_wb_init(struct radeon_device *rdev) { int r; if (rdev->wb.wb_obj == NULL) { r = radeon_bo_create(rdev, RADEON_GPU_PAGE_SIZE, PAGE_SIZE, true, RADEON_GEM_DOMAIN_GTT, NULL, &rdev->wb.wb_obj); if (r) { dev_warn(rdev->dev, "(%d) create WB bo failed\n", r); return r; } r = radeon_bo_reserve(rdev->wb.wb_obj, false); if (unlikely(r != 0)) { radeon_wb_fini(rdev); return r; } r = radeon_bo_pin(rdev->wb.wb_obj, RADEON_GEM_DOMAIN_GTT, &rdev->wb.gpu_addr); if (r) { radeon_bo_unreserve(rdev->wb.wb_obj); dev_warn(rdev->dev, "(%d) pin WB bo failed\n", r); radeon_wb_fini(rdev); return r; } r = radeon_bo_kmap(rdev->wb.wb_obj, (void **)&rdev->wb.wb); radeon_bo_unreserve(rdev->wb.wb_obj); if (r) { dev_warn(rdev->dev, "(%d) map WB bo failed\n", r); radeon_wb_fini(rdev); return r; } } /* clear wb memory */ memset((char *)rdev->wb.wb, 0, RADEON_GPU_PAGE_SIZE); /* disable event_write fences */ rdev->wb.use_event = false; /* disabled via module param */ if (radeon_no_wb == 1) { rdev->wb.enabled = false; } else { if (rdev->flags & RADEON_IS_AGP) { /* often unreliable on AGP */ rdev->wb.enabled = false; } else if (rdev->family < CHIP_R300) { /* often unreliable on pre-r300 */ rdev->wb.enabled = false; } else { rdev->wb.enabled = true; /* event_write fences are only available on r600+ */ if (rdev->family >= CHIP_R600) { rdev->wb.use_event = true; } } } /* always use writeback/events on NI, APUs */ if (rdev->family >= CHIP_PALM) { rdev->wb.enabled = true; rdev->wb.use_event = true; } dev_info(rdev->dev, "WB %sabled\n", rdev->wb.enabled ? "en" : "dis"); return 0; } /** * radeon_vram_location - try to find VRAM location * @rdev: radeon device structure holding all necessary informations * @mc: memory controller structure holding memory informations * @base: base address at which to put VRAM * * Function will place try to place VRAM at base address provided * as parameter (which is so far either PCI aperture address or * for IGP TOM base address). * * If there is not enough space to fit the unvisible VRAM in the 32bits * address space then we limit the VRAM size to the aperture. * * If we are using AGP and if the AGP aperture doesn't allow us to have * room for all the VRAM than we restrict the VRAM to the PCI aperture * size and print a warning. * * This function will never fails, worst case are limiting VRAM. * * Note: GTT start, end, size should be initialized before calling this * function on AGP platform. * * Note: We don't explicitly enforce VRAM start to be aligned on VRAM size, * this shouldn't be a problem as we are using the PCI aperture as a reference. * Otherwise this would be needed for rv280, all r3xx, and all r4xx, but * not IGP. * * Note: we use mc_vram_size as on some board we need to program the mc to * cover the whole aperture even if VRAM size is inferior to aperture size * Novell bug 204882 + along with lots of ubuntu ones * * Note: when limiting vram it's safe to overwritte real_vram_size because * we are not in case where real_vram_size is inferior to mc_vram_size (ie * note afected by bogus hw of Novell bug 204882 + along with lots of ubuntu * ones) * * Note: IGP TOM addr should be the same as the aperture addr, we don't * explicitly check for that thought. * * FIXME: when reducing VRAM size align new size on power of 2. */ void radeon_vram_location(struct radeon_device *rdev, struct radeon_mc *mc, u64 base) { uint64_t limit = (uint64_t)radeon_vram_limit << 20; mc->vram_start = base; if (mc->mc_vram_size > (rdev->mc.mc_mask - base + 1)) { dev_warn(rdev->dev, "limiting VRAM to PCI aperture size\n"); mc->real_vram_size = mc->aper_size; mc->mc_vram_size = mc->aper_size; } mc->vram_end = mc->vram_start + mc->mc_vram_size - 1; if (rdev->flags & RADEON_IS_AGP && mc->vram_end > mc->gtt_start && mc->vram_start <= mc->gtt_end) { dev_warn(rdev->dev, "limiting VRAM to PCI aperture size\n"); mc->real_vram_size = mc->aper_size; mc->mc_vram_size = mc->aper_size; } mc->vram_end = mc->vram_start + mc->mc_vram_size - 1; if (limit && limit < mc->real_vram_size) mc->real_vram_size = limit; dev_info(rdev->dev, "VRAM: %lluM 0x%016llX - 0x%016llX (%lluM used)\n", mc->mc_vram_size >> 20, mc->vram_start, mc->vram_end, mc->real_vram_size >> 20); } /** * radeon_gtt_location - try to find GTT location * @rdev: radeon device structure holding all necessary informations * @mc: memory controller structure holding memory informations * * Function will place try to place GTT before or after VRAM. * * If GTT size is bigger than space left then we ajust GTT size. * Thus function will never fails. * * FIXME: when reducing GTT size align new size on power of 2. */ void radeon_gtt_location(struct radeon_device *rdev, struct radeon_mc *mc) { u64 size_af, size_bf; size_af = ((rdev->mc.mc_mask - mc->vram_end) + mc->gtt_base_align) & ~mc->gtt_base_align; size_bf = mc->vram_start & ~mc->gtt_base_align; if (size_bf > size_af) { if (mc->gtt_size > size_bf) { dev_warn(rdev->dev, "limiting GTT\n"); mc->gtt_size = size_bf; } mc->gtt_start = (mc->vram_start & ~mc->gtt_base_align) - mc->gtt_size; } else { if (mc->gtt_size > size_af) { dev_warn(rdev->dev, "limiting GTT\n"); mc->gtt_size = size_af; } mc->gtt_start = (mc->vram_end + 1 + mc->gtt_base_align) & ~mc->gtt_base_align; } mc->gtt_end = mc->gtt_start + mc->gtt_size - 1; dev_info(rdev->dev, "GTT: %lluM 0x%016llX - 0x%016llX\n", mc->gtt_size >> 20, mc->gtt_start, mc->gtt_end); } /* * GPU helpers function. */ /** * radeon_card_posted - check if the hw has already been initialized * * @rdev: radeon_device pointer * * Check if the asic has been initialized (all asics). * Used at driver startup. * Returns true if initialized or false if not. */ bool radeon_card_posted(struct radeon_device *rdev) { uint32_t reg; /* required for EFI mode on macbook2,1 which uses an r5xx asic */ if (efi_enabled(EFI_BOOT) && (rdev->pdev->subsystem_vendor == PCI_VENDOR_ID_APPLE) && (rdev->family < CHIP_R600)) return false; if (ASIC_IS_NODCE(rdev)) goto check_memsize; /* first check CRTCs */ if (ASIC_IS_DCE4(rdev)) { reg = RREG32(EVERGREEN_CRTC_CONTROL + EVERGREEN_CRTC0_REGISTER_OFFSET) | RREG32(EVERGREEN_CRTC_CONTROL + EVERGREEN_CRTC1_REGISTER_OFFSET); if (rdev->num_crtc >= 4) { reg |= RREG32(EVERGREEN_CRTC_CONTROL + EVERGREEN_CRTC2_REGISTER_OFFSET) | RREG32(EVERGREEN_CRTC_CONTROL + EVERGREEN_CRTC3_REGISTER_OFFSET); } if (rdev->num_crtc >= 6) { reg |= RREG32(EVERGREEN_CRTC_CONTROL + EVERGREEN_CRTC4_REGISTER_OFFSET) | RREG32(EVERGREEN_CRTC_CONTROL + EVERGREEN_CRTC5_REGISTER_OFFSET); } if (reg & EVERGREEN_CRTC_MASTER_EN) return true; } else if (ASIC_IS_AVIVO(rdev)) { reg = RREG32(AVIVO_D1CRTC_CONTROL) | RREG32(AVIVO_D2CRTC_CONTROL); if (reg & AVIVO_CRTC_EN) { return true; } } else { reg = RREG32(RADEON_CRTC_GEN_CNTL) | RREG32(RADEON_CRTC2_GEN_CNTL); if (reg & RADEON_CRTC_EN) { return true; } } check_memsize: /* then check MEM_SIZE, in case the crtcs are off */ if (rdev->family >= CHIP_R600) reg = RREG32(R600_CONFIG_MEMSIZE); else reg = RREG32(RADEON_CONFIG_MEMSIZE); if (reg) return true; return false; } /** * radeon_update_bandwidth_info - update display bandwidth params * * @rdev: radeon_device pointer * * Used when sclk/mclk are switched or display modes are set. * params are used to calculate display watermarks (all asics) */ void radeon_update_bandwidth_info(struct radeon_device *rdev) { fixed20_12 a; u32 sclk = rdev->pm.current_sclk; u32 mclk = rdev->pm.current_mclk; /* sclk/mclk in Mhz */ a.full = dfixed_const(100); rdev->pm.sclk.full = dfixed_const(sclk); rdev->pm.sclk.full = dfixed_div(rdev->pm.sclk, a); rdev->pm.mclk.full = dfixed_const(mclk); rdev->pm.mclk.full = dfixed_div(rdev->pm.mclk, a); if (rdev->flags & RADEON_IS_IGP) { a.full = dfixed_const(16); /* core_bandwidth = sclk(Mhz) * 16 */ rdev->pm.core_bandwidth.full = dfixed_div(rdev->pm.sclk, a); } } /** * radeon_boot_test_post_card - check and possibly initialize the hw * * @rdev: radeon_device pointer * * Check if the asic is initialized and if not, attempt to initialize * it (all asics). * Returns true if initialized or false if not. */ bool radeon_boot_test_post_card(struct radeon_device *rdev) { if (radeon_card_posted(rdev)) return true; if (rdev->bios) { DRM_INFO("GPU not posted. posting now...\n"); if (rdev->is_atom_bios) atom_asic_init(rdev->mode_info.atom_context); else radeon_combios_asic_init(rdev->ddev); return true; } else { dev_err(rdev->dev, "Card not posted and no BIOS - ignoring\n"); return false; } } /** * radeon_dummy_page_init - init dummy page used by the driver * * @rdev: radeon_device pointer * * Allocate the dummy page used by the driver (all asics). * This dummy page is used by the driver as a filler for gart entries * when pages are taken out of the GART * Returns 0 on sucess, -ENOMEM on failure. */ int radeon_dummy_page_init(struct radeon_device *rdev) { if (rdev->dummy_page.page) return 0; rdev->dummy_page.page = alloc_page(GFP_DMA32 | GFP_KERNEL | __GFP_ZERO); if (rdev->dummy_page.page == NULL) return -ENOMEM; rdev->dummy_page.addr = pci_map_page(rdev->pdev, rdev->dummy_page.page, 0, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL); if (pci_dma_mapping_error(rdev->pdev, rdev->dummy_page.addr)) { dev_err(&rdev->pdev->dev, "Failed to DMA MAP the dummy page\n"); __free_page(rdev->dummy_page.page); rdev->dummy_page.page = NULL; return -ENOMEM; } return 0; } /** * radeon_dummy_page_fini - free dummy page used by the driver * * @rdev: radeon_device pointer * * Frees the dummy page used by the driver (all asics). */ void radeon_dummy_page_fini(struct radeon_device *rdev) { if (rdev->dummy_page.page == NULL) return; pci_unmap_page(rdev->pdev, rdev->dummy_page.addr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL); __free_page(rdev->dummy_page.page); rdev->dummy_page.page = NULL; } /* ATOM accessor methods */ /* * ATOM is an interpreted byte code stored in tables in the vbios. The * driver registers callbacks to access registers and the interpreter * in the driver parses the tables and executes then to program specific * actions (set display modes, asic init, etc.). See radeon_atombios.c, * atombios.h, and atom.c */ /** * cail_pll_read - read PLL register * * @info: atom card_info pointer * @reg: PLL register offset * * Provides a PLL register accessor for the atom interpreter (r4xx+). * Returns the value of the PLL register. */ static uint32_t cail_pll_read(struct card_info *info, uint32_t reg) { struct radeon_device *rdev = info->dev->dev_private; uint32_t r; r = rdev->pll_rreg(rdev, reg); return r; } /** * cail_pll_write - write PLL register * * @info: atom card_info pointer * @reg: PLL register offset * @val: value to write to the pll register * * Provides a PLL register accessor for the atom interpreter (r4xx+). */ static void cail_pll_write(struct card_info *info, uint32_t reg, uint32_t val) { struct radeon_device *rdev = info->dev->dev_private; rdev->pll_wreg(rdev, reg, val); } /** * cail_mc_read - read MC (Memory Controller) register * * @info: atom card_info pointer * @reg: MC register offset * * Provides an MC register accessor for the atom interpreter (r4xx+). * Returns the value of the MC register. */ static uint32_t cail_mc_read(struct card_info *info, uint32_t reg) { struct radeon_device *rdev = info->dev->dev_private; uint32_t r; r = rdev->mc_rreg(rdev, reg); return r; } /** * cail_mc_write - write MC (Memory Controller) register * * @info: atom card_info pointer * @reg: MC register offset * @val: value to write to the pll register * * Provides a MC register accessor for the atom interpreter (r4xx+). */ static void cail_mc_write(struct card_info *info, uint32_t reg, uint32_t val) { struct radeon_device *rdev = info->dev->dev_private; rdev->mc_wreg(rdev, reg, val); } /** * cail_reg_write - write MMIO register * * @info: atom card_info pointer * @reg: MMIO register offset * @val: value to write to the pll register * * Provides a MMIO register accessor for the atom interpreter (r4xx+). */ static void cail_reg_write(struct card_info *info, uint32_t reg, uint32_t val) { struct radeon_device *rdev = info->dev->dev_private; WREG32(reg*4, val); } /** * cail_reg_read - read MMIO register * * @info: atom card_info pointer * @reg: MMIO register offset * * Provides an MMIO register accessor for the atom interpreter (r4xx+). * Returns the value of the MMIO register. */ static uint32_t cail_reg_read(struct card_info *info, uint32_t reg) { struct radeon_device *rdev = info->dev->dev_private; uint32_t r; r = RREG32(reg*4); return r; } /** * cail_ioreg_write - write IO register * * @info: atom card_info pointer * @reg: IO register offset * @val: value to write to the pll register * * Provides a IO register accessor for the atom interpreter (r4xx+). */ static void cail_ioreg_write(struct card_info *info, uint32_t reg, uint32_t val) { struct radeon_device *rdev = info->dev->dev_private; WREG32_IO(reg*4, val); } /** * cail_ioreg_read - read IO register * * @info: atom card_info pointer * @reg: IO register offset * * Provides an IO register accessor for the atom interpreter (r4xx+). * Returns the value of the IO register. */ static uint32_t cail_ioreg_read(struct card_info *info, uint32_t reg) { struct radeon_device *rdev = info->dev->dev_private; uint32_t r; r = RREG32_IO(reg*4); return r; } /** * radeon_atombios_init - init the driver info and callbacks for atombios * * @rdev: radeon_device pointer * * Initializes the driver info and register access callbacks for the * ATOM interpreter (r4xx+). * Returns 0 on sucess, -ENOMEM on failure. * Called at driver startup. */ int radeon_atombios_init(struct radeon_device *rdev) { struct card_info *atom_card_info = kzalloc(sizeof(struct card_info), GFP_KERNEL); if (!atom_card_info) return -ENOMEM; rdev->mode_info.atom_card_info = atom_card_info; atom_card_info->dev = rdev->ddev; atom_card_info->reg_read = cail_reg_read; atom_card_info->reg_write = cail_reg_write; /* needed for iio ops */ if (rdev->rio_mem) { atom_card_info->ioreg_read = cail_ioreg_read; atom_card_info->ioreg_write = cail_ioreg_write; } else { DRM_ERROR("Unable to find PCI I/O BAR; using MMIO for ATOM IIO\n"); atom_card_info->ioreg_read = cail_reg_read; atom_card_info->ioreg_write = cail_reg_write; } atom_card_info->mc_read = cail_mc_read; atom_card_info->mc_write = cail_mc_write; atom_card_info->pll_read = cail_pll_read; atom_card_info->pll_write = cail_pll_write; rdev->mode_info.atom_context = atom_parse(atom_card_info, rdev->bios); if (!rdev->mode_info.atom_context) { radeon_atombios_fini(rdev); return -ENOMEM; } mutex_init(&rdev->mode_info.atom_context->mutex); radeon_atom_initialize_bios_scratch_regs(rdev->ddev); atom_allocate_fb_scratch(rdev->mode_info.atom_context); return 0; } /** * radeon_atombios_fini - free the driver info and callbacks for atombios * * @rdev: radeon_device pointer * * Frees the driver info and register access callbacks for the ATOM * interpreter (r4xx+). * Called at driver shutdown. */ void radeon_atombios_fini(struct radeon_device *rdev) { if (rdev->mode_info.atom_context) { kfree(rdev->mode_info.atom_context->scratch); } kfree(rdev->mode_info.atom_context); rdev->mode_info.atom_context = NULL; kfree(rdev->mode_info.atom_card_info); rdev->mode_info.atom_card_info = NULL; } /* COMBIOS */ /* * COMBIOS is the bios format prior to ATOM. It provides * command tables similar to ATOM, but doesn't have a unified * parser. See radeon_combios.c */ /** * radeon_combios_init - init the driver info for combios * * @rdev: radeon_device pointer * * Initializes the driver info for combios (r1xx-r3xx). * Returns 0 on sucess. * Called at driver startup. */ int radeon_combios_init(struct radeon_device *rdev) { radeon_combios_initialize_bios_scratch_regs(rdev->ddev); return 0; } /** * radeon_combios_fini - free the driver info for combios * * @rdev: radeon_device pointer * * Frees the driver info for combios (r1xx-r3xx). * Called at driver shutdown. */ void radeon_combios_fini(struct radeon_device *rdev) { } /* if we get transitioned to only one device, take VGA back */ /** * radeon_vga_set_decode - enable/disable vga decode * * @cookie: radeon_device pointer * @state: enable/disable vga decode * * Enable/disable vga decode (all asics). * Returns VGA resource flags. */ static unsigned int radeon_vga_set_decode(void *cookie, bool state) { struct radeon_device *rdev = cookie; radeon_vga_set_state(rdev, state); if (state) return VGA_RSRC_LEGACY_IO | VGA_RSRC_LEGACY_MEM | VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM; else return VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM; } /** * radeon_check_pot_argument - check that argument is a power of two * * @arg: value to check * * Validates that a certain argument is a power of two (all asics). * Returns true if argument is valid. */ static bool radeon_check_pot_argument(int arg) { return (arg & (arg - 1)) == 0; } /** * radeon_check_arguments - validate module params * * @rdev: radeon_device pointer * * Validates certain module parameters and updates * the associated values used by the driver (all asics). */ static void radeon_check_arguments(struct radeon_device *rdev) { /* vramlimit must be a power of two */ if (!radeon_check_pot_argument(radeon_vram_limit)) { dev_warn(rdev->dev, "vram limit (%d) must be a power of 2\n", radeon_vram_limit); radeon_vram_limit = 0; } /* gtt size must be power of two and greater or equal to 32M */ if (radeon_gart_size < 32) { dev_warn(rdev->dev, "gart size (%d) too small forcing to 512M\n", radeon_gart_size); radeon_gart_size = 512; } else if (!radeon_check_pot_argument(radeon_gart_size)) { dev_warn(rdev->dev, "gart size (%d) must be a power of 2\n", radeon_gart_size); radeon_gart_size = 512; } rdev->mc.gtt_size = (uint64_t)radeon_gart_size << 20; /* AGP mode can only be -1, 1, 2, 4, 8 */ switch (radeon_agpmode) { case -1: case 0: case 1: case 2: case 4: case 8: break; default: dev_warn(rdev->dev, "invalid AGP mode %d (valid mode: " "-1, 0, 1, 2, 4, 8)\n", radeon_agpmode); radeon_agpmode = 0; break; } } /** * radeon_switcheroo_quirk_long_wakeup - return true if longer d3 delay is * needed for waking up. * * @pdev: pci dev pointer */ static bool radeon_switcheroo_quirk_long_wakeup(struct pci_dev *pdev) { /* 6600m in a macbook pro */ if (pdev->subsystem_vendor == PCI_VENDOR_ID_APPLE && pdev->subsystem_device == 0x00e2) { printk(KERN_INFO "radeon: quirking longer d3 wakeup delay\n"); return true; } return false; } /** * radeon_switcheroo_set_state - set switcheroo state * * @pdev: pci dev pointer * @state: vga switcheroo state * * Callback for the switcheroo driver. Suspends or resumes the * the asics before or after it is powered up using ACPI methods. */ static void radeon_switcheroo_set_state(struct pci_dev *pdev, enum vga_switcheroo_state state) { struct drm_device *dev = pci_get_drvdata(pdev); pm_message_t pmm = { .event = PM_EVENT_SUSPEND }; if (state == VGA_SWITCHEROO_ON) { unsigned d3_delay = dev->pdev->d3_delay; printk(KERN_INFO "radeon: switched on\n"); /* don't suspend or resume card normally */ dev->switch_power_state = DRM_SWITCH_POWER_CHANGING; if (d3_delay < 20 && radeon_switcheroo_quirk_long_wakeup(pdev)) dev->pdev->d3_delay = 20; radeon_resume_kms(dev); dev->pdev->d3_delay = d3_delay; dev->switch_power_state = DRM_SWITCH_POWER_ON; drm_kms_helper_poll_enable(dev); } else { printk(KERN_INFO "radeon: switched off\n"); drm_kms_helper_poll_disable(dev); dev->switch_power_state = DRM_SWITCH_POWER_CHANGING; radeon_suspend_kms(dev, pmm); dev->switch_power_state = DRM_SWITCH_POWER_OFF; } } /** * radeon_switcheroo_can_switch - see if switcheroo state can change * * @pdev: pci dev pointer * * Callback for the switcheroo driver. Check of the switcheroo * state can be changed. * Returns true if the state can be changed, false if not. */ static bool radeon_switcheroo_can_switch(struct pci_dev *pdev) { struct drm_device *dev = pci_get_drvdata(pdev); bool can_switch; spin_lock(&dev->count_lock); can_switch = (dev->open_count == 0); spin_unlock(&dev->count_lock); return can_switch; } static const struct vga_switcheroo_client_ops radeon_switcheroo_ops = { .set_gpu_state = radeon_switcheroo_set_state, .reprobe = NULL, .can_switch = radeon_switcheroo_can_switch, }; /** * radeon_device_init - initialize the driver * * @rdev: radeon_device pointer * @pdev: drm dev pointer * @pdev: pci dev pointer * @flags: driver flags * * Initializes the driver info and hw (all asics). * Returns 0 for success or an error on failure. * Called at driver startup. */ int radeon_device_init(struct radeon_device *rdev, struct drm_device *ddev, struct pci_dev *pdev, uint32_t flags) { int r, i; int dma_bits; rdev->shutdown = false; rdev->dev = &pdev->dev; rdev->ddev = ddev; rdev->pdev = pdev; rdev->flags = flags; rdev->family = flags & RADEON_FAMILY_MASK; rdev->is_atom_bios = false; rdev->usec_timeout = RADEON_MAX_USEC_TIMEOUT; rdev->mc.gtt_size = radeon_gart_size * 1024 * 1024; rdev->accel_working = false; /* set up ring ids */ for (i = 0; i < RADEON_NUM_RINGS; i++) { rdev->ring[i].idx = i; } DRM_INFO("initializing kernel modesetting (%s 0x%04X:0x%04X 0x%04X:0x%04X).\n", radeon_family_name[rdev->family], pdev->vendor, pdev->device, pdev->subsystem_vendor, pdev->subsystem_device); /* mutex initialization are all done here so we * can recall function without having locking issues */ mutex_init(&rdev->ring_lock); mutex_init(&rdev->dc_hw_i2c_mutex); atomic_set(&rdev->ih.lock, 0); mutex_init(&rdev->gem.mutex); mutex_init(&rdev->pm.mutex); mutex_init(&rdev->gpu_clock_mutex); init_rwsem(&rdev->pm.mclk_lock); init_rwsem(&rdev->exclusive_lock); init_waitqueue_head(&rdev->irq.vblank_queue); r = radeon_gem_init(rdev); if (r) return r; /* initialize vm here */ mutex_init(&rdev->vm_manager.lock); /* Adjust VM size here. * Currently set to 4GB ((1 << 20) 4k pages). * Max GPUVM size for cayman and SI is 40 bits. */ rdev->vm_manager.max_pfn = 1 << 20; INIT_LIST_HEAD(&rdev->vm_manager.lru_vm); /* Set asic functions */ r = radeon_asic_init(rdev); if (r) return r; radeon_check_arguments(rdev); /* all of the newer IGP chips have an internal gart * However some rs4xx report as AGP, so remove that here. */ if ((rdev->family >= CHIP_RS400) && (rdev->flags & RADEON_IS_IGP)) { rdev->flags &= ~RADEON_IS_AGP; } if (rdev->flags & RADEON_IS_AGP && radeon_agpmode == -1) { radeon_agp_disable(rdev); } /* Set the internal MC address mask * This is the max address of the GPU's * internal address space. */ if (rdev->family >= CHIP_CAYMAN) rdev->mc.mc_mask = 0xffffffffffULL; /* 40 bit MC */ else if (rdev->family >= CHIP_CEDAR) rdev->mc.mc_mask = 0xfffffffffULL; /* 36 bit MC */ else rdev->mc.mc_mask = 0xffffffffULL; /* 32 bit MC */ /* set DMA mask + need_dma32 flags. * PCIE - can handle 40-bits. * IGP - can handle 40-bits * AGP - generally dma32 is safest * PCI - dma32 for legacy pci gart, 40 bits on newer asics */ rdev->need_dma32 = false; if (rdev->flags & RADEON_IS_AGP) rdev->need_dma32 = true; if ((rdev->flags & RADEON_IS_PCI) && (rdev->family <= CHIP_RS740)) rdev->need_dma32 = true; dma_bits = rdev->need_dma32 ? 32 : 40; r = pci_set_dma_mask(rdev->pdev, DMA_BIT_MASK(dma_bits)); if (r) { rdev->need_dma32 = true; dma_bits = 32; printk(KERN_WARNING "radeon: No suitable DMA available.\n"); } r = pci_set_consistent_dma_mask(rdev->pdev, DMA_BIT_MASK(dma_bits)); if (r) { pci_set_consistent_dma_mask(rdev->pdev, DMA_BIT_MASK(32)); printk(KERN_WARNING "radeon: No coherent DMA available.\n"); } /* Registers mapping */ /* TODO: block userspace mapping of io register */ spin_lock_init(&rdev->mmio_idx_lock); if (rdev->family >= CHIP_BONAIRE) { rdev->rmmio_base = pci_resource_start(rdev->pdev, 5); rdev->rmmio_size = pci_resource_len(rdev->pdev, 5); } else { rdev->rmmio_base = pci_resource_start(rdev->pdev, 2); rdev->rmmio_size = pci_resource_len(rdev->pdev, 2); } rdev->rmmio = ioremap(rdev->rmmio_base, rdev->rmmio_size); if (rdev->rmmio == NULL) { return -ENOMEM; } DRM_INFO("register mmio base: 0x%08X\n", (uint32_t)rdev->rmmio_base); DRM_INFO("register mmio size: %u\n", (unsigned)rdev->rmmio_size); /* io port mapping */ for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) { if (pci_resource_flags(rdev->pdev, i) & IORESOURCE_IO) { rdev->rio_mem_size = pci_resource_len(rdev->pdev, i); rdev->rio_mem = pci_iomap(rdev->pdev, i, rdev->rio_mem_size); break; } } if (rdev->rio_mem == NULL) DRM_ERROR("Unable to find PCI I/O BAR\n"); /* if we have > 1 VGA cards, then disable the radeon VGA resources */ /* this will fail for cards that aren't VGA class devices, just * ignore it */ vga_client_register(rdev->pdev, rdev, NULL, radeon_vga_set_decode); vga_switcheroo_register_client(rdev->pdev, &radeon_switcheroo_ops); r = radeon_init(rdev); if (r) return r; r = radeon_ib_ring_tests(rdev); if (r) DRM_ERROR("ib ring test failed (%d).\n", r); r = radeon_gem_debugfs_init(rdev); if (r) { DRM_ERROR("registering gem debugfs failed (%d).\n", r); } if (rdev->flags & RADEON_IS_AGP && !rdev->accel_working) { /* Acceleration not working on AGP card try again * with fallback to PCI or PCIE GART */ radeon_asic_reset(rdev); radeon_fini(rdev); radeon_agp_disable(rdev); r = radeon_init(rdev); if (r) return r; } if ((radeon_testing & 1)) { radeon_test_moves(rdev); } if ((radeon_testing & 2)) { radeon_test_syncing(rdev); } if (radeon_benchmarking) { radeon_benchmark(rdev, radeon_benchmarking); } return 0; } static void radeon_debugfs_remove_files(struct radeon_device *rdev); /** * radeon_device_fini - tear down the driver * * @rdev: radeon_device pointer * * Tear down the driver info (all asics). * Called at driver shutdown. */ void radeon_device_fini(struct radeon_device *rdev) { DRM_INFO("radeon: finishing device.\n"); rdev->shutdown = true; /* evict vram memory */ radeon_bo_evict_vram(rdev); radeon_fini(rdev); vga_switcheroo_unregister_client(rdev->pdev); vga_client_register(rdev->pdev, NULL, NULL, NULL); if (rdev->rio_mem) pci_iounmap(rdev->pdev, rdev->rio_mem); rdev->rio_mem = NULL; iounmap(rdev->rmmio); rdev->rmmio = NULL; radeon_debugfs_remove_files(rdev); } /* * Suspend & resume. */ /** * radeon_suspend_kms - initiate device suspend * * @pdev: drm dev pointer * @state: suspend state * * Puts the hw in the suspend state (all asics). * Returns 0 for success or an error on failure. * Called at driver suspend. */ int radeon_suspend_kms(struct drm_device *dev, pm_message_t state) { struct radeon_device *rdev; struct drm_crtc *crtc; struct drm_connector *connector; int i, r; bool force_completion = false; if (dev == NULL || dev->dev_private == NULL) { return -ENODEV; } if (state.event == PM_EVENT_PRETHAW) { return 0; } rdev = dev->dev_private; if (dev->switch_power_state == DRM_SWITCH_POWER_OFF) return 0; drm_kms_helper_poll_disable(dev); /* turn off display hw */ list_for_each_entry(connector, &dev->mode_config.connector_list, head) { drm_helper_connector_dpms(connector, DRM_MODE_DPMS_OFF); } /* unpin the front buffers */ list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) { struct radeon_framebuffer *rfb = to_radeon_framebuffer(crtc->fb); struct radeon_bo *robj; if (rfb == NULL || rfb->obj == NULL) { continue; } robj = gem_to_radeon_bo(rfb->obj); /* don't unpin kernel fb objects */ if (!radeon_fbdev_robj_is_fb(rdev, robj)) { r = radeon_bo_reserve(robj, false); if (r == 0) { radeon_bo_unpin(robj); radeon_bo_unreserve(robj); } } } /* evict vram memory */ radeon_bo_evict_vram(rdev); mutex_lock(&rdev->ring_lock); /* wait for gpu to finish processing current batch */ for (i = 0; i < RADEON_NUM_RINGS; i++) { r = radeon_fence_wait_empty_locked(rdev, i); if (r) { /* delay GPU reset to resume */ force_completion = true; } } if (force_completion) { radeon_fence_driver_force_completion(rdev); } mutex_unlock(&rdev->ring_lock); radeon_save_bios_scratch_regs(rdev); radeon_pm_suspend(rdev); radeon_suspend(rdev); radeon_hpd_fini(rdev); /* evict remaining vram memory */ radeon_bo_evict_vram(rdev); radeon_agp_suspend(rdev); pci_save_state(dev->pdev); if (state.event == PM_EVENT_SUSPEND) { /* Shut down the device */ pci_disable_device(dev->pdev); pci_set_power_state(dev->pdev, PCI_D3hot); } console_lock(); radeon_fbdev_set_suspend(rdev, 1); console_unlock(); return 0; } /** * radeon_resume_kms - initiate device resume * * @pdev: drm dev pointer * * Bring the hw back to operating state (all asics). * Returns 0 for success or an error on failure. * Called at driver resume. */ int radeon_resume_kms(struct drm_device *dev) { struct drm_connector *connector; struct radeon_device *rdev = dev->dev_private; int r; if (dev->switch_power_state == DRM_SWITCH_POWER_OFF) return 0; console_lock(); pci_set_power_state(dev->pdev, PCI_D0); pci_restore_state(dev->pdev); if (pci_enable_device(dev->pdev)) { console_unlock(); return -1; } /* resume AGP if in use */ radeon_agp_resume(rdev); radeon_resume(rdev); r = radeon_ib_ring_tests(rdev); if (r) DRM_ERROR("ib ring test failed (%d).\n", r); radeon_pm_resume(rdev); radeon_restore_bios_scratch_regs(rdev); radeon_fbdev_set_suspend(rdev, 0); console_unlock(); /* init dig PHYs, disp eng pll */ if (rdev->is_atom_bios) { radeon_atom_encoder_init(rdev); radeon_atom_disp_eng_pll_init(rdev); /* turn on the BL */ if (rdev->mode_info.bl_encoder) { u8 bl_level = radeon_get_backlight_level(rdev, rdev->mode_info.bl_encoder); radeon_set_backlight_level(rdev, rdev->mode_info.bl_encoder, bl_level); } } /* reset hpd state */ radeon_hpd_init(rdev); /* blat the mode back in */ drm_helper_resume_force_mode(dev); /* turn on display hw */ list_for_each_entry(connector, &dev->mode_config.connector_list, head) { drm_helper_connector_dpms(connector, DRM_MODE_DPMS_ON); } drm_kms_helper_poll_enable(dev); return 0; } /** * radeon_gpu_reset - reset the asic * * @rdev: radeon device pointer * * Attempt the reset the GPU if it has hung (all asics). * Returns 0 for success or an error on failure. */ int radeon_gpu_reset(struct radeon_device *rdev) { unsigned ring_sizes[RADEON_NUM_RINGS]; uint32_t *ring_data[RADEON_NUM_RINGS]; bool saved = false; int i, r; int resched; down_write(&rdev->exclusive_lock); radeon_save_bios_scratch_regs(rdev); /* block TTM */ resched = ttm_bo_lock_delayed_workqueue(&rdev->mman.bdev); radeon_suspend(rdev); for (i = 0; i < RADEON_NUM_RINGS; ++i) { ring_sizes[i] = radeon_ring_backup(rdev, &rdev->ring[i], &ring_data[i]); if (ring_sizes[i]) { saved = true; dev_info(rdev->dev, "Saved %d dwords of commands " "on ring %d.\n", ring_sizes[i], i); } } retry: r = radeon_asic_reset(rdev); if (!r) { dev_info(rdev->dev, "GPU reset succeeded, trying to resume\n"); radeon_resume(rdev); } radeon_restore_bios_scratch_regs(rdev); if (!r) { for (i = 0; i < RADEON_NUM_RINGS; ++i) { radeon_ring_restore(rdev, &rdev->ring[i], ring_sizes[i], ring_data[i]); ring_sizes[i] = 0; ring_data[i] = NULL; } r = radeon_ib_ring_tests(rdev); if (r) { dev_err(rdev->dev, "ib ring test failed (%d).\n", r); if (saved) { saved = false; radeon_suspend(rdev); goto retry; } } } else { radeon_fence_driver_force_completion(rdev); for (i = 0; i < RADEON_NUM_RINGS; ++i) { kfree(ring_data[i]); } } drm_helper_resume_force_mode(rdev->ddev); ttm_bo_unlock_delayed_workqueue(&rdev->mman.bdev, resched); if (r) { /* bad news, how to tell it to userspace ? */ dev_info(rdev->dev, "GPU reset failed\n"); } up_write(&rdev->exclusive_lock); return r; } /* * Debugfs */ int radeon_debugfs_add_files(struct radeon_device *rdev, struct drm_info_list *files, unsigned nfiles) { unsigned i; for (i = 0; i < rdev->debugfs_count; i++) { if (rdev->debugfs[i].files == files) { /* Already registered */ return 0; } } i = rdev->debugfs_count + 1; if (i > RADEON_DEBUGFS_MAX_COMPONENTS) { DRM_ERROR("Reached maximum number of debugfs components.\n"); DRM_ERROR("Report so we increase " "RADEON_DEBUGFS_MAX_COMPONENTS.\n"); return -EINVAL; } rdev->debugfs[rdev->debugfs_count].files = files; rdev->debugfs[rdev->debugfs_count].num_files = nfiles; rdev->debugfs_count = i; #if defined(CONFIG_DEBUG_FS) drm_debugfs_create_files(files, nfiles, rdev->ddev->control->debugfs_root, rdev->ddev->control); drm_debugfs_create_files(files, nfiles, rdev->ddev->primary->debugfs_root, rdev->ddev->primary); #endif return 0; } static void radeon_debugfs_remove_files(struct radeon_device *rdev) { #if defined(CONFIG_DEBUG_FS) unsigned i; for (i = 0; i < rdev->debugfs_count; i++) { drm_debugfs_remove_files(rdev->debugfs[i].files, rdev->debugfs[i].num_files, rdev->ddev->control); drm_debugfs_remove_files(rdev->debugfs[i].files, rdev->debugfs[i].num_files, rdev->ddev->primary); } #endif } #if defined(CONFIG_DEBUG_FS) int radeon_debugfs_init(struct drm_minor *minor) { return 0; } void radeon_debugfs_cleanup(struct drm_minor *minor) { } #endif