/* * Copyright 2010 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: Alex Deucher */ #include #include #include #include "drmP.h" #include "radeon.h" #include "radeon_asic.h" #include "radeon_drm.h" #include "nid.h" #include "atom.h" #include "ni_reg.h" #include "cayman_blit_shaders.h" extern void evergreen_mc_stop(struct radeon_device *rdev, struct evergreen_mc_save *save); extern void evergreen_mc_resume(struct radeon_device *rdev, struct evergreen_mc_save *save); extern int evergreen_mc_wait_for_idle(struct radeon_device *rdev); #define EVERGREEN_PFP_UCODE_SIZE 1120 #define EVERGREEN_PM4_UCODE_SIZE 1376 #define EVERGREEN_RLC_UCODE_SIZE 768 #define BTC_MC_UCODE_SIZE 6024 #define CAYMAN_PFP_UCODE_SIZE 2176 #define CAYMAN_PM4_UCODE_SIZE 2176 #define CAYMAN_RLC_UCODE_SIZE 1024 #define CAYMAN_MC_UCODE_SIZE 6037 /* Firmware Names */ MODULE_FIRMWARE("radeon/BARTS_pfp.bin"); MODULE_FIRMWARE("radeon/BARTS_me.bin"); MODULE_FIRMWARE("radeon/BARTS_mc.bin"); MODULE_FIRMWARE("radeon/BTC_rlc.bin"); MODULE_FIRMWARE("radeon/TURKS_pfp.bin"); MODULE_FIRMWARE("radeon/TURKS_me.bin"); MODULE_FIRMWARE("radeon/TURKS_mc.bin"); MODULE_FIRMWARE("radeon/CAICOS_pfp.bin"); MODULE_FIRMWARE("radeon/CAICOS_me.bin"); MODULE_FIRMWARE("radeon/CAICOS_mc.bin"); MODULE_FIRMWARE("radeon/CAYMAN_pfp.bin"); MODULE_FIRMWARE("radeon/CAYMAN_me.bin"); MODULE_FIRMWARE("radeon/CAYMAN_mc.bin"); MODULE_FIRMWARE("radeon/CAYMAN_rlc.bin"); #define BTC_IO_MC_REGS_SIZE 29 static const u32 barts_io_mc_regs[BTC_IO_MC_REGS_SIZE][2] = { {0x00000077, 0xff010100}, {0x00000078, 0x00000000}, {0x00000079, 0x00001434}, {0x0000007a, 0xcc08ec08}, {0x0000007b, 0x00040000}, {0x0000007c, 0x000080c0}, {0x0000007d, 0x09000000}, {0x0000007e, 0x00210404}, {0x00000081, 0x08a8e800}, {0x00000082, 0x00030444}, {0x00000083, 0x00000000}, {0x00000085, 0x00000001}, {0x00000086, 0x00000002}, {0x00000087, 0x48490000}, {0x00000088, 0x20244647}, {0x00000089, 0x00000005}, {0x0000008b, 0x66030000}, {0x0000008c, 0x00006603}, {0x0000008d, 0x00000100}, {0x0000008f, 0x00001c0a}, {0x00000090, 0xff000001}, {0x00000094, 0x00101101}, {0x00000095, 0x00000fff}, {0x00000096, 0x00116fff}, {0x00000097, 0x60010000}, {0x00000098, 0x10010000}, {0x00000099, 0x00006000}, {0x0000009a, 0x00001000}, {0x0000009f, 0x00946a00} }; static const u32 turks_io_mc_regs[BTC_IO_MC_REGS_SIZE][2] = { {0x00000077, 0xff010100}, {0x00000078, 0x00000000}, {0x00000079, 0x00001434}, {0x0000007a, 0xcc08ec08}, {0x0000007b, 0x00040000}, {0x0000007c, 0x000080c0}, {0x0000007d, 0x09000000}, {0x0000007e, 0x00210404}, {0x00000081, 0x08a8e800}, {0x00000082, 0x00030444}, {0x00000083, 0x00000000}, {0x00000085, 0x00000001}, {0x00000086, 0x00000002}, {0x00000087, 0x48490000}, {0x00000088, 0x20244647}, {0x00000089, 0x00000005}, {0x0000008b, 0x66030000}, {0x0000008c, 0x00006603}, {0x0000008d, 0x00000100}, {0x0000008f, 0x00001c0a}, {0x00000090, 0xff000001}, {0x00000094, 0x00101101}, {0x00000095, 0x00000fff}, {0x00000096, 0x00116fff}, {0x00000097, 0x60010000}, {0x00000098, 0x10010000}, {0x00000099, 0x00006000}, {0x0000009a, 0x00001000}, {0x0000009f, 0x00936a00} }; static const u32 caicos_io_mc_regs[BTC_IO_MC_REGS_SIZE][2] = { {0x00000077, 0xff010100}, {0x00000078, 0x00000000}, {0x00000079, 0x00001434}, {0x0000007a, 0xcc08ec08}, {0x0000007b, 0x00040000}, {0x0000007c, 0x000080c0}, {0x0000007d, 0x09000000}, {0x0000007e, 0x00210404}, {0x00000081, 0x08a8e800}, {0x00000082, 0x00030444}, {0x00000083, 0x00000000}, {0x00000085, 0x00000001}, {0x00000086, 0x00000002}, {0x00000087, 0x48490000}, {0x00000088, 0x20244647}, {0x00000089, 0x00000005}, {0x0000008b, 0x66030000}, {0x0000008c, 0x00006603}, {0x0000008d, 0x00000100}, {0x0000008f, 0x00001c0a}, {0x00000090, 0xff000001}, {0x00000094, 0x00101101}, {0x00000095, 0x00000fff}, {0x00000096, 0x00116fff}, {0x00000097, 0x60010000}, {0x00000098, 0x10010000}, {0x00000099, 0x00006000}, {0x0000009a, 0x00001000}, {0x0000009f, 0x00916a00} }; static const u32 cayman_io_mc_regs[BTC_IO_MC_REGS_SIZE][2] = { {0x00000077, 0xff010100}, {0x00000078, 0x00000000}, {0x00000079, 0x00001434}, {0x0000007a, 0xcc08ec08}, {0x0000007b, 0x00040000}, {0x0000007c, 0x000080c0}, {0x0000007d, 0x09000000}, {0x0000007e, 0x00210404}, {0x00000081, 0x08a8e800}, {0x00000082, 0x00030444}, {0x00000083, 0x00000000}, {0x00000085, 0x00000001}, {0x00000086, 0x00000002}, {0x00000087, 0x48490000}, {0x00000088, 0x20244647}, {0x00000089, 0x00000005}, {0x0000008b, 0x66030000}, {0x0000008c, 0x00006603}, {0x0000008d, 0x00000100}, {0x0000008f, 0x00001c0a}, {0x00000090, 0xff000001}, {0x00000094, 0x00101101}, {0x00000095, 0x00000fff}, {0x00000096, 0x00116fff}, {0x00000097, 0x60010000}, {0x00000098, 0x10010000}, {0x00000099, 0x00006000}, {0x0000009a, 0x00001000}, {0x0000009f, 0x00976b00} }; int btc_mc_load_microcode(struct radeon_device *rdev) { const __be32 *fw_data; u32 mem_type, running, blackout = 0; u32 *io_mc_regs; int i, ucode_size, regs_size; if (!rdev->mc_fw) return -EINVAL; switch (rdev->family) { case CHIP_BARTS: io_mc_regs = (u32 *)&barts_io_mc_regs; ucode_size = BTC_MC_UCODE_SIZE; regs_size = BTC_IO_MC_REGS_SIZE; break; case CHIP_TURKS: io_mc_regs = (u32 *)&turks_io_mc_regs; ucode_size = BTC_MC_UCODE_SIZE; regs_size = BTC_IO_MC_REGS_SIZE; break; case CHIP_CAICOS: default: io_mc_regs = (u32 *)&caicos_io_mc_regs; ucode_size = BTC_MC_UCODE_SIZE; regs_size = BTC_IO_MC_REGS_SIZE; break; case CHIP_CAYMAN: io_mc_regs = (u32 *)&cayman_io_mc_regs; ucode_size = CAYMAN_MC_UCODE_SIZE; regs_size = BTC_IO_MC_REGS_SIZE; break; } mem_type = (RREG32(MC_SEQ_MISC0) & MC_SEQ_MISC0_GDDR5_MASK) >> MC_SEQ_MISC0_GDDR5_SHIFT; running = RREG32(MC_SEQ_SUP_CNTL) & RUN_MASK; if ((mem_type == MC_SEQ_MISC0_GDDR5_VALUE) && (running == 0)) { if (running) { blackout = RREG32(MC_SHARED_BLACKOUT_CNTL); WREG32(MC_SHARED_BLACKOUT_CNTL, 1); } /* reset the engine and set to writable */ WREG32(MC_SEQ_SUP_CNTL, 0x00000008); WREG32(MC_SEQ_SUP_CNTL, 0x00000010); /* load mc io regs */ for (i = 0; i < regs_size; i++) { WREG32(MC_SEQ_IO_DEBUG_INDEX, io_mc_regs[(i << 1)]); WREG32(MC_SEQ_IO_DEBUG_DATA, io_mc_regs[(i << 1) + 1]); } /* load the MC ucode */ fw_data = (const __be32 *)rdev->mc_fw->data; for (i = 0; i < ucode_size; i++) WREG32(MC_SEQ_SUP_PGM, be32_to_cpup(fw_data++)); /* put the engine back into the active state */ WREG32(MC_SEQ_SUP_CNTL, 0x00000008); WREG32(MC_SEQ_SUP_CNTL, 0x00000004); WREG32(MC_SEQ_SUP_CNTL, 0x00000001); /* wait for training to complete */ while (!(RREG32(MC_IO_PAD_CNTL_D0) & MEM_FALL_OUT_CMD)) udelay(10); if (running) WREG32(MC_SHARED_BLACKOUT_CNTL, blackout); } return 0; } int ni_init_microcode(struct radeon_device *rdev) { struct platform_device *pdev; const char *chip_name; const char *rlc_chip_name; size_t pfp_req_size, me_req_size, rlc_req_size, mc_req_size; char fw_name[30]; int err; DRM_DEBUG("\n"); pdev = platform_device_register_simple("radeon_cp", 0, NULL, 0); err = IS_ERR(pdev); if (err) { printk(KERN_ERR "radeon_cp: Failed to register firmware\n"); return -EINVAL; } switch (rdev->family) { case CHIP_BARTS: chip_name = "BARTS"; rlc_chip_name = "BTC"; pfp_req_size = EVERGREEN_PFP_UCODE_SIZE * 4; me_req_size = EVERGREEN_PM4_UCODE_SIZE * 4; rlc_req_size = EVERGREEN_RLC_UCODE_SIZE * 4; mc_req_size = BTC_MC_UCODE_SIZE * 4; break; case CHIP_TURKS: chip_name = "TURKS"; rlc_chip_name = "BTC"; pfp_req_size = EVERGREEN_PFP_UCODE_SIZE * 4; me_req_size = EVERGREEN_PM4_UCODE_SIZE * 4; rlc_req_size = EVERGREEN_RLC_UCODE_SIZE * 4; mc_req_size = BTC_MC_UCODE_SIZE * 4; break; case CHIP_CAICOS: chip_name = "CAICOS"; rlc_chip_name = "BTC"; pfp_req_size = EVERGREEN_PFP_UCODE_SIZE * 4; me_req_size = EVERGREEN_PM4_UCODE_SIZE * 4; rlc_req_size = EVERGREEN_RLC_UCODE_SIZE * 4; mc_req_size = BTC_MC_UCODE_SIZE * 4; break; case CHIP_CAYMAN: chip_name = "CAYMAN"; rlc_chip_name = "CAYMAN"; pfp_req_size = CAYMAN_PFP_UCODE_SIZE * 4; me_req_size = CAYMAN_PM4_UCODE_SIZE * 4; rlc_req_size = CAYMAN_RLC_UCODE_SIZE * 4; mc_req_size = CAYMAN_MC_UCODE_SIZE * 4; break; default: BUG(); } DRM_INFO("Loading %s Microcode\n", chip_name); snprintf(fw_name, sizeof(fw_name), "radeon/%s_pfp.bin", chip_name); err = request_firmware(&rdev->pfp_fw, fw_name, &pdev->dev); if (err) goto out; if (rdev->pfp_fw->size != pfp_req_size) { printk(KERN_ERR "ni_cp: Bogus length %zu in firmware \"%s\"\n", rdev->pfp_fw->size, fw_name); err = -EINVAL; goto out; } snprintf(fw_name, sizeof(fw_name), "radeon/%s_me.bin", chip_name); err = request_firmware(&rdev->me_fw, fw_name, &pdev->dev); if (err) goto out; if (rdev->me_fw->size != me_req_size) { printk(KERN_ERR "ni_cp: Bogus length %zu in firmware \"%s\"\n", rdev->me_fw->size, fw_name); err = -EINVAL; } snprintf(fw_name, sizeof(fw_name), "radeon/%s_rlc.bin", rlc_chip_name); err = request_firmware(&rdev->rlc_fw, fw_name, &pdev->dev); if (err) goto out; if (rdev->rlc_fw->size != rlc_req_size) { printk(KERN_ERR "ni_rlc: Bogus length %zu in firmware \"%s\"\n", rdev->rlc_fw->size, fw_name); err = -EINVAL; } snprintf(fw_name, sizeof(fw_name), "radeon/%s_mc.bin", chip_name); err = request_firmware(&rdev->mc_fw, fw_name, &pdev->dev); if (err) goto out; if (rdev->mc_fw->size != mc_req_size) { printk(KERN_ERR "ni_mc: Bogus length %zu in firmware \"%s\"\n", rdev->mc_fw->size, fw_name); err = -EINVAL; } out: platform_device_unregister(pdev); if (err) { if (err != -EINVAL) printk(KERN_ERR "ni_cp: Failed to load firmware \"%s\"\n", fw_name); release_firmware(rdev->pfp_fw); rdev->pfp_fw = NULL; release_firmware(rdev->me_fw); rdev->me_fw = NULL; release_firmware(rdev->rlc_fw); rdev->rlc_fw = NULL; release_firmware(rdev->mc_fw); rdev->mc_fw = NULL; } return err; } /* * Core functions */ static u32 cayman_get_tile_pipe_to_backend_map(struct radeon_device *rdev, u32 num_tile_pipes, u32 num_backends_per_asic, u32 *backend_disable_mask_per_asic, u32 num_shader_engines) { u32 backend_map = 0; u32 enabled_backends_mask = 0; u32 enabled_backends_count = 0; u32 num_backends_per_se; u32 cur_pipe; u32 swizzle_pipe[CAYMAN_MAX_PIPES]; u32 cur_backend = 0; u32 i; bool force_no_swizzle; /* force legal values */ if (num_tile_pipes < 1) num_tile_pipes = 1; if (num_tile_pipes > rdev->config.cayman.max_tile_pipes) num_tile_pipes = rdev->config.cayman.max_tile_pipes; if (num_shader_engines < 1) num_shader_engines = 1; if (num_shader_engines > rdev->config.cayman.max_shader_engines) num_shader_engines = rdev->config.cayman.max_shader_engines; if (num_backends_per_asic > num_shader_engines) num_backends_per_asic = num_shader_engines; if (num_backends_per_asic > (rdev->config.cayman.max_backends_per_se * num_shader_engines)) num_backends_per_asic = rdev->config.cayman.max_backends_per_se * num_shader_engines; /* make sure we have the same number of backends per se */ num_backends_per_asic = ALIGN(num_backends_per_asic, num_shader_engines); /* set up the number of backends per se */ num_backends_per_se = num_backends_per_asic / num_shader_engines; if (num_backends_per_se > rdev->config.cayman.max_backends_per_se) { num_backends_per_se = rdev->config.cayman.max_backends_per_se; num_backends_per_asic = num_backends_per_se * num_shader_engines; } /* create enable mask and count for enabled backends */ for (i = 0; i < CAYMAN_MAX_BACKENDS; ++i) { if (((*backend_disable_mask_per_asic >> i) & 1) == 0) { enabled_backends_mask |= (1 << i); ++enabled_backends_count; } if (enabled_backends_count == num_backends_per_asic) break; } /* force the backends mask to match the current number of backends */ if (enabled_backends_count != num_backends_per_asic) { u32 this_backend_enabled; u32 shader_engine; u32 backend_per_se; enabled_backends_mask = 0; enabled_backends_count = 0; *backend_disable_mask_per_asic = CAYMAN_MAX_BACKENDS_MASK; for (i = 0; i < CAYMAN_MAX_BACKENDS; ++i) { /* calc the current se */ shader_engine = i / rdev->config.cayman.max_backends_per_se; /* calc the backend per se */ backend_per_se = i % rdev->config.cayman.max_backends_per_se; /* default to not enabled */ this_backend_enabled = 0; if ((shader_engine < num_shader_engines) && (backend_per_se < num_backends_per_se)) this_backend_enabled = 1; if (this_backend_enabled) { enabled_backends_mask |= (1 << i); *backend_disable_mask_per_asic &= ~(1 << i); ++enabled_backends_count; } } } memset((uint8_t *)&swizzle_pipe[0], 0, sizeof(u32) * CAYMAN_MAX_PIPES); switch (rdev->family) { case CHIP_CAYMAN: force_no_swizzle = true; break; default: force_no_swizzle = false; break; } if (force_no_swizzle) { bool last_backend_enabled = false; force_no_swizzle = false; for (i = 0; i < CAYMAN_MAX_BACKENDS; ++i) { if (((enabled_backends_mask >> i) & 1) == 1) { if (last_backend_enabled) force_no_swizzle = true; last_backend_enabled = true; } else last_backend_enabled = false; } } switch (num_tile_pipes) { case 1: case 3: case 5: case 7: DRM_ERROR("odd number of pipes!\n"); break; case 2: swizzle_pipe[0] = 0; swizzle_pipe[1] = 1; break; case 4: if (force_no_swizzle) { swizzle_pipe[0] = 0; swizzle_pipe[1] = 1; swizzle_pipe[2] = 2; swizzle_pipe[3] = 3; } else { swizzle_pipe[0] = 0; swizzle_pipe[1] = 2; swizzle_pipe[2] = 1; swizzle_pipe[3] = 3; } break; case 6: if (force_no_swizzle) { swizzle_pipe[0] = 0; swizzle_pipe[1] = 1; swizzle_pipe[2] = 2; swizzle_pipe[3] = 3; swizzle_pipe[4] = 4; swizzle_pipe[5] = 5; } else { swizzle_pipe[0] = 0; swizzle_pipe[1] = 2; swizzle_pipe[2] = 4; swizzle_pipe[3] = 1; swizzle_pipe[4] = 3; swizzle_pipe[5] = 5; } break; case 8: if (force_no_swizzle) { swizzle_pipe[0] = 0; swizzle_pipe[1] = 1; swizzle_pipe[2] = 2; swizzle_pipe[3] = 3; swizzle_pipe[4] = 4; swizzle_pipe[5] = 5; swizzle_pipe[6] = 6; swizzle_pipe[7] = 7; } else { swizzle_pipe[0] = 0; swizzle_pipe[1] = 2; swizzle_pipe[2] = 4; swizzle_pipe[3] = 6; swizzle_pipe[4] = 1; swizzle_pipe[5] = 3; swizzle_pipe[6] = 5; swizzle_pipe[7] = 7; } break; } for (cur_pipe = 0; cur_pipe < num_tile_pipes; ++cur_pipe) { while (((1 << cur_backend) & enabled_backends_mask) == 0) cur_backend = (cur_backend + 1) % CAYMAN_MAX_BACKENDS; backend_map |= (((cur_backend & 0xf) << (swizzle_pipe[cur_pipe] * 4))); cur_backend = (cur_backend + 1) % CAYMAN_MAX_BACKENDS; } return backend_map; } static void cayman_program_channel_remap(struct radeon_device *rdev) { u32 tcp_chan_steer_lo, tcp_chan_steer_hi, mc_shared_chremap, tmp; tmp = RREG32(MC_SHARED_CHMAP); switch ((tmp & NOOFCHAN_MASK) >> NOOFCHAN_SHIFT) { case 0: case 1: case 2: case 3: default: /* default mapping */ mc_shared_chremap = 0x00fac688; break; } switch (rdev->family) { case CHIP_CAYMAN: default: //tcp_chan_steer_lo = 0x54763210 tcp_chan_steer_lo = 0x76543210; tcp_chan_steer_hi = 0x0000ba98; break; } WREG32(TCP_CHAN_STEER_LO, tcp_chan_steer_lo); WREG32(TCP_CHAN_STEER_HI, tcp_chan_steer_hi); WREG32(MC_SHARED_CHREMAP, mc_shared_chremap); } static u32 cayman_get_disable_mask_per_asic(struct radeon_device *rdev, u32 disable_mask_per_se, u32 max_disable_mask_per_se, u32 num_shader_engines) { u32 disable_field_width_per_se = r600_count_pipe_bits(disable_mask_per_se); u32 disable_mask_per_asic = disable_mask_per_se & max_disable_mask_per_se; if (num_shader_engines == 1) return disable_mask_per_asic; else if (num_shader_engines == 2) return disable_mask_per_asic | (disable_mask_per_asic << disable_field_width_per_se); else return 0xffffffff; } static void cayman_gpu_init(struct radeon_device *rdev) { u32 cc_rb_backend_disable = 0; u32 cc_gc_shader_pipe_config; u32 gb_addr_config = 0; u32 mc_shared_chmap, mc_arb_ramcfg; u32 gb_backend_map; u32 cgts_tcc_disable; u32 sx_debug_1; u32 smx_dc_ctl0; u32 gc_user_shader_pipe_config; u32 gc_user_rb_backend_disable; u32 cgts_user_tcc_disable; u32 cgts_sm_ctrl_reg; u32 hdp_host_path_cntl; u32 tmp; int i, j; switch (rdev->family) { case CHIP_CAYMAN: default: rdev->config.cayman.max_shader_engines = 2; rdev->config.cayman.max_pipes_per_simd = 4; rdev->config.cayman.max_tile_pipes = 8; rdev->config.cayman.max_simds_per_se = 12; rdev->config.cayman.max_backends_per_se = 4; rdev->config.cayman.max_texture_channel_caches = 8; rdev->config.cayman.max_gprs = 256; rdev->config.cayman.max_threads = 256; rdev->config.cayman.max_gs_threads = 32; rdev->config.cayman.max_stack_entries = 512; rdev->config.cayman.sx_num_of_sets = 8; rdev->config.cayman.sx_max_export_size = 256; rdev->config.cayman.sx_max_export_pos_size = 64; rdev->config.cayman.sx_max_export_smx_size = 192; rdev->config.cayman.max_hw_contexts = 8; rdev->config.cayman.sq_num_cf_insts = 2; rdev->config.cayman.sc_prim_fifo_size = 0x100; rdev->config.cayman.sc_hiz_tile_fifo_size = 0x30; rdev->config.cayman.sc_earlyz_tile_fifo_size = 0x130; break; } /* Initialize HDP */ for (i = 0, j = 0; i < 32; i++, j += 0x18) { WREG32((0x2c14 + j), 0x00000000); WREG32((0x2c18 + j), 0x00000000); WREG32((0x2c1c + j), 0x00000000); WREG32((0x2c20 + j), 0x00000000); WREG32((0x2c24 + j), 0x00000000); } WREG32(GRBM_CNTL, GRBM_READ_TIMEOUT(0xff)); mc_shared_chmap = RREG32(MC_SHARED_CHMAP); mc_arb_ramcfg = RREG32(MC_ARB_RAMCFG); cc_rb_backend_disable = RREG32(CC_RB_BACKEND_DISABLE); cc_gc_shader_pipe_config = RREG32(CC_GC_SHADER_PIPE_CONFIG); cgts_tcc_disable = RREG32(CGTS_TCC_DISABLE); gc_user_rb_backend_disable = RREG32(GC_USER_RB_BACKEND_DISABLE); gc_user_shader_pipe_config = RREG32(GC_USER_SHADER_PIPE_CONFIG); cgts_user_tcc_disable = RREG32(CGTS_USER_TCC_DISABLE); rdev->config.cayman.num_shader_engines = rdev->config.cayman.max_shader_engines; tmp = ((~gc_user_shader_pipe_config) & INACTIVE_QD_PIPES_MASK) >> INACTIVE_QD_PIPES_SHIFT; rdev->config.cayman.num_shader_pipes_per_simd = r600_count_pipe_bits(tmp); rdev->config.cayman.num_tile_pipes = rdev->config.cayman.max_tile_pipes; tmp = ((~gc_user_shader_pipe_config) & INACTIVE_SIMDS_MASK) >> INACTIVE_SIMDS_SHIFT; rdev->config.cayman.num_simds_per_se = r600_count_pipe_bits(tmp); tmp = ((~gc_user_rb_backend_disable) & BACKEND_DISABLE_MASK) >> BACKEND_DISABLE_SHIFT; rdev->config.cayman.num_backends_per_se = r600_count_pipe_bits(tmp); tmp = (gc_user_rb_backend_disable & BACKEND_DISABLE_MASK) >> BACKEND_DISABLE_SHIFT; rdev->config.cayman.backend_disable_mask_per_asic = cayman_get_disable_mask_per_asic(rdev, tmp, CAYMAN_MAX_BACKENDS_PER_SE_MASK, rdev->config.cayman.num_shader_engines); rdev->config.cayman.backend_map = cayman_get_tile_pipe_to_backend_map(rdev, rdev->config.cayman.num_tile_pipes, rdev->config.cayman.num_backends_per_se * rdev->config.cayman.num_shader_engines, &rdev->config.cayman.backend_disable_mask_per_asic, rdev->config.cayman.num_shader_engines); tmp = ((~cgts_user_tcc_disable) & TCC_DISABLE_MASK) >> TCC_DISABLE_SHIFT; rdev->config.cayman.num_texture_channel_caches = r600_count_pipe_bits(tmp); tmp = (mc_arb_ramcfg & BURSTLENGTH_MASK) >> BURSTLENGTH_SHIFT; rdev->config.cayman.mem_max_burst_length_bytes = (tmp + 1) * 256; if (rdev->config.cayman.mem_max_burst_length_bytes > 512) rdev->config.cayman.mem_max_burst_length_bytes = 512; tmp = (mc_arb_ramcfg & NOOFCOLS_MASK) >> NOOFCOLS_SHIFT; rdev->config.cayman.mem_row_size_in_kb = (4 * (1 << (8 + tmp))) / 1024; if (rdev->config.cayman.mem_row_size_in_kb > 4) rdev->config.cayman.mem_row_size_in_kb = 4; /* XXX use MC settings? */ rdev->config.cayman.shader_engine_tile_size = 32; rdev->config.cayman.num_gpus = 1; rdev->config.cayman.multi_gpu_tile_size = 64; //gb_addr_config = 0x02011003 #if 0 gb_addr_config = RREG32(GB_ADDR_CONFIG); #else gb_addr_config = 0; switch (rdev->config.cayman.num_tile_pipes) { case 1: default: gb_addr_config |= NUM_PIPES(0); break; case 2: gb_addr_config |= NUM_PIPES(1); break; case 4: gb_addr_config |= NUM_PIPES(2); break; case 8: gb_addr_config |= NUM_PIPES(3); break; } tmp = (rdev->config.cayman.mem_max_burst_length_bytes / 256) - 1; gb_addr_config |= PIPE_INTERLEAVE_SIZE(tmp); gb_addr_config |= NUM_SHADER_ENGINES(rdev->config.cayman.num_shader_engines - 1); tmp = (rdev->config.cayman.shader_engine_tile_size / 16) - 1; gb_addr_config |= SHADER_ENGINE_TILE_SIZE(tmp); switch (rdev->config.cayman.num_gpus) { case 1: default: gb_addr_config |= NUM_GPUS(0); break; case 2: gb_addr_config |= NUM_GPUS(1); break; case 4: gb_addr_config |= NUM_GPUS(2); break; } switch (rdev->config.cayman.multi_gpu_tile_size) { case 16: gb_addr_config |= MULTI_GPU_TILE_SIZE(0); break; case 32: default: gb_addr_config |= MULTI_GPU_TILE_SIZE(1); break; case 64: gb_addr_config |= MULTI_GPU_TILE_SIZE(2); break; case 128: gb_addr_config |= MULTI_GPU_TILE_SIZE(3); break; } switch (rdev->config.cayman.mem_row_size_in_kb) { case 1: default: gb_addr_config |= ROW_SIZE(0); break; case 2: gb_addr_config |= ROW_SIZE(1); break; case 4: gb_addr_config |= ROW_SIZE(2); break; } #endif tmp = (gb_addr_config & NUM_PIPES_MASK) >> NUM_PIPES_SHIFT; rdev->config.cayman.num_tile_pipes = (1 << tmp); tmp = (gb_addr_config & PIPE_INTERLEAVE_SIZE_MASK) >> PIPE_INTERLEAVE_SIZE_SHIFT; rdev->config.cayman.mem_max_burst_length_bytes = (tmp + 1) * 256; tmp = (gb_addr_config & NUM_SHADER_ENGINES_MASK) >> NUM_SHADER_ENGINES_SHIFT; rdev->config.cayman.num_shader_engines = tmp + 1; tmp = (gb_addr_config & NUM_GPUS_MASK) >> NUM_GPUS_SHIFT; rdev->config.cayman.num_gpus = tmp + 1; tmp = (gb_addr_config & MULTI_GPU_TILE_SIZE_MASK) >> MULTI_GPU_TILE_SIZE_SHIFT; rdev->config.cayman.multi_gpu_tile_size = 1 << tmp; tmp = (gb_addr_config & ROW_SIZE_MASK) >> ROW_SIZE_SHIFT; rdev->config.cayman.mem_row_size_in_kb = 1 << tmp; //gb_backend_map = 0x76541032; #if 0 gb_backend_map = RREG32(GB_BACKEND_MAP); #else gb_backend_map = cayman_get_tile_pipe_to_backend_map(rdev, rdev->config.cayman.num_tile_pipes, rdev->config.cayman.num_backends_per_se * rdev->config.cayman.num_shader_engines, &rdev->config.cayman.backend_disable_mask_per_asic, rdev->config.cayman.num_shader_engines); #endif /* setup tiling info dword. gb_addr_config is not adequate since it does * not have bank info, so create a custom tiling dword. * bits 3:0 num_pipes * bits 7:4 num_banks * bits 11:8 group_size * bits 15:12 row_size */ rdev->config.cayman.tile_config = 0; switch (rdev->config.cayman.num_tile_pipes) { case 1: default: rdev->config.cayman.tile_config |= (0 << 0); break; case 2: rdev->config.cayman.tile_config |= (1 << 0); break; case 4: rdev->config.cayman.tile_config |= (2 << 0); break; case 8: rdev->config.cayman.tile_config |= (3 << 0); break; } rdev->config.cayman.tile_config |= ((mc_arb_ramcfg & NOOFBANK_MASK) >> NOOFBANK_SHIFT) << 4; rdev->config.cayman.tile_config |= (gb_addr_config & PIPE_INTERLEAVE_SIZE_MASK) >> PIPE_INTERLEAVE_SIZE_SHIFT; rdev->config.cayman.tile_config |= ((gb_addr_config & ROW_SIZE_MASK) >> ROW_SIZE_SHIFT) << 12; WREG32(GB_BACKEND_MAP, gb_backend_map); WREG32(GB_ADDR_CONFIG, gb_addr_config); WREG32(DMIF_ADDR_CONFIG, gb_addr_config); WREG32(HDP_ADDR_CONFIG, gb_addr_config); cayman_program_channel_remap(rdev); /* primary versions */ WREG32(CC_RB_BACKEND_DISABLE, cc_rb_backend_disable); WREG32(CC_SYS_RB_BACKEND_DISABLE, cc_rb_backend_disable); WREG32(CC_GC_SHADER_PIPE_CONFIG, cc_gc_shader_pipe_config); WREG32(CGTS_TCC_DISABLE, cgts_tcc_disable); WREG32(CGTS_SYS_TCC_DISABLE, cgts_tcc_disable); /* user versions */ WREG32(GC_USER_RB_BACKEND_DISABLE, cc_rb_backend_disable); WREG32(GC_USER_SYS_RB_BACKEND_DISABLE, cc_rb_backend_disable); WREG32(GC_USER_SHADER_PIPE_CONFIG, cc_gc_shader_pipe_config); WREG32(CGTS_USER_SYS_TCC_DISABLE, cgts_tcc_disable); WREG32(CGTS_USER_TCC_DISABLE, cgts_tcc_disable); /* reprogram the shader complex */ cgts_sm_ctrl_reg = RREG32(CGTS_SM_CTRL_REG); for (i = 0; i < 16; i++) WREG32(CGTS_SM_CTRL_REG, OVERRIDE); WREG32(CGTS_SM_CTRL_REG, cgts_sm_ctrl_reg); /* set HW defaults for 3D engine */ WREG32(CP_MEQ_THRESHOLDS, MEQ1_START(0x30) | MEQ2_START(0x60)); sx_debug_1 = RREG32(SX_DEBUG_1); sx_debug_1 |= ENABLE_NEW_SMX_ADDRESS; WREG32(SX_DEBUG_1, sx_debug_1); smx_dc_ctl0 = RREG32(SMX_DC_CTL0); smx_dc_ctl0 &= ~NUMBER_OF_SETS(0x1ff); smx_dc_ctl0 |= NUMBER_OF_SETS(rdev->config.evergreen.sx_num_of_sets); WREG32(SMX_DC_CTL0, smx_dc_ctl0); WREG32(SPI_CONFIG_CNTL_1, VTX_DONE_DELAY(4) | CRC_SIMD_ID_WADDR_DISABLE); /* need to be explicitly zero-ed */ WREG32(VGT_OFFCHIP_LDS_BASE, 0); WREG32(SQ_LSTMP_RING_BASE, 0); WREG32(SQ_HSTMP_RING_BASE, 0); WREG32(SQ_ESTMP_RING_BASE, 0); WREG32(SQ_GSTMP_RING_BASE, 0); WREG32(SQ_VSTMP_RING_BASE, 0); WREG32(SQ_PSTMP_RING_BASE, 0); WREG32(TA_CNTL_AUX, DISABLE_CUBE_ANISO); WREG32(SX_EXPORT_BUFFER_SIZES, (COLOR_BUFFER_SIZE((rdev->config.evergreen.sx_max_export_size / 4) - 1) | POSITION_BUFFER_SIZE((rdev->config.evergreen.sx_max_export_pos_size / 4) - 1) | SMX_BUFFER_SIZE((rdev->config.evergreen.sx_max_export_smx_size / 4) - 1))); WREG32(PA_SC_FIFO_SIZE, (SC_PRIM_FIFO_SIZE(rdev->config.evergreen.sc_prim_fifo_size) | SC_HIZ_TILE_FIFO_SIZE(rdev->config.evergreen.sc_hiz_tile_fifo_size) | SC_EARLYZ_TILE_FIFO_SIZE(rdev->config.evergreen.sc_earlyz_tile_fifo_size))); WREG32(VGT_NUM_INSTANCES, 1); WREG32(CP_PERFMON_CNTL, 0); WREG32(SQ_MS_FIFO_SIZES, (CACHE_FIFO_SIZE(16 * rdev->config.evergreen.sq_num_cf_insts) | FETCH_FIFO_HIWATER(0x4) | DONE_FIFO_HIWATER(0xe0) | ALU_UPDATE_FIFO_HIWATER(0x8))); WREG32(SQ_GPR_RESOURCE_MGMT_1, NUM_CLAUSE_TEMP_GPRS(4)); WREG32(SQ_CONFIG, (VC_ENABLE | EXPORT_SRC_C | GFX_PRIO(0) | CS1_PRIO(0) | CS2_PRIO(1))); WREG32(SQ_DYN_GPR_CNTL_PS_FLUSH_REQ, DYN_GPR_ENABLE); WREG32(PA_SC_FORCE_EOV_MAX_CNTS, (FORCE_EOV_MAX_CLK_CNT(4095) | FORCE_EOV_MAX_REZ_CNT(255))); WREG32(VGT_CACHE_INVALIDATION, CACHE_INVALIDATION(VC_AND_TC) | AUTO_INVLD_EN(ES_AND_GS_AUTO)); WREG32(VGT_GS_VERTEX_REUSE, 16); WREG32(PA_SC_LINE_STIPPLE_STATE, 0); WREG32(CB_PERF_CTR0_SEL_0, 0); WREG32(CB_PERF_CTR0_SEL_1, 0); WREG32(CB_PERF_CTR1_SEL_0, 0); WREG32(CB_PERF_CTR1_SEL_1, 0); WREG32(CB_PERF_CTR2_SEL_0, 0); WREG32(CB_PERF_CTR2_SEL_1, 0); WREG32(CB_PERF_CTR3_SEL_0, 0); WREG32(CB_PERF_CTR3_SEL_1, 0); hdp_host_path_cntl = RREG32(HDP_HOST_PATH_CNTL); WREG32(HDP_HOST_PATH_CNTL, hdp_host_path_cntl); WREG32(PA_CL_ENHANCE, CLIP_VTX_REORDER_ENA | NUM_CLIP_SEQ(3)); udelay(50); } /* * GART */ void cayman_pcie_gart_tlb_flush(struct radeon_device *rdev) { /* flush hdp cache */ WREG32(HDP_MEM_COHERENCY_FLUSH_CNTL, 0x1); /* bits 0-7 are the VM contexts0-7 */ WREG32(VM_INVALIDATE_REQUEST, 1); } int cayman_pcie_gart_enable(struct radeon_device *rdev) { int r; if (rdev->gart.table.vram.robj == NULL) { dev_err(rdev->dev, "No VRAM object for PCIE GART.\n"); return -EINVAL; } r = radeon_gart_table_vram_pin(rdev); if (r) return r; radeon_gart_restore(rdev); /* Setup TLB control */ WREG32(MC_VM_MX_L1_TLB_CNTL, ENABLE_L1_TLB | ENABLE_L1_FRAGMENT_PROCESSING | SYSTEM_ACCESS_MODE_NOT_IN_SYS | SYSTEM_APERTURE_UNMAPPED_ACCESS_PASS_THRU); /* Setup L2 cache */ WREG32(VM_L2_CNTL, ENABLE_L2_CACHE | ENABLE_L2_PTE_CACHE_LRU_UPDATE_BY_WRITE | ENABLE_L2_PDE0_CACHE_LRU_UPDATE_BY_WRITE | EFFECTIVE_L2_QUEUE_SIZE(7) | CONTEXT1_IDENTITY_ACCESS_MODE(1)); WREG32(VM_L2_CNTL2, INVALIDATE_ALL_L1_TLBS | INVALIDATE_L2_CACHE); WREG32(VM_L2_CNTL3, L2_CACHE_BIGK_ASSOCIATIVITY | L2_CACHE_BIGK_FRAGMENT_SIZE(6)); /* setup context0 */ WREG32(VM_CONTEXT0_PAGE_TABLE_START_ADDR, rdev->mc.gtt_start >> 12); WREG32(VM_CONTEXT0_PAGE_TABLE_END_ADDR, rdev->mc.gtt_end >> 12); WREG32(VM_CONTEXT0_PAGE_TABLE_BASE_ADDR, rdev->gart.table_addr >> 12); WREG32(VM_CONTEXT0_PROTECTION_FAULT_DEFAULT_ADDR, (u32)(rdev->dummy_page.addr >> 12)); WREG32(VM_CONTEXT0_CNTL2, 0); WREG32(VM_CONTEXT0_CNTL, ENABLE_CONTEXT | PAGE_TABLE_DEPTH(0) | RANGE_PROTECTION_FAULT_ENABLE_DEFAULT); /* disable context1-7 */ WREG32(VM_CONTEXT1_CNTL2, 0); WREG32(VM_CONTEXT1_CNTL, 0); cayman_pcie_gart_tlb_flush(rdev); rdev->gart.ready = true; return 0; } void cayman_pcie_gart_disable(struct radeon_device *rdev) { int r; /* Disable all tables */ WREG32(VM_CONTEXT0_CNTL, 0); WREG32(VM_CONTEXT1_CNTL, 0); /* Setup TLB control */ WREG32(MC_VM_MX_L1_TLB_CNTL, ENABLE_L1_FRAGMENT_PROCESSING | SYSTEM_ACCESS_MODE_NOT_IN_SYS | SYSTEM_APERTURE_UNMAPPED_ACCESS_PASS_THRU); /* Setup L2 cache */ WREG32(VM_L2_CNTL, ENABLE_L2_PTE_CACHE_LRU_UPDATE_BY_WRITE | ENABLE_L2_PDE0_CACHE_LRU_UPDATE_BY_WRITE | EFFECTIVE_L2_QUEUE_SIZE(7) | CONTEXT1_IDENTITY_ACCESS_MODE(1)); WREG32(VM_L2_CNTL2, 0); WREG32(VM_L2_CNTL3, L2_CACHE_BIGK_ASSOCIATIVITY | L2_CACHE_BIGK_FRAGMENT_SIZE(6)); if (rdev->gart.table.vram.robj) { r = radeon_bo_reserve(rdev->gart.table.vram.robj, false); if (likely(r == 0)) { radeon_bo_kunmap(rdev->gart.table.vram.robj); radeon_bo_unpin(rdev->gart.table.vram.robj); radeon_bo_unreserve(rdev->gart.table.vram.robj); } } } void cayman_pcie_gart_fini(struct radeon_device *rdev) { cayman_pcie_gart_disable(rdev); radeon_gart_table_vram_free(rdev); radeon_gart_fini(rdev); } /* * CP. */ static void cayman_cp_enable(struct radeon_device *rdev, bool enable) { if (enable) WREG32(CP_ME_CNTL, 0); else { rdev->mc.active_vram_size = rdev->mc.visible_vram_size; WREG32(CP_ME_CNTL, (CP_ME_HALT | CP_PFP_HALT)); WREG32(SCRATCH_UMSK, 0); } } static int cayman_cp_load_microcode(struct radeon_device *rdev) { const __be32 *fw_data; int i; if (!rdev->me_fw || !rdev->pfp_fw) return -EINVAL; cayman_cp_enable(rdev, false); fw_data = (const __be32 *)rdev->pfp_fw->data; WREG32(CP_PFP_UCODE_ADDR, 0); for (i = 0; i < CAYMAN_PFP_UCODE_SIZE; i++) WREG32(CP_PFP_UCODE_DATA, be32_to_cpup(fw_data++)); WREG32(CP_PFP_UCODE_ADDR, 0); fw_data = (const __be32 *)rdev->me_fw->data; WREG32(CP_ME_RAM_WADDR, 0); for (i = 0; i < CAYMAN_PM4_UCODE_SIZE; i++) WREG32(CP_ME_RAM_DATA, be32_to_cpup(fw_data++)); WREG32(CP_PFP_UCODE_ADDR, 0); WREG32(CP_ME_RAM_WADDR, 0); WREG32(CP_ME_RAM_RADDR, 0); return 0; } static int cayman_cp_start(struct radeon_device *rdev) { int r, i; r = radeon_ring_lock(rdev, 7); if (r) { DRM_ERROR("radeon: cp failed to lock ring (%d).\n", r); return r; } radeon_ring_write(rdev, PACKET3(PACKET3_ME_INITIALIZE, 5)); radeon_ring_write(rdev, 0x1); radeon_ring_write(rdev, 0x0); radeon_ring_write(rdev, rdev->config.cayman.max_hw_contexts - 1); radeon_ring_write(rdev, PACKET3_ME_INITIALIZE_DEVICE_ID(1)); radeon_ring_write(rdev, 0); radeon_ring_write(rdev, 0); radeon_ring_unlock_commit(rdev); cayman_cp_enable(rdev, true); r = radeon_ring_lock(rdev, cayman_default_size + 15); if (r) { DRM_ERROR("radeon: cp failed to lock ring (%d).\n", r); return r; } /* setup clear context state */ radeon_ring_write(rdev, PACKET3(PACKET3_PREAMBLE_CNTL, 0)); radeon_ring_write(rdev, PACKET3_PREAMBLE_BEGIN_CLEAR_STATE); for (i = 0; i < cayman_default_size; i++) radeon_ring_write(rdev, cayman_default_state[i]); radeon_ring_write(rdev, PACKET3(PACKET3_PREAMBLE_CNTL, 0)); radeon_ring_write(rdev, PACKET3_PREAMBLE_END_CLEAR_STATE); /* set clear context state */ radeon_ring_write(rdev, PACKET3(PACKET3_CLEAR_STATE, 0)); radeon_ring_write(rdev, 0); /* SQ_VTX_BASE_VTX_LOC */ radeon_ring_write(rdev, 0xc0026f00); radeon_ring_write(rdev, 0x00000000); radeon_ring_write(rdev, 0x00000000); radeon_ring_write(rdev, 0x00000000); /* Clear consts */ radeon_ring_write(rdev, 0xc0036f00); radeon_ring_write(rdev, 0x00000bc4); radeon_ring_write(rdev, 0xffffffff); radeon_ring_write(rdev, 0xffffffff); radeon_ring_write(rdev, 0xffffffff); radeon_ring_unlock_commit(rdev); /* XXX init other rings */ return 0; } int cayman_cp_resume(struct radeon_device *rdev) { u32 tmp; u32 rb_bufsz; int r; /* Reset cp; if cp is reset, then PA, SH, VGT also need to be reset */ WREG32(GRBM_SOFT_RESET, (SOFT_RESET_CP | SOFT_RESET_PA | SOFT_RESET_SH | SOFT_RESET_VGT | SOFT_RESET_SX)); RREG32(GRBM_SOFT_RESET); mdelay(15); WREG32(GRBM_SOFT_RESET, 0); RREG32(GRBM_SOFT_RESET); WREG32(CP_SEM_WAIT_TIMER, 0x4); /* Set the write pointer delay */ WREG32(CP_RB_WPTR_DELAY, 0); WREG32(CP_DEBUG, (1 << 27)); /* ring 0 - compute and gfx */ /* Set ring buffer size */ rb_bufsz = drm_order(rdev->cp.ring_size / 8); tmp = (drm_order(RADEON_GPU_PAGE_SIZE/8) << 8) | rb_bufsz; #ifdef __BIG_ENDIAN tmp |= BUF_SWAP_32BIT; #endif WREG32(CP_RB0_CNTL, tmp); /* Initialize the ring buffer's read and write pointers */ WREG32(CP_RB0_CNTL, tmp | RB_RPTR_WR_ENA); WREG32(CP_RB0_WPTR, 0); /* set the wb address wether it's enabled or not */ WREG32(CP_RB0_RPTR_ADDR, (rdev->wb.gpu_addr + RADEON_WB_CP_RPTR_OFFSET) & 0xFFFFFFFC); WREG32(CP_RB0_RPTR_ADDR_HI, upper_32_bits(rdev->wb.gpu_addr + RADEON_WB_CP_RPTR_OFFSET) & 0xFF); WREG32(SCRATCH_ADDR, ((rdev->wb.gpu_addr + RADEON_WB_SCRATCH_OFFSET) >> 8) & 0xFFFFFFFF); if (rdev->wb.enabled) WREG32(SCRATCH_UMSK, 0xff); else { tmp |= RB_NO_UPDATE; WREG32(SCRATCH_UMSK, 0); } mdelay(1); WREG32(CP_RB0_CNTL, tmp); WREG32(CP_RB0_BASE, rdev->cp.gpu_addr >> 8); rdev->cp.rptr = RREG32(CP_RB0_RPTR); rdev->cp.wptr = RREG32(CP_RB0_WPTR); /* ring1 - compute only */ /* Set ring buffer size */ rb_bufsz = drm_order(rdev->cp1.ring_size / 8); tmp = (drm_order(RADEON_GPU_PAGE_SIZE/8) << 8) | rb_bufsz; #ifdef __BIG_ENDIAN tmp |= BUF_SWAP_32BIT; #endif WREG32(CP_RB1_CNTL, tmp); /* Initialize the ring buffer's read and write pointers */ WREG32(CP_RB1_CNTL, tmp | RB_RPTR_WR_ENA); WREG32(CP_RB1_WPTR, 0); /* set the wb address wether it's enabled or not */ WREG32(CP_RB1_RPTR_ADDR, (rdev->wb.gpu_addr + RADEON_WB_CP1_RPTR_OFFSET) & 0xFFFFFFFC); WREG32(CP_RB1_RPTR_ADDR_HI, upper_32_bits(rdev->wb.gpu_addr + RADEON_WB_CP1_RPTR_OFFSET) & 0xFF); mdelay(1); WREG32(CP_RB1_CNTL, tmp); WREG32(CP_RB1_BASE, rdev->cp1.gpu_addr >> 8); rdev->cp1.rptr = RREG32(CP_RB1_RPTR); rdev->cp1.wptr = RREG32(CP_RB1_WPTR); /* ring2 - compute only */ /* Set ring buffer size */ rb_bufsz = drm_order(rdev->cp2.ring_size / 8); tmp = (drm_order(RADEON_GPU_PAGE_SIZE/8) << 8) | rb_bufsz; #ifdef __BIG_ENDIAN tmp |= BUF_SWAP_32BIT; #endif WREG32(CP_RB2_CNTL, tmp); /* Initialize the ring buffer's read and write pointers */ WREG32(CP_RB2_CNTL, tmp | RB_RPTR_WR_ENA); WREG32(CP_RB2_WPTR, 0); /* set the wb address wether it's enabled or not */ WREG32(CP_RB2_RPTR_ADDR, (rdev->wb.gpu_addr + RADEON_WB_CP2_RPTR_OFFSET) & 0xFFFFFFFC); WREG32(CP_RB2_RPTR_ADDR_HI, upper_32_bits(rdev->wb.gpu_addr + RADEON_WB_CP2_RPTR_OFFSET) & 0xFF); mdelay(1); WREG32(CP_RB2_CNTL, tmp); WREG32(CP_RB2_BASE, rdev->cp2.gpu_addr >> 8); rdev->cp2.rptr = RREG32(CP_RB2_RPTR); rdev->cp2.wptr = RREG32(CP_RB2_WPTR); /* start the rings */ cayman_cp_start(rdev); rdev->cp.ready = true; rdev->cp1.ready = true; rdev->cp2.ready = true; /* this only test cp0 */ r = radeon_ring_test(rdev); if (r) { rdev->cp.ready = false; rdev->cp1.ready = false; rdev->cp2.ready = false; return r; } return 0; } bool cayman_gpu_is_lockup(struct radeon_device *rdev) { u32 srbm_status; u32 grbm_status; u32 grbm_status_se0, grbm_status_se1; struct r100_gpu_lockup *lockup = &rdev->config.cayman.lockup; int r; srbm_status = RREG32(SRBM_STATUS); grbm_status = RREG32(GRBM_STATUS); grbm_status_se0 = RREG32(GRBM_STATUS_SE0); grbm_status_se1 = RREG32(GRBM_STATUS_SE1); if (!(grbm_status & GUI_ACTIVE)) { r100_gpu_lockup_update(lockup, &rdev->cp); return false; } /* force CP activities */ r = radeon_ring_lock(rdev, 2); if (!r) { /* PACKET2 NOP */ radeon_ring_write(rdev, 0x80000000); radeon_ring_write(rdev, 0x80000000); radeon_ring_unlock_commit(rdev); } /* XXX deal with CP0,1,2 */ rdev->cp.rptr = RREG32(CP_RB0_RPTR); return r100_gpu_cp_is_lockup(rdev, lockup, &rdev->cp); } static int cayman_gpu_soft_reset(struct radeon_device *rdev) { struct evergreen_mc_save save; u32 grbm_reset = 0; if (!(RREG32(GRBM_STATUS) & GUI_ACTIVE)) return 0; dev_info(rdev->dev, "GPU softreset \n"); dev_info(rdev->dev, " GRBM_STATUS=0x%08X\n", RREG32(GRBM_STATUS)); dev_info(rdev->dev, " GRBM_STATUS_SE0=0x%08X\n", RREG32(GRBM_STATUS_SE0)); dev_info(rdev->dev, " GRBM_STATUS_SE1=0x%08X\n", RREG32(GRBM_STATUS_SE1)); dev_info(rdev->dev, " SRBM_STATUS=0x%08X\n", RREG32(SRBM_STATUS)); evergreen_mc_stop(rdev, &save); if (evergreen_mc_wait_for_idle(rdev)) { dev_warn(rdev->dev, "Wait for MC idle timedout !\n"); } /* Disable CP parsing/prefetching */ WREG32(CP_ME_CNTL, CP_ME_HALT | CP_PFP_HALT); /* reset all the gfx blocks */ grbm_reset = (SOFT_RESET_CP | SOFT_RESET_CB | SOFT_RESET_DB | SOFT_RESET_GDS | SOFT_RESET_PA | SOFT_RESET_SC | SOFT_RESET_SPI | SOFT_RESET_SH | SOFT_RESET_SX | SOFT_RESET_TC | SOFT_RESET_TA | SOFT_RESET_VGT | SOFT_RESET_IA); dev_info(rdev->dev, " GRBM_SOFT_RESET=0x%08X\n", grbm_reset); WREG32(GRBM_SOFT_RESET, grbm_reset); (void)RREG32(GRBM_SOFT_RESET); udelay(50); WREG32(GRBM_SOFT_RESET, 0); (void)RREG32(GRBM_SOFT_RESET); /* Wait a little for things to settle down */ udelay(50); dev_info(rdev->dev, " GRBM_STATUS=0x%08X\n", RREG32(GRBM_STATUS)); dev_info(rdev->dev, " GRBM_STATUS_SE0=0x%08X\n", RREG32(GRBM_STATUS_SE0)); dev_info(rdev->dev, " GRBM_STATUS_SE1=0x%08X\n", RREG32(GRBM_STATUS_SE1)); dev_info(rdev->dev, " SRBM_STATUS=0x%08X\n", RREG32(SRBM_STATUS)); evergreen_mc_resume(rdev, &save); return 0; } int cayman_asic_reset(struct radeon_device *rdev) { return cayman_gpu_soft_reset(rdev); }