/* * Copyright © 2006-2017 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ #include "intel_cdclk.h" #include "intel_drv.h" #include "intel_sideband.h" /** * DOC: CDCLK / RAWCLK * * The display engine uses several different clocks to do its work. There * are two main clocks involved that aren't directly related to the actual * pixel clock or any symbol/bit clock of the actual output port. These * are the core display clock (CDCLK) and RAWCLK. * * CDCLK clocks most of the display pipe logic, and thus its frequency * must be high enough to support the rate at which pixels are flowing * through the pipes. Downscaling must also be accounted as that increases * the effective pixel rate. * * On several platforms the CDCLK frequency can be changed dynamically * to minimize power consumption for a given display configuration. * Typically changes to the CDCLK frequency require all the display pipes * to be shut down while the frequency is being changed. * * On SKL+ the DMC will toggle the CDCLK off/on during DC5/6 entry/exit. * DMC will not change the active CDCLK frequency however, so that part * will still be performed by the driver directly. * * RAWCLK is a fixed frequency clock, often used by various auxiliary * blocks such as AUX CH or backlight PWM. Hence the only thing we * really need to know about RAWCLK is its frequency so that various * dividers can be programmed correctly. */ static void fixed_133mhz_get_cdclk(struct drm_i915_private *dev_priv, struct intel_cdclk_state *cdclk_state) { cdclk_state->cdclk = 133333; } static void fixed_200mhz_get_cdclk(struct drm_i915_private *dev_priv, struct intel_cdclk_state *cdclk_state) { cdclk_state->cdclk = 200000; } static void fixed_266mhz_get_cdclk(struct drm_i915_private *dev_priv, struct intel_cdclk_state *cdclk_state) { cdclk_state->cdclk = 266667; } static void fixed_333mhz_get_cdclk(struct drm_i915_private *dev_priv, struct intel_cdclk_state *cdclk_state) { cdclk_state->cdclk = 333333; } static void fixed_400mhz_get_cdclk(struct drm_i915_private *dev_priv, struct intel_cdclk_state *cdclk_state) { cdclk_state->cdclk = 400000; } static void fixed_450mhz_get_cdclk(struct drm_i915_private *dev_priv, struct intel_cdclk_state *cdclk_state) { cdclk_state->cdclk = 450000; } static void i85x_get_cdclk(struct drm_i915_private *dev_priv, struct intel_cdclk_state *cdclk_state) { struct pci_dev *pdev = dev_priv->drm.pdev; u16 hpllcc = 0; /* * 852GM/852GMV only supports 133 MHz and the HPLLCC * encoding is different :( * FIXME is this the right way to detect 852GM/852GMV? */ if (pdev->revision == 0x1) { cdclk_state->cdclk = 133333; return; } pci_bus_read_config_word(pdev->bus, PCI_DEVFN(0, 3), HPLLCC, &hpllcc); /* Assume that the hardware is in the high speed state. This * should be the default. */ switch (hpllcc & GC_CLOCK_CONTROL_MASK) { case GC_CLOCK_133_200: case GC_CLOCK_133_200_2: case GC_CLOCK_100_200: cdclk_state->cdclk = 200000; break; case GC_CLOCK_166_250: cdclk_state->cdclk = 250000; break; case GC_CLOCK_100_133: cdclk_state->cdclk = 133333; break; case GC_CLOCK_133_266: case GC_CLOCK_133_266_2: case GC_CLOCK_166_266: cdclk_state->cdclk = 266667; break; } } static void i915gm_get_cdclk(struct drm_i915_private *dev_priv, struct intel_cdclk_state *cdclk_state) { struct pci_dev *pdev = dev_priv->drm.pdev; u16 gcfgc = 0; pci_read_config_word(pdev, GCFGC, &gcfgc); if (gcfgc & GC_LOW_FREQUENCY_ENABLE) { cdclk_state->cdclk = 133333; return; } switch (gcfgc & GC_DISPLAY_CLOCK_MASK) { case GC_DISPLAY_CLOCK_333_320_MHZ: cdclk_state->cdclk = 333333; break; default: case GC_DISPLAY_CLOCK_190_200_MHZ: cdclk_state->cdclk = 190000; break; } } static void i945gm_get_cdclk(struct drm_i915_private *dev_priv, struct intel_cdclk_state *cdclk_state) { struct pci_dev *pdev = dev_priv->drm.pdev; u16 gcfgc = 0; pci_read_config_word(pdev, GCFGC, &gcfgc); if (gcfgc & GC_LOW_FREQUENCY_ENABLE) { cdclk_state->cdclk = 133333; return; } switch (gcfgc & GC_DISPLAY_CLOCK_MASK) { case GC_DISPLAY_CLOCK_333_320_MHZ: cdclk_state->cdclk = 320000; break; default: case GC_DISPLAY_CLOCK_190_200_MHZ: cdclk_state->cdclk = 200000; break; } } static unsigned int intel_hpll_vco(struct drm_i915_private *dev_priv) { static const unsigned int blb_vco[8] = { [0] = 3200000, [1] = 4000000, [2] = 5333333, [3] = 4800000, [4] = 6400000, }; static const unsigned int pnv_vco[8] = { [0] = 3200000, [1] = 4000000, [2] = 5333333, [3] = 4800000, [4] = 2666667, }; static const unsigned int cl_vco[8] = { [0] = 3200000, [1] = 4000000, [2] = 5333333, [3] = 6400000, [4] = 3333333, [5] = 3566667, [6] = 4266667, }; static const unsigned int elk_vco[8] = { [0] = 3200000, [1] = 4000000, [2] = 5333333, [3] = 4800000, }; static const unsigned int ctg_vco[8] = { [0] = 3200000, [1] = 4000000, [2] = 5333333, [3] = 6400000, [4] = 2666667, [5] = 4266667, }; const unsigned int *vco_table; unsigned int vco; u8 tmp = 0; /* FIXME other chipsets? */ if (IS_GM45(dev_priv)) vco_table = ctg_vco; else if (IS_G45(dev_priv)) vco_table = elk_vco; else if (IS_I965GM(dev_priv)) vco_table = cl_vco; else if (IS_PINEVIEW(dev_priv)) vco_table = pnv_vco; else if (IS_G33(dev_priv)) vco_table = blb_vco; else return 0; tmp = I915_READ(IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv) ? HPLLVCO_MOBILE : HPLLVCO); vco = vco_table[tmp & 0x7]; if (vco == 0) DRM_ERROR("Bad HPLL VCO (HPLLVCO=0x%02x)\n", tmp); else DRM_DEBUG_KMS("HPLL VCO %u kHz\n", vco); return vco; } static void g33_get_cdclk(struct drm_i915_private *dev_priv, struct intel_cdclk_state *cdclk_state) { struct pci_dev *pdev = dev_priv->drm.pdev; static const u8 div_3200[] = { 12, 10, 8, 7, 5, 16 }; static const u8 div_4000[] = { 14, 12, 10, 8, 6, 20 }; static const u8 div_4800[] = { 20, 14, 12, 10, 8, 24 }; static const u8 div_5333[] = { 20, 16, 12, 12, 8, 28 }; const u8 *div_table; unsigned int cdclk_sel; u16 tmp = 0; cdclk_state->vco = intel_hpll_vco(dev_priv); pci_read_config_word(pdev, GCFGC, &tmp); cdclk_sel = (tmp >> 4) & 0x7; if (cdclk_sel >= ARRAY_SIZE(div_3200)) goto fail; switch (cdclk_state->vco) { case 3200000: div_table = div_3200; break; case 4000000: div_table = div_4000; break; case 4800000: div_table = div_4800; break; case 5333333: div_table = div_5333; break; default: goto fail; } cdclk_state->cdclk = DIV_ROUND_CLOSEST(cdclk_state->vco, div_table[cdclk_sel]); return; fail: DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%08x\n", cdclk_state->vco, tmp); cdclk_state->cdclk = 190476; } static void pnv_get_cdclk(struct drm_i915_private *dev_priv, struct intel_cdclk_state *cdclk_state) { struct pci_dev *pdev = dev_priv->drm.pdev; u16 gcfgc = 0; pci_read_config_word(pdev, GCFGC, &gcfgc); switch (gcfgc & GC_DISPLAY_CLOCK_MASK) { case GC_DISPLAY_CLOCK_267_MHZ_PNV: cdclk_state->cdclk = 266667; break; case GC_DISPLAY_CLOCK_333_MHZ_PNV: cdclk_state->cdclk = 333333; break; case GC_DISPLAY_CLOCK_444_MHZ_PNV: cdclk_state->cdclk = 444444; break; case GC_DISPLAY_CLOCK_200_MHZ_PNV: cdclk_state->cdclk = 200000; break; default: DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc); /* fall through */ case GC_DISPLAY_CLOCK_133_MHZ_PNV: cdclk_state->cdclk = 133333; break; case GC_DISPLAY_CLOCK_167_MHZ_PNV: cdclk_state->cdclk = 166667; break; } } static void i965gm_get_cdclk(struct drm_i915_private *dev_priv, struct intel_cdclk_state *cdclk_state) { struct pci_dev *pdev = dev_priv->drm.pdev; static const u8 div_3200[] = { 16, 10, 8 }; static const u8 div_4000[] = { 20, 12, 10 }; static const u8 div_5333[] = { 24, 16, 14 }; const u8 *div_table; unsigned int cdclk_sel; u16 tmp = 0; cdclk_state->vco = intel_hpll_vco(dev_priv); pci_read_config_word(pdev, GCFGC, &tmp); cdclk_sel = ((tmp >> 8) & 0x1f) - 1; if (cdclk_sel >= ARRAY_SIZE(div_3200)) goto fail; switch (cdclk_state->vco) { case 3200000: div_table = div_3200; break; case 4000000: div_table = div_4000; break; case 5333333: div_table = div_5333; break; default: goto fail; } cdclk_state->cdclk = DIV_ROUND_CLOSEST(cdclk_state->vco, div_table[cdclk_sel]); return; fail: DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%04x\n", cdclk_state->vco, tmp); cdclk_state->cdclk = 200000; } static void gm45_get_cdclk(struct drm_i915_private *dev_priv, struct intel_cdclk_state *cdclk_state) { struct pci_dev *pdev = dev_priv->drm.pdev; unsigned int cdclk_sel; u16 tmp = 0; cdclk_state->vco = intel_hpll_vco(dev_priv); pci_read_config_word(pdev, GCFGC, &tmp); cdclk_sel = (tmp >> 12) & 0x1; switch (cdclk_state->vco) { case 2666667: case 4000000: case 5333333: cdclk_state->cdclk = cdclk_sel ? 333333 : 222222; break; case 3200000: cdclk_state->cdclk = cdclk_sel ? 320000 : 228571; break; default: DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u, CFGC=0x%04x\n", cdclk_state->vco, tmp); cdclk_state->cdclk = 222222; break; } } static void hsw_get_cdclk(struct drm_i915_private *dev_priv, struct intel_cdclk_state *cdclk_state) { u32 lcpll = I915_READ(LCPLL_CTL); u32 freq = lcpll & LCPLL_CLK_FREQ_MASK; if (lcpll & LCPLL_CD_SOURCE_FCLK) cdclk_state->cdclk = 800000; else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT) cdclk_state->cdclk = 450000; else if (freq == LCPLL_CLK_FREQ_450) cdclk_state->cdclk = 450000; else if (IS_HSW_ULT(dev_priv)) cdclk_state->cdclk = 337500; else cdclk_state->cdclk = 540000; } static int vlv_calc_cdclk(struct drm_i915_private *dev_priv, int min_cdclk) { int freq_320 = (dev_priv->hpll_freq << 1) % 320000 != 0 ? 333333 : 320000; /* * We seem to get an unstable or solid color picture at 200MHz. * Not sure what's wrong. For now use 200MHz only when all pipes * are off. */ if (IS_VALLEYVIEW(dev_priv) && min_cdclk > freq_320) return 400000; else if (min_cdclk > 266667) return freq_320; else if (min_cdclk > 0) return 266667; else return 200000; } static u8 vlv_calc_voltage_level(struct drm_i915_private *dev_priv, int cdclk) { if (IS_VALLEYVIEW(dev_priv)) { if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */ return 2; else if (cdclk >= 266667) return 1; else return 0; } else { /* * Specs are full of misinformation, but testing on actual * hardware has shown that we just need to write the desired * CCK divider into the Punit register. */ return DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1; } } static void vlv_get_cdclk(struct drm_i915_private *dev_priv, struct intel_cdclk_state *cdclk_state) { u32 val; vlv_iosf_sb_get(dev_priv, BIT(VLV_IOSF_SB_CCK) | BIT(VLV_IOSF_SB_PUNIT)); cdclk_state->vco = vlv_get_hpll_vco(dev_priv); cdclk_state->cdclk = vlv_get_cck_clock(dev_priv, "cdclk", CCK_DISPLAY_CLOCK_CONTROL, cdclk_state->vco); val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM); vlv_iosf_sb_put(dev_priv, BIT(VLV_IOSF_SB_CCK) | BIT(VLV_IOSF_SB_PUNIT)); if (IS_VALLEYVIEW(dev_priv)) cdclk_state->voltage_level = (val & DSPFREQGUAR_MASK) >> DSPFREQGUAR_SHIFT; else cdclk_state->voltage_level = (val & DSPFREQGUAR_MASK_CHV) >> DSPFREQGUAR_SHIFT_CHV; } static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv) { unsigned int credits, default_credits; if (IS_CHERRYVIEW(dev_priv)) default_credits = PFI_CREDIT(12); else default_credits = PFI_CREDIT(8); if (dev_priv->cdclk.hw.cdclk >= dev_priv->czclk_freq) { /* CHV suggested value is 31 or 63 */ if (IS_CHERRYVIEW(dev_priv)) credits = PFI_CREDIT_63; else credits = PFI_CREDIT(15); } else { credits = default_credits; } /* * WA - write default credits before re-programming * FIXME: should we also set the resend bit here? */ I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE | default_credits); I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE | credits | PFI_CREDIT_RESEND); /* * FIXME is this guaranteed to clear * immediately or should we poll for it? */ WARN_ON(I915_READ(GCI_CONTROL) & PFI_CREDIT_RESEND); } static void vlv_set_cdclk(struct drm_i915_private *dev_priv, const struct intel_cdclk_state *cdclk_state, enum pipe pipe) { int cdclk = cdclk_state->cdclk; u32 val, cmd = cdclk_state->voltage_level; intel_wakeref_t wakeref; switch (cdclk) { case 400000: case 333333: case 320000: case 266667: case 200000: break; default: MISSING_CASE(cdclk); return; } /* There are cases where we can end up here with power domains * off and a CDCLK frequency other than the minimum, like when * issuing a modeset without actually changing any display after * a system suspend. So grab the display core domain, which covers * the HW blocks needed for the following programming. */ wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_DISPLAY_CORE); vlv_iosf_sb_get(dev_priv, BIT(VLV_IOSF_SB_CCK) | BIT(VLV_IOSF_SB_BUNIT) | BIT(VLV_IOSF_SB_PUNIT)); val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM); val &= ~DSPFREQGUAR_MASK; val |= (cmd << DSPFREQGUAR_SHIFT); vlv_punit_write(dev_priv, PUNIT_REG_DSPSSPM, val); if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM) & DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT), 50)) { DRM_ERROR("timed out waiting for CDclk change\n"); } if (cdclk == 400000) { u32 divider; divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1; /* adjust cdclk divider */ val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL); val &= ~CCK_FREQUENCY_VALUES; val |= divider; vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val); if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) & CCK_FREQUENCY_STATUS) == (divider << CCK_FREQUENCY_STATUS_SHIFT), 50)) DRM_ERROR("timed out waiting for CDclk change\n"); } /* adjust self-refresh exit latency value */ val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC); val &= ~0x7f; /* * For high bandwidth configs, we set a higher latency in the bunit * so that the core display fetch happens in time to avoid underruns. */ if (cdclk == 400000) val |= 4500 / 250; /* 4.5 usec */ else val |= 3000 / 250; /* 3.0 usec */ vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val); vlv_iosf_sb_put(dev_priv, BIT(VLV_IOSF_SB_CCK) | BIT(VLV_IOSF_SB_BUNIT) | BIT(VLV_IOSF_SB_PUNIT)); intel_update_cdclk(dev_priv); vlv_program_pfi_credits(dev_priv); intel_display_power_put(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref); } static void chv_set_cdclk(struct drm_i915_private *dev_priv, const struct intel_cdclk_state *cdclk_state, enum pipe pipe) { int cdclk = cdclk_state->cdclk; u32 val, cmd = cdclk_state->voltage_level; intel_wakeref_t wakeref; switch (cdclk) { case 333333: case 320000: case 266667: case 200000: break; default: MISSING_CASE(cdclk); return; } /* There are cases where we can end up here with power domains * off and a CDCLK frequency other than the minimum, like when * issuing a modeset without actually changing any display after * a system suspend. So grab the display core domain, which covers * the HW blocks needed for the following programming. */ wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_DISPLAY_CORE); vlv_punit_get(dev_priv); val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM); val &= ~DSPFREQGUAR_MASK_CHV; val |= (cmd << DSPFREQGUAR_SHIFT_CHV); vlv_punit_write(dev_priv, PUNIT_REG_DSPSSPM, val); if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM) & DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV), 50)) { DRM_ERROR("timed out waiting for CDclk change\n"); } vlv_punit_put(dev_priv); intel_update_cdclk(dev_priv); vlv_program_pfi_credits(dev_priv); intel_display_power_put(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref); } static int bdw_calc_cdclk(int min_cdclk) { if (min_cdclk > 540000) return 675000; else if (min_cdclk > 450000) return 540000; else if (min_cdclk > 337500) return 450000; else return 337500; } static u8 bdw_calc_voltage_level(int cdclk) { switch (cdclk) { default: case 337500: return 2; case 450000: return 0; case 540000: return 1; case 675000: return 3; } } static void bdw_get_cdclk(struct drm_i915_private *dev_priv, struct intel_cdclk_state *cdclk_state) { u32 lcpll = I915_READ(LCPLL_CTL); u32 freq = lcpll & LCPLL_CLK_FREQ_MASK; if (lcpll & LCPLL_CD_SOURCE_FCLK) cdclk_state->cdclk = 800000; else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT) cdclk_state->cdclk = 450000; else if (freq == LCPLL_CLK_FREQ_450) cdclk_state->cdclk = 450000; else if (freq == LCPLL_CLK_FREQ_54O_BDW) cdclk_state->cdclk = 540000; else if (freq == LCPLL_CLK_FREQ_337_5_BDW) cdclk_state->cdclk = 337500; else cdclk_state->cdclk = 675000; /* * Can't read this out :( Let's assume it's * at least what the CDCLK frequency requires. */ cdclk_state->voltage_level = bdw_calc_voltage_level(cdclk_state->cdclk); } static void bdw_set_cdclk(struct drm_i915_private *dev_priv, const struct intel_cdclk_state *cdclk_state, enum pipe pipe) { int cdclk = cdclk_state->cdclk; u32 val; int ret; if (WARN((I915_READ(LCPLL_CTL) & (LCPLL_PLL_DISABLE | LCPLL_PLL_LOCK | LCPLL_CD_CLOCK_DISABLE | LCPLL_ROOT_CD_CLOCK_DISABLE | LCPLL_CD2X_CLOCK_DISABLE | LCPLL_POWER_DOWN_ALLOW | LCPLL_CD_SOURCE_FCLK)) != LCPLL_PLL_LOCK, "trying to change cdclk frequency with cdclk not enabled\n")) return; ret = sandybridge_pcode_write(dev_priv, BDW_PCODE_DISPLAY_FREQ_CHANGE_REQ, 0x0); if (ret) { DRM_ERROR("failed to inform pcode about cdclk change\n"); return; } val = I915_READ(LCPLL_CTL); val |= LCPLL_CD_SOURCE_FCLK; I915_WRITE(LCPLL_CTL, val); /* * According to the spec, it should be enough to poll for this 1 us. * However, extensive testing shows that this can take longer. */ if (wait_for_us(I915_READ(LCPLL_CTL) & LCPLL_CD_SOURCE_FCLK_DONE, 100)) DRM_ERROR("Switching to FCLK failed\n"); val = I915_READ(LCPLL_CTL); val &= ~LCPLL_CLK_FREQ_MASK; switch (cdclk) { default: MISSING_CASE(cdclk); /* fall through */ case 337500: val |= LCPLL_CLK_FREQ_337_5_BDW; break; case 450000: val |= LCPLL_CLK_FREQ_450; break; case 540000: val |= LCPLL_CLK_FREQ_54O_BDW; break; case 675000: val |= LCPLL_CLK_FREQ_675_BDW; break; } I915_WRITE(LCPLL_CTL, val); val = I915_READ(LCPLL_CTL); val &= ~LCPLL_CD_SOURCE_FCLK; I915_WRITE(LCPLL_CTL, val); if (wait_for_us((I915_READ(LCPLL_CTL) & LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1)) DRM_ERROR("Switching back to LCPLL failed\n"); sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ, cdclk_state->voltage_level); I915_WRITE(CDCLK_FREQ, DIV_ROUND_CLOSEST(cdclk, 1000) - 1); intel_update_cdclk(dev_priv); } static int skl_calc_cdclk(int min_cdclk, int vco) { if (vco == 8640000) { if (min_cdclk > 540000) return 617143; else if (min_cdclk > 432000) return 540000; else if (min_cdclk > 308571) return 432000; else return 308571; } else { if (min_cdclk > 540000) return 675000; else if (min_cdclk > 450000) return 540000; else if (min_cdclk > 337500) return 450000; else return 337500; } } static u8 skl_calc_voltage_level(int cdclk) { if (cdclk > 540000) return 3; else if (cdclk > 450000) return 2; else if (cdclk > 337500) return 1; else return 0; } static void skl_dpll0_update(struct drm_i915_private *dev_priv, struct intel_cdclk_state *cdclk_state) { u32 val; cdclk_state->ref = 24000; cdclk_state->vco = 0; val = I915_READ(LCPLL1_CTL); if ((val & LCPLL_PLL_ENABLE) == 0) return; if (WARN_ON((val & LCPLL_PLL_LOCK) == 0)) return; val = I915_READ(DPLL_CTRL1); if (WARN_ON((val & (DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) | DPLL_CTRL1_SSC(SKL_DPLL0) | DPLL_CTRL1_OVERRIDE(SKL_DPLL0))) != DPLL_CTRL1_OVERRIDE(SKL_DPLL0))) return; switch (val & DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)) { case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810, SKL_DPLL0): case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1350, SKL_DPLL0): case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1620, SKL_DPLL0): case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2700, SKL_DPLL0): cdclk_state->vco = 8100000; break; case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080, SKL_DPLL0): case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2160, SKL_DPLL0): cdclk_state->vco = 8640000; break; default: MISSING_CASE(val & DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)); break; } } static void skl_get_cdclk(struct drm_i915_private *dev_priv, struct intel_cdclk_state *cdclk_state) { u32 cdctl; skl_dpll0_update(dev_priv, cdclk_state); cdclk_state->cdclk = cdclk_state->bypass = cdclk_state->ref; if (cdclk_state->vco == 0) goto out; cdctl = I915_READ(CDCLK_CTL); if (cdclk_state->vco == 8640000) { switch (cdctl & CDCLK_FREQ_SEL_MASK) { case CDCLK_FREQ_450_432: cdclk_state->cdclk = 432000; break; case CDCLK_FREQ_337_308: cdclk_state->cdclk = 308571; break; case CDCLK_FREQ_540: cdclk_state->cdclk = 540000; break; case CDCLK_FREQ_675_617: cdclk_state->cdclk = 617143; break; default: MISSING_CASE(cdctl & CDCLK_FREQ_SEL_MASK); break; } } else { switch (cdctl & CDCLK_FREQ_SEL_MASK) { case CDCLK_FREQ_450_432: cdclk_state->cdclk = 450000; break; case CDCLK_FREQ_337_308: cdclk_state->cdclk = 337500; break; case CDCLK_FREQ_540: cdclk_state->cdclk = 540000; break; case CDCLK_FREQ_675_617: cdclk_state->cdclk = 675000; break; default: MISSING_CASE(cdctl & CDCLK_FREQ_SEL_MASK); break; } } out: /* * Can't read this out :( Let's assume it's * at least what the CDCLK frequency requires. */ cdclk_state->voltage_level = skl_calc_voltage_level(cdclk_state->cdclk); } /* convert from kHz to .1 fixpoint MHz with -1MHz offset */ static int skl_cdclk_decimal(int cdclk) { return DIV_ROUND_CLOSEST(cdclk - 1000, 500); } static void skl_set_preferred_cdclk_vco(struct drm_i915_private *dev_priv, int vco) { bool changed = dev_priv->skl_preferred_vco_freq != vco; dev_priv->skl_preferred_vco_freq = vco; if (changed) intel_update_max_cdclk(dev_priv); } static void skl_dpll0_enable(struct drm_i915_private *dev_priv, int vco) { u32 val; WARN_ON(vco != 8100000 && vco != 8640000); /* * We always enable DPLL0 with the lowest link rate possible, but still * taking into account the VCO required to operate the eDP panel at the * desired frequency. The usual DP link rates operate with a VCO of * 8100 while the eDP 1.4 alternate link rates need a VCO of 8640. * The modeset code is responsible for the selection of the exact link * rate later on, with the constraint of choosing a frequency that * works with vco. */ val = I915_READ(DPLL_CTRL1); val &= ~(DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) | DPLL_CTRL1_SSC(SKL_DPLL0) | DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)); val |= DPLL_CTRL1_OVERRIDE(SKL_DPLL0); if (vco == 8640000) val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080, SKL_DPLL0); else val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810, SKL_DPLL0); I915_WRITE(DPLL_CTRL1, val); POSTING_READ(DPLL_CTRL1); I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) | LCPLL_PLL_ENABLE); if (intel_wait_for_register(&dev_priv->uncore, LCPLL1_CTL, LCPLL_PLL_LOCK, LCPLL_PLL_LOCK, 5)) DRM_ERROR("DPLL0 not locked\n"); dev_priv->cdclk.hw.vco = vco; /* We'll want to keep using the current vco from now on. */ skl_set_preferred_cdclk_vco(dev_priv, vco); } static void skl_dpll0_disable(struct drm_i915_private *dev_priv) { I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) & ~LCPLL_PLL_ENABLE); if (intel_wait_for_register(&dev_priv->uncore, LCPLL1_CTL, LCPLL_PLL_LOCK, 0, 1)) DRM_ERROR("Couldn't disable DPLL0\n"); dev_priv->cdclk.hw.vco = 0; } static void skl_set_cdclk(struct drm_i915_private *dev_priv, const struct intel_cdclk_state *cdclk_state, enum pipe pipe) { int cdclk = cdclk_state->cdclk; int vco = cdclk_state->vco; u32 freq_select, cdclk_ctl; int ret; /* * Based on WA#1183 CDCLK rates 308 and 617MHz CDCLK rates are * unsupported on SKL. In theory this should never happen since only * the eDP1.4 2.16 and 4.32Gbps rates require it, but eDP1.4 is not * supported on SKL either, see the above WA. WARN whenever trying to * use the corresponding VCO freq as that always leads to using the * minimum 308MHz CDCLK. */ WARN_ON_ONCE(IS_SKYLAKE(dev_priv) && vco == 8640000); ret = skl_pcode_request(dev_priv, SKL_PCODE_CDCLK_CONTROL, SKL_CDCLK_PREPARE_FOR_CHANGE, SKL_CDCLK_READY_FOR_CHANGE, SKL_CDCLK_READY_FOR_CHANGE, 3); if (ret) { DRM_ERROR("Failed to inform PCU about cdclk change (%d)\n", ret); return; } /* Choose frequency for this cdclk */ switch (cdclk) { default: WARN_ON(cdclk != dev_priv->cdclk.hw.bypass); WARN_ON(vco != 0); /* fall through */ case 308571: case 337500: freq_select = CDCLK_FREQ_337_308; break; case 450000: case 432000: freq_select = CDCLK_FREQ_450_432; break; case 540000: freq_select = CDCLK_FREQ_540; break; case 617143: case 675000: freq_select = CDCLK_FREQ_675_617; break; } if (dev_priv->cdclk.hw.vco != 0 && dev_priv->cdclk.hw.vco != vco) skl_dpll0_disable(dev_priv); cdclk_ctl = I915_READ(CDCLK_CTL); if (dev_priv->cdclk.hw.vco != vco) { /* Wa Display #1183: skl,kbl,cfl */ cdclk_ctl &= ~(CDCLK_FREQ_SEL_MASK | CDCLK_FREQ_DECIMAL_MASK); cdclk_ctl |= freq_select | skl_cdclk_decimal(cdclk); I915_WRITE(CDCLK_CTL, cdclk_ctl); } /* Wa Display #1183: skl,kbl,cfl */ cdclk_ctl |= CDCLK_DIVMUX_CD_OVERRIDE; I915_WRITE(CDCLK_CTL, cdclk_ctl); POSTING_READ(CDCLK_CTL); if (dev_priv->cdclk.hw.vco != vco) skl_dpll0_enable(dev_priv, vco); /* Wa Display #1183: skl,kbl,cfl */ cdclk_ctl &= ~(CDCLK_FREQ_SEL_MASK | CDCLK_FREQ_DECIMAL_MASK); I915_WRITE(CDCLK_CTL, cdclk_ctl); cdclk_ctl |= freq_select | skl_cdclk_decimal(cdclk); I915_WRITE(CDCLK_CTL, cdclk_ctl); /* Wa Display #1183: skl,kbl,cfl */ cdclk_ctl &= ~CDCLK_DIVMUX_CD_OVERRIDE; I915_WRITE(CDCLK_CTL, cdclk_ctl); POSTING_READ(CDCLK_CTL); /* inform PCU of the change */ sandybridge_pcode_write(dev_priv, SKL_PCODE_CDCLK_CONTROL, cdclk_state->voltage_level); intel_update_cdclk(dev_priv); } static void skl_sanitize_cdclk(struct drm_i915_private *dev_priv) { u32 cdctl, expected; /* * check if the pre-os initialized the display * There is SWF18 scratchpad register defined which is set by the * pre-os which can be used by the OS drivers to check the status */ if ((I915_READ(SWF_ILK(0x18)) & 0x00FFFFFF) == 0) goto sanitize; intel_update_cdclk(dev_priv); intel_dump_cdclk_state(&dev_priv->cdclk.hw, "Current CDCLK"); /* Is PLL enabled and locked ? */ if (dev_priv->cdclk.hw.vco == 0 || dev_priv->cdclk.hw.cdclk == dev_priv->cdclk.hw.bypass) goto sanitize; /* DPLL okay; verify the cdclock * * Noticed in some instances that the freq selection is correct but * decimal part is programmed wrong from BIOS where pre-os does not * enable display. Verify the same as well. */ cdctl = I915_READ(CDCLK_CTL); expected = (cdctl & CDCLK_FREQ_SEL_MASK) | skl_cdclk_decimal(dev_priv->cdclk.hw.cdclk); if (cdctl == expected) /* All well; nothing to sanitize */ return; sanitize: DRM_DEBUG_KMS("Sanitizing cdclk programmed by pre-os\n"); /* force cdclk programming */ dev_priv->cdclk.hw.cdclk = 0; /* force full PLL disable + enable */ dev_priv->cdclk.hw.vco = -1; } static void skl_init_cdclk(struct drm_i915_private *dev_priv) { struct intel_cdclk_state cdclk_state; skl_sanitize_cdclk(dev_priv); if (dev_priv->cdclk.hw.cdclk != 0 && dev_priv->cdclk.hw.vco != 0) { /* * Use the current vco as our initial * guess as to what the preferred vco is. */ if (dev_priv->skl_preferred_vco_freq == 0) skl_set_preferred_cdclk_vco(dev_priv, dev_priv->cdclk.hw.vco); return; } cdclk_state = dev_priv->cdclk.hw; cdclk_state.vco = dev_priv->skl_preferred_vco_freq; if (cdclk_state.vco == 0) cdclk_state.vco = 8100000; cdclk_state.cdclk = skl_calc_cdclk(0, cdclk_state.vco); cdclk_state.voltage_level = skl_calc_voltage_level(cdclk_state.cdclk); skl_set_cdclk(dev_priv, &cdclk_state, INVALID_PIPE); } static void skl_uninit_cdclk(struct drm_i915_private *dev_priv) { struct intel_cdclk_state cdclk_state = dev_priv->cdclk.hw; cdclk_state.cdclk = cdclk_state.bypass; cdclk_state.vco = 0; cdclk_state.voltage_level = skl_calc_voltage_level(cdclk_state.cdclk); skl_set_cdclk(dev_priv, &cdclk_state, INVALID_PIPE); } static int bxt_calc_cdclk(int min_cdclk) { if (min_cdclk > 576000) return 624000; else if (min_cdclk > 384000) return 576000; else if (min_cdclk > 288000) return 384000; else if (min_cdclk > 144000) return 288000; else return 144000; } static int glk_calc_cdclk(int min_cdclk) { if (min_cdclk > 158400) return 316800; else if (min_cdclk > 79200) return 158400; else return 79200; } static u8 bxt_calc_voltage_level(int cdclk) { return DIV_ROUND_UP(cdclk, 25000); } static int bxt_de_pll_vco(struct drm_i915_private *dev_priv, int cdclk) { int ratio; if (cdclk == dev_priv->cdclk.hw.bypass) return 0; switch (cdclk) { default: MISSING_CASE(cdclk); /* fall through */ case 144000: case 288000: case 384000: case 576000: ratio = 60; break; case 624000: ratio = 65; break; } return dev_priv->cdclk.hw.ref * ratio; } static int glk_de_pll_vco(struct drm_i915_private *dev_priv, int cdclk) { int ratio; if (cdclk == dev_priv->cdclk.hw.bypass) return 0; switch (cdclk) { default: MISSING_CASE(cdclk); /* fall through */ case 79200: case 158400: case 316800: ratio = 33; break; } return dev_priv->cdclk.hw.ref * ratio; } static void bxt_de_pll_update(struct drm_i915_private *dev_priv, struct intel_cdclk_state *cdclk_state) { u32 val; cdclk_state->ref = 19200; cdclk_state->vco = 0; val = I915_READ(BXT_DE_PLL_ENABLE); if ((val & BXT_DE_PLL_PLL_ENABLE) == 0) return; if (WARN_ON((val & BXT_DE_PLL_LOCK) == 0)) return; val = I915_READ(BXT_DE_PLL_CTL); cdclk_state->vco = (val & BXT_DE_PLL_RATIO_MASK) * cdclk_state->ref; } static void bxt_get_cdclk(struct drm_i915_private *dev_priv, struct intel_cdclk_state *cdclk_state) { u32 divider; int div; bxt_de_pll_update(dev_priv, cdclk_state); cdclk_state->cdclk = cdclk_state->bypass = cdclk_state->ref; if (cdclk_state->vco == 0) goto out; divider = I915_READ(CDCLK_CTL) & BXT_CDCLK_CD2X_DIV_SEL_MASK; switch (divider) { case BXT_CDCLK_CD2X_DIV_SEL_1: div = 2; break; case BXT_CDCLK_CD2X_DIV_SEL_1_5: WARN(IS_GEMINILAKE(dev_priv), "Unsupported divider\n"); div = 3; break; case BXT_CDCLK_CD2X_DIV_SEL_2: div = 4; break; case BXT_CDCLK_CD2X_DIV_SEL_4: div = 8; break; default: MISSING_CASE(divider); return; } cdclk_state->cdclk = DIV_ROUND_CLOSEST(cdclk_state->vco, div); out: /* * Can't read this out :( Let's assume it's * at least what the CDCLK frequency requires. */ cdclk_state->voltage_level = bxt_calc_voltage_level(cdclk_state->cdclk); } static void bxt_de_pll_disable(struct drm_i915_private *dev_priv) { I915_WRITE(BXT_DE_PLL_ENABLE, 0); /* Timeout 200us */ if (intel_wait_for_register(&dev_priv->uncore, BXT_DE_PLL_ENABLE, BXT_DE_PLL_LOCK, 0, 1)) DRM_ERROR("timeout waiting for DE PLL unlock\n"); dev_priv->cdclk.hw.vco = 0; } static void bxt_de_pll_enable(struct drm_i915_private *dev_priv, int vco) { int ratio = DIV_ROUND_CLOSEST(vco, dev_priv->cdclk.hw.ref); u32 val; val = I915_READ(BXT_DE_PLL_CTL); val &= ~BXT_DE_PLL_RATIO_MASK; val |= BXT_DE_PLL_RATIO(ratio); I915_WRITE(BXT_DE_PLL_CTL, val); I915_WRITE(BXT_DE_PLL_ENABLE, BXT_DE_PLL_PLL_ENABLE); /* Timeout 200us */ if (intel_wait_for_register(&dev_priv->uncore, BXT_DE_PLL_ENABLE, BXT_DE_PLL_LOCK, BXT_DE_PLL_LOCK, 1)) DRM_ERROR("timeout waiting for DE PLL lock\n"); dev_priv->cdclk.hw.vco = vco; } static void bxt_set_cdclk(struct drm_i915_private *dev_priv, const struct intel_cdclk_state *cdclk_state, enum pipe pipe) { int cdclk = cdclk_state->cdclk; int vco = cdclk_state->vco; u32 val, divider; int ret; /* cdclk = vco / 2 / div{1,1.5,2,4} */ switch (DIV_ROUND_CLOSEST(vco, cdclk)) { default: WARN_ON(cdclk != dev_priv->cdclk.hw.bypass); WARN_ON(vco != 0); /* fall through */ case 2: divider = BXT_CDCLK_CD2X_DIV_SEL_1; break; case 3: WARN(IS_GEMINILAKE(dev_priv), "Unsupported divider\n"); divider = BXT_CDCLK_CD2X_DIV_SEL_1_5; break; case 4: divider = BXT_CDCLK_CD2X_DIV_SEL_2; break; case 8: divider = BXT_CDCLK_CD2X_DIV_SEL_4; break; } /* * Inform power controller of upcoming frequency change. BSpec * requires us to wait up to 150usec, but that leads to timeouts; * the 2ms used here is based on experiment. */ ret = sandybridge_pcode_write_timeout(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ, 0x80000000, 150, 2); if (ret) { DRM_ERROR("PCode CDCLK freq change notify failed (err %d, freq %d)\n", ret, cdclk); return; } if (dev_priv->cdclk.hw.vco != 0 && dev_priv->cdclk.hw.vco != vco) bxt_de_pll_disable(dev_priv); if (dev_priv->cdclk.hw.vco != vco) bxt_de_pll_enable(dev_priv, vco); val = divider | skl_cdclk_decimal(cdclk); if (pipe == INVALID_PIPE) val |= BXT_CDCLK_CD2X_PIPE_NONE; else val |= BXT_CDCLK_CD2X_PIPE(pipe); /* * Disable SSA Precharge when CD clock frequency < 500 MHz, * enable otherwise. */ if (cdclk >= 500000) val |= BXT_CDCLK_SSA_PRECHARGE_ENABLE; I915_WRITE(CDCLK_CTL, val); if (pipe != INVALID_PIPE) intel_wait_for_vblank(dev_priv, pipe); /* * The timeout isn't specified, the 2ms used here is based on * experiment. * FIXME: Waiting for the request completion could be delayed until * the next PCODE request based on BSpec. */ ret = sandybridge_pcode_write_timeout(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ, cdclk_state->voltage_level, 150, 2); if (ret) { DRM_ERROR("PCode CDCLK freq set failed, (err %d, freq %d)\n", ret, cdclk); return; } intel_update_cdclk(dev_priv); } static void bxt_sanitize_cdclk(struct drm_i915_private *dev_priv) { u32 cdctl, expected; intel_update_cdclk(dev_priv); intel_dump_cdclk_state(&dev_priv->cdclk.hw, "Current CDCLK"); if (dev_priv->cdclk.hw.vco == 0 || dev_priv->cdclk.hw.cdclk == dev_priv->cdclk.hw.bypass) goto sanitize; /* DPLL okay; verify the cdclock * * Some BIOS versions leave an incorrect decimal frequency value and * set reserved MBZ bits in CDCLK_CTL at least during exiting from S4, * so sanitize this register. */ cdctl = I915_READ(CDCLK_CTL); /* * Let's ignore the pipe field, since BIOS could have configured the * dividers both synching to an active pipe, or asynchronously * (PIPE_NONE). */ cdctl &= ~BXT_CDCLK_CD2X_PIPE_NONE; expected = (cdctl & BXT_CDCLK_CD2X_DIV_SEL_MASK) | skl_cdclk_decimal(dev_priv->cdclk.hw.cdclk); /* * Disable SSA Precharge when CD clock frequency < 500 MHz, * enable otherwise. */ if (dev_priv->cdclk.hw.cdclk >= 500000) expected |= BXT_CDCLK_SSA_PRECHARGE_ENABLE; if (cdctl == expected) /* All well; nothing to sanitize */ return; sanitize: DRM_DEBUG_KMS("Sanitizing cdclk programmed by pre-os\n"); /* force cdclk programming */ dev_priv->cdclk.hw.cdclk = 0; /* force full PLL disable + enable */ dev_priv->cdclk.hw.vco = -1; } static void bxt_init_cdclk(struct drm_i915_private *dev_priv) { struct intel_cdclk_state cdclk_state; bxt_sanitize_cdclk(dev_priv); if (dev_priv->cdclk.hw.cdclk != 0 && dev_priv->cdclk.hw.vco != 0) return; cdclk_state = dev_priv->cdclk.hw; /* * FIXME: * - The initial CDCLK needs to be read from VBT. * Need to make this change after VBT has changes for BXT. */ if (IS_GEMINILAKE(dev_priv)) { cdclk_state.cdclk = glk_calc_cdclk(0); cdclk_state.vco = glk_de_pll_vco(dev_priv, cdclk_state.cdclk); } else { cdclk_state.cdclk = bxt_calc_cdclk(0); cdclk_state.vco = bxt_de_pll_vco(dev_priv, cdclk_state.cdclk); } cdclk_state.voltage_level = bxt_calc_voltage_level(cdclk_state.cdclk); bxt_set_cdclk(dev_priv, &cdclk_state, INVALID_PIPE); } static void bxt_uninit_cdclk(struct drm_i915_private *dev_priv) { struct intel_cdclk_state cdclk_state = dev_priv->cdclk.hw; cdclk_state.cdclk = cdclk_state.bypass; cdclk_state.vco = 0; cdclk_state.voltage_level = bxt_calc_voltage_level(cdclk_state.cdclk); bxt_set_cdclk(dev_priv, &cdclk_state, INVALID_PIPE); } static int cnl_calc_cdclk(int min_cdclk) { if (min_cdclk > 336000) return 528000; else if (min_cdclk > 168000) return 336000; else return 168000; } static u8 cnl_calc_voltage_level(int cdclk) { if (cdclk > 336000) return 2; else if (cdclk > 168000) return 1; else return 0; } static void cnl_cdclk_pll_update(struct drm_i915_private *dev_priv, struct intel_cdclk_state *cdclk_state) { u32 val; if (I915_READ(SKL_DSSM) & CNL_DSSM_CDCLK_PLL_REFCLK_24MHz) cdclk_state->ref = 24000; else cdclk_state->ref = 19200; cdclk_state->vco = 0; val = I915_READ(BXT_DE_PLL_ENABLE); if ((val & BXT_DE_PLL_PLL_ENABLE) == 0) return; if (WARN_ON((val & BXT_DE_PLL_LOCK) == 0)) return; cdclk_state->vco = (val & CNL_CDCLK_PLL_RATIO_MASK) * cdclk_state->ref; } static void cnl_get_cdclk(struct drm_i915_private *dev_priv, struct intel_cdclk_state *cdclk_state) { u32 divider; int div; cnl_cdclk_pll_update(dev_priv, cdclk_state); cdclk_state->cdclk = cdclk_state->bypass = cdclk_state->ref; if (cdclk_state->vco == 0) goto out; divider = I915_READ(CDCLK_CTL) & BXT_CDCLK_CD2X_DIV_SEL_MASK; switch (divider) { case BXT_CDCLK_CD2X_DIV_SEL_1: div = 2; break; case BXT_CDCLK_CD2X_DIV_SEL_2: div = 4; break; default: MISSING_CASE(divider); return; } cdclk_state->cdclk = DIV_ROUND_CLOSEST(cdclk_state->vco, div); out: /* * Can't read this out :( Let's assume it's * at least what the CDCLK frequency requires. */ cdclk_state->voltage_level = cnl_calc_voltage_level(cdclk_state->cdclk); } static void cnl_cdclk_pll_disable(struct drm_i915_private *dev_priv) { u32 val; val = I915_READ(BXT_DE_PLL_ENABLE); val &= ~BXT_DE_PLL_PLL_ENABLE; I915_WRITE(BXT_DE_PLL_ENABLE, val); /* Timeout 200us */ if (wait_for((I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK) == 0, 1)) DRM_ERROR("timeout waiting for CDCLK PLL unlock\n"); dev_priv->cdclk.hw.vco = 0; } static void cnl_cdclk_pll_enable(struct drm_i915_private *dev_priv, int vco) { int ratio = DIV_ROUND_CLOSEST(vco, dev_priv->cdclk.hw.ref); u32 val; val = CNL_CDCLK_PLL_RATIO(ratio); I915_WRITE(BXT_DE_PLL_ENABLE, val); val |= BXT_DE_PLL_PLL_ENABLE; I915_WRITE(BXT_DE_PLL_ENABLE, val); /* Timeout 200us */ if (wait_for((I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK) != 0, 1)) DRM_ERROR("timeout waiting for CDCLK PLL lock\n"); dev_priv->cdclk.hw.vco = vco; } static void cnl_set_cdclk(struct drm_i915_private *dev_priv, const struct intel_cdclk_state *cdclk_state, enum pipe pipe) { int cdclk = cdclk_state->cdclk; int vco = cdclk_state->vco; u32 val, divider; int ret; ret = skl_pcode_request(dev_priv, SKL_PCODE_CDCLK_CONTROL, SKL_CDCLK_PREPARE_FOR_CHANGE, SKL_CDCLK_READY_FOR_CHANGE, SKL_CDCLK_READY_FOR_CHANGE, 3); if (ret) { DRM_ERROR("Failed to inform PCU about cdclk change (%d)\n", ret); return; } /* cdclk = vco / 2 / div{1,2} */ switch (DIV_ROUND_CLOSEST(vco, cdclk)) { default: WARN_ON(cdclk != dev_priv->cdclk.hw.bypass); WARN_ON(vco != 0); /* fall through */ case 2: divider = BXT_CDCLK_CD2X_DIV_SEL_1; break; case 4: divider = BXT_CDCLK_CD2X_DIV_SEL_2; break; } if (dev_priv->cdclk.hw.vco != 0 && dev_priv->cdclk.hw.vco != vco) cnl_cdclk_pll_disable(dev_priv); if (dev_priv->cdclk.hw.vco != vco) cnl_cdclk_pll_enable(dev_priv, vco); val = divider | skl_cdclk_decimal(cdclk); if (pipe == INVALID_PIPE) val |= BXT_CDCLK_CD2X_PIPE_NONE; else val |= BXT_CDCLK_CD2X_PIPE(pipe); I915_WRITE(CDCLK_CTL, val); if (pipe != INVALID_PIPE) intel_wait_for_vblank(dev_priv, pipe); /* inform PCU of the change */ sandybridge_pcode_write(dev_priv, SKL_PCODE_CDCLK_CONTROL, cdclk_state->voltage_level); intel_update_cdclk(dev_priv); /* * Can't read out the voltage level :( * Let's just assume everything is as expected. */ dev_priv->cdclk.hw.voltage_level = cdclk_state->voltage_level; } static int cnl_cdclk_pll_vco(struct drm_i915_private *dev_priv, int cdclk) { int ratio; if (cdclk == dev_priv->cdclk.hw.bypass) return 0; switch (cdclk) { default: MISSING_CASE(cdclk); /* fall through */ case 168000: case 336000: ratio = dev_priv->cdclk.hw.ref == 19200 ? 35 : 28; break; case 528000: ratio = dev_priv->cdclk.hw.ref == 19200 ? 55 : 44; break; } return dev_priv->cdclk.hw.ref * ratio; } static void cnl_sanitize_cdclk(struct drm_i915_private *dev_priv) { u32 cdctl, expected; intel_update_cdclk(dev_priv); intel_dump_cdclk_state(&dev_priv->cdclk.hw, "Current CDCLK"); if (dev_priv->cdclk.hw.vco == 0 || dev_priv->cdclk.hw.cdclk == dev_priv->cdclk.hw.bypass) goto sanitize; /* DPLL okay; verify the cdclock * * Some BIOS versions leave an incorrect decimal frequency value and * set reserved MBZ bits in CDCLK_CTL at least during exiting from S4, * so sanitize this register. */ cdctl = I915_READ(CDCLK_CTL); /* * Let's ignore the pipe field, since BIOS could have configured the * dividers both synching to an active pipe, or asynchronously * (PIPE_NONE). */ cdctl &= ~BXT_CDCLK_CD2X_PIPE_NONE; expected = (cdctl & BXT_CDCLK_CD2X_DIV_SEL_MASK) | skl_cdclk_decimal(dev_priv->cdclk.hw.cdclk); if (cdctl == expected) /* All well; nothing to sanitize */ return; sanitize: DRM_DEBUG_KMS("Sanitizing cdclk programmed by pre-os\n"); /* force cdclk programming */ dev_priv->cdclk.hw.cdclk = 0; /* force full PLL disable + enable */ dev_priv->cdclk.hw.vco = -1; } static int icl_calc_cdclk(int min_cdclk, unsigned int ref) { static const int ranges_24[] = { 180000, 192000, 312000, 552000, 648000 }; static const int ranges_19_38[] = { 172800, 192000, 307200, 556800, 652800 }; const int *ranges; int len, i; switch (ref) { default: MISSING_CASE(ref); /* fall through */ case 24000: ranges = ranges_24; len = ARRAY_SIZE(ranges_24); break; case 19200: case 38400: ranges = ranges_19_38; len = ARRAY_SIZE(ranges_19_38); break; } for (i = 0; i < len; i++) { if (min_cdclk <= ranges[i]) return ranges[i]; } WARN_ON(min_cdclk > ranges[len - 1]); return ranges[len - 1]; } static int icl_calc_cdclk_pll_vco(struct drm_i915_private *dev_priv, int cdclk) { int ratio; if (cdclk == dev_priv->cdclk.hw.bypass) return 0; switch (cdclk) { default: MISSING_CASE(cdclk); /* fall through */ case 172800: case 307200: case 556800: case 652800: WARN_ON(dev_priv->cdclk.hw.ref != 19200 && dev_priv->cdclk.hw.ref != 38400); break; case 180000: case 312000: case 552000: case 648000: WARN_ON(dev_priv->cdclk.hw.ref != 24000); break; case 192000: WARN_ON(dev_priv->cdclk.hw.ref != 19200 && dev_priv->cdclk.hw.ref != 38400 && dev_priv->cdclk.hw.ref != 24000); break; } ratio = cdclk / (dev_priv->cdclk.hw.ref / 2); return dev_priv->cdclk.hw.ref * ratio; } static void icl_set_cdclk(struct drm_i915_private *dev_priv, const struct intel_cdclk_state *cdclk_state, enum pipe pipe) { unsigned int cdclk = cdclk_state->cdclk; unsigned int vco = cdclk_state->vco; int ret; ret = skl_pcode_request(dev_priv, SKL_PCODE_CDCLK_CONTROL, SKL_CDCLK_PREPARE_FOR_CHANGE, SKL_CDCLK_READY_FOR_CHANGE, SKL_CDCLK_READY_FOR_CHANGE, 3); if (ret) { DRM_ERROR("Failed to inform PCU about cdclk change (%d)\n", ret); return; } if (dev_priv->cdclk.hw.vco != 0 && dev_priv->cdclk.hw.vco != vco) cnl_cdclk_pll_disable(dev_priv); if (dev_priv->cdclk.hw.vco != vco) cnl_cdclk_pll_enable(dev_priv, vco); /* * On ICL CD2X_DIV can only be 1, so we'll never end up changing the * divider here synchronized to a pipe while CDCLK is on, nor will we * need the corresponding vblank wait. */ I915_WRITE(CDCLK_CTL, ICL_CDCLK_CD2X_PIPE_NONE | skl_cdclk_decimal(cdclk)); sandybridge_pcode_write(dev_priv, SKL_PCODE_CDCLK_CONTROL, cdclk_state->voltage_level); intel_update_cdclk(dev_priv); /* * Can't read out the voltage level :( * Let's just assume everything is as expected. */ dev_priv->cdclk.hw.voltage_level = cdclk_state->voltage_level; } static u8 icl_calc_voltage_level(struct drm_i915_private *dev_priv, int cdclk) { if (IS_ELKHARTLAKE(dev_priv)) { if (cdclk > 312000) return 2; else if (cdclk > 180000) return 1; else return 0; } else { if (cdclk > 556800) return 2; else if (cdclk > 312000) return 1; else return 0; } } static void icl_get_cdclk(struct drm_i915_private *dev_priv, struct intel_cdclk_state *cdclk_state) { u32 val; cdclk_state->bypass = 50000; val = I915_READ(SKL_DSSM); switch (val & ICL_DSSM_CDCLK_PLL_REFCLK_MASK) { default: MISSING_CASE(val); /* fall through */ case ICL_DSSM_CDCLK_PLL_REFCLK_24MHz: cdclk_state->ref = 24000; break; case ICL_DSSM_CDCLK_PLL_REFCLK_19_2MHz: cdclk_state->ref = 19200; break; case ICL_DSSM_CDCLK_PLL_REFCLK_38_4MHz: cdclk_state->ref = 38400; break; } val = I915_READ(BXT_DE_PLL_ENABLE); if ((val & BXT_DE_PLL_PLL_ENABLE) == 0 || (val & BXT_DE_PLL_LOCK) == 0) { /* * CDCLK PLL is disabled, the VCO/ratio doesn't matter, but * setting it to zero is a way to signal that. */ cdclk_state->vco = 0; cdclk_state->cdclk = cdclk_state->bypass; goto out; } cdclk_state->vco = (val & BXT_DE_PLL_RATIO_MASK) * cdclk_state->ref; val = I915_READ(CDCLK_CTL); WARN_ON((val & BXT_CDCLK_CD2X_DIV_SEL_MASK) != 0); cdclk_state->cdclk = cdclk_state->vco / 2; out: /* * Can't read this out :( Let's assume it's * at least what the CDCLK frequency requires. */ cdclk_state->voltage_level = icl_calc_voltage_level(dev_priv, cdclk_state->cdclk); } static void icl_init_cdclk(struct drm_i915_private *dev_priv) { struct intel_cdclk_state sanitized_state; u32 val; /* This sets dev_priv->cdclk.hw. */ intel_update_cdclk(dev_priv); intel_dump_cdclk_state(&dev_priv->cdclk.hw, "Current CDCLK"); /* This means CDCLK disabled. */ if (dev_priv->cdclk.hw.cdclk == dev_priv->cdclk.hw.bypass) goto sanitize; val = I915_READ(CDCLK_CTL); if ((val & BXT_CDCLK_CD2X_DIV_SEL_MASK) != 0) goto sanitize; if ((val & CDCLK_FREQ_DECIMAL_MASK) != skl_cdclk_decimal(dev_priv->cdclk.hw.cdclk)) goto sanitize; return; sanitize: DRM_DEBUG_KMS("Sanitizing cdclk programmed by pre-os\n"); sanitized_state.ref = dev_priv->cdclk.hw.ref; sanitized_state.cdclk = icl_calc_cdclk(0, sanitized_state.ref); sanitized_state.vco = icl_calc_cdclk_pll_vco(dev_priv, sanitized_state.cdclk); sanitized_state.voltage_level = icl_calc_voltage_level(dev_priv, sanitized_state.cdclk); icl_set_cdclk(dev_priv, &sanitized_state, INVALID_PIPE); } static void icl_uninit_cdclk(struct drm_i915_private *dev_priv) { struct intel_cdclk_state cdclk_state = dev_priv->cdclk.hw; cdclk_state.cdclk = cdclk_state.bypass; cdclk_state.vco = 0; cdclk_state.voltage_level = icl_calc_voltage_level(dev_priv, cdclk_state.cdclk); icl_set_cdclk(dev_priv, &cdclk_state, INVALID_PIPE); } static void cnl_init_cdclk(struct drm_i915_private *dev_priv) { struct intel_cdclk_state cdclk_state; cnl_sanitize_cdclk(dev_priv); if (dev_priv->cdclk.hw.cdclk != 0 && dev_priv->cdclk.hw.vco != 0) return; cdclk_state = dev_priv->cdclk.hw; cdclk_state.cdclk = cnl_calc_cdclk(0); cdclk_state.vco = cnl_cdclk_pll_vco(dev_priv, cdclk_state.cdclk); cdclk_state.voltage_level = cnl_calc_voltage_level(cdclk_state.cdclk); cnl_set_cdclk(dev_priv, &cdclk_state, INVALID_PIPE); } static void cnl_uninit_cdclk(struct drm_i915_private *dev_priv) { struct intel_cdclk_state cdclk_state = dev_priv->cdclk.hw; cdclk_state.cdclk = cdclk_state.bypass; cdclk_state.vco = 0; cdclk_state.voltage_level = cnl_calc_voltage_level(cdclk_state.cdclk); cnl_set_cdclk(dev_priv, &cdclk_state, INVALID_PIPE); } /** * intel_cdclk_init - Initialize CDCLK * @i915: i915 device * * Initialize CDCLK. This consists mainly of initializing dev_priv->cdclk.hw and * sanitizing the state of the hardware if needed. This is generally done only * during the display core initialization sequence, after which the DMC will * take care of turning CDCLK off/on as needed. */ void intel_cdclk_init(struct drm_i915_private *i915) { if (INTEL_GEN(i915) >= 11) icl_init_cdclk(i915); else if (IS_CANNONLAKE(i915)) cnl_init_cdclk(i915); else if (IS_GEN9_BC(i915)) skl_init_cdclk(i915); else if (IS_GEN9_LP(i915)) bxt_init_cdclk(i915); } /** * intel_cdclk_uninit - Uninitialize CDCLK * @i915: i915 device * * Uninitialize CDCLK. This is done only during the display core * uninitialization sequence. */ void intel_cdclk_uninit(struct drm_i915_private *i915) { if (INTEL_GEN(i915) >= 11) icl_uninit_cdclk(i915); else if (IS_CANNONLAKE(i915)) cnl_uninit_cdclk(i915); else if (IS_GEN9_BC(i915)) skl_uninit_cdclk(i915); else if (IS_GEN9_LP(i915)) bxt_uninit_cdclk(i915); } /** * intel_cdclk_needs_modeset - Determine if two CDCLK states require a modeset on all pipes * @a: first CDCLK state * @b: second CDCLK state * * Returns: * True if the CDCLK states require pipes to be off during reprogramming, false if not. */ bool intel_cdclk_needs_modeset(const struct intel_cdclk_state *a, const struct intel_cdclk_state *b) { return a->cdclk != b->cdclk || a->vco != b->vco || a->ref != b->ref; } /** * intel_cdclk_needs_cd2x_update - Determine if two CDCLK states require a cd2x divider update * @dev_priv: Not a CDCLK state, it's the drm_i915_private! * @a: first CDCLK state * @b: second CDCLK state * * Returns: * True if the CDCLK states require just a cd2x divider update, false if not. */ bool intel_cdclk_needs_cd2x_update(struct drm_i915_private *dev_priv, const struct intel_cdclk_state *a, const struct intel_cdclk_state *b) { /* Older hw doesn't have the capability */ if (INTEL_GEN(dev_priv) < 10 && !IS_GEN9_LP(dev_priv)) return false; return a->cdclk != b->cdclk && a->vco == b->vco && a->ref == b->ref; } /** * intel_cdclk_changed - Determine if two CDCLK states are different * @a: first CDCLK state * @b: second CDCLK state * * Returns: * True if the CDCLK states don't match, false if they do. */ bool intel_cdclk_changed(const struct intel_cdclk_state *a, const struct intel_cdclk_state *b) { return intel_cdclk_needs_modeset(a, b) || a->voltage_level != b->voltage_level; } /** * intel_cdclk_swap_state - make atomic CDCLK configuration effective * @state: atomic state * * This is the CDCLK version of drm_atomic_helper_swap_state() since the * helper does not handle driver-specific global state. * * Similarly to the atomic helpers this function does a complete swap, * i.e. it also puts the old state into @state. This is used by the commit * code to determine how CDCLK has changed (for instance did it increase or * decrease). */ void intel_cdclk_swap_state(struct intel_atomic_state *state) { struct drm_i915_private *dev_priv = to_i915(state->base.dev); swap(state->cdclk.logical, dev_priv->cdclk.logical); swap(state->cdclk.actual, dev_priv->cdclk.actual); } void intel_dump_cdclk_state(const struct intel_cdclk_state *cdclk_state, const char *context) { DRM_DEBUG_DRIVER("%s %d kHz, VCO %d kHz, ref %d kHz, bypass %d kHz, voltage level %d\n", context, cdclk_state->cdclk, cdclk_state->vco, cdclk_state->ref, cdclk_state->bypass, cdclk_state->voltage_level); } /** * intel_set_cdclk - Push the CDCLK state to the hardware * @dev_priv: i915 device * @cdclk_state: new CDCLK state * @pipe: pipe with which to synchronize the update * * Program the hardware based on the passed in CDCLK state, * if necessary. */ static void intel_set_cdclk(struct drm_i915_private *dev_priv, const struct intel_cdclk_state *cdclk_state, enum pipe pipe) { if (!intel_cdclk_changed(&dev_priv->cdclk.hw, cdclk_state)) return; if (WARN_ON_ONCE(!dev_priv->display.set_cdclk)) return; intel_dump_cdclk_state(cdclk_state, "Changing CDCLK to"); dev_priv->display.set_cdclk(dev_priv, cdclk_state, pipe); if (WARN(intel_cdclk_changed(&dev_priv->cdclk.hw, cdclk_state), "cdclk state doesn't match!\n")) { intel_dump_cdclk_state(&dev_priv->cdclk.hw, "[hw state]"); intel_dump_cdclk_state(cdclk_state, "[sw state]"); } } /** * intel_set_cdclk_pre_plane_update - Push the CDCLK state to the hardware * @dev_priv: i915 device * @old_state: old CDCLK state * @new_state: new CDCLK state * @pipe: pipe with which to synchronize the update * * Program the hardware before updating the HW plane state based on the passed * in CDCLK state, if necessary. */ void intel_set_cdclk_pre_plane_update(struct drm_i915_private *dev_priv, const struct intel_cdclk_state *old_state, const struct intel_cdclk_state *new_state, enum pipe pipe) { if (pipe == INVALID_PIPE || old_state->cdclk <= new_state->cdclk) intel_set_cdclk(dev_priv, new_state, pipe); } /** * intel_set_cdclk_post_plane_update - Push the CDCLK state to the hardware * @dev_priv: i915 device * @old_state: old CDCLK state * @new_state: new CDCLK state * @pipe: pipe with which to synchronize the update * * Program the hardware after updating the HW plane state based on the passed * in CDCLK state, if necessary. */ void intel_set_cdclk_post_plane_update(struct drm_i915_private *dev_priv, const struct intel_cdclk_state *old_state, const struct intel_cdclk_state *new_state, enum pipe pipe) { if (pipe != INVALID_PIPE && old_state->cdclk > new_state->cdclk) intel_set_cdclk(dev_priv, new_state, pipe); } static int intel_pixel_rate_to_cdclk(struct drm_i915_private *dev_priv, int pixel_rate) { if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) return DIV_ROUND_UP(pixel_rate, 2); else if (IS_GEN(dev_priv, 9) || IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) return pixel_rate; else if (IS_CHERRYVIEW(dev_priv)) return DIV_ROUND_UP(pixel_rate * 100, 95); else return DIV_ROUND_UP(pixel_rate * 100, 90); } int intel_crtc_compute_min_cdclk(const struct intel_crtc_state *crtc_state) { struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev); int min_cdclk; if (!crtc_state->base.enable) return 0; min_cdclk = intel_pixel_rate_to_cdclk(dev_priv, crtc_state->pixel_rate); /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */ if (IS_BROADWELL(dev_priv) && hsw_crtc_state_ips_capable(crtc_state)) min_cdclk = DIV_ROUND_UP(min_cdclk * 100, 95); /* BSpec says "Do not use DisplayPort with CDCLK less than 432 MHz, * audio enabled, port width x4, and link rate HBR2 (5.4 GHz), or else * there may be audio corruption or screen corruption." This cdclk * restriction for GLK is 316.8 MHz. */ if (intel_crtc_has_dp_encoder(crtc_state) && crtc_state->has_audio && crtc_state->port_clock >= 540000 && crtc_state->lane_count == 4) { if (IS_CANNONLAKE(dev_priv) || IS_GEMINILAKE(dev_priv)) { /* Display WA #1145: glk,cnl */ min_cdclk = max(316800, min_cdclk); } else if (IS_GEN(dev_priv, 9) || IS_BROADWELL(dev_priv)) { /* Display WA #1144: skl,bxt */ min_cdclk = max(432000, min_cdclk); } } /* * According to BSpec, "The CD clock frequency must be at least twice * the frequency of the Azalia BCLK." and BCLK is 96 MHz by default. */ if (crtc_state->has_audio && INTEL_GEN(dev_priv) >= 9) min_cdclk = max(2 * 96000, min_cdclk); /* * "For DP audio configuration, cdclk frequency shall be set to * meet the following requirements: * DP Link Frequency(MHz) | Cdclk frequency(MHz) * 270 | 320 or higher * 162 | 200 or higher" */ if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) && intel_crtc_has_dp_encoder(crtc_state) && crtc_state->has_audio) min_cdclk = max(crtc_state->port_clock, min_cdclk); /* * On Valleyview some DSI panels lose (v|h)sync when the clock is lower * than 320000KHz. */ if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI) && IS_VALLEYVIEW(dev_priv)) min_cdclk = max(320000, min_cdclk); /* * On Geminilake once the CDCLK gets as low as 79200 * picture gets unstable, despite that values are * correct for DSI PLL and DE PLL. */ if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI) && IS_GEMINILAKE(dev_priv)) min_cdclk = max(158400, min_cdclk); if (min_cdclk > dev_priv->max_cdclk_freq) { DRM_DEBUG_KMS("required cdclk (%d kHz) exceeds max (%d kHz)\n", min_cdclk, dev_priv->max_cdclk_freq); return -EINVAL; } return min_cdclk; } static int intel_compute_min_cdclk(struct intel_atomic_state *state) { struct drm_i915_private *dev_priv = to_i915(state->base.dev); struct intel_crtc *crtc; struct intel_crtc_state *crtc_state; int min_cdclk, i; enum pipe pipe; memcpy(state->min_cdclk, dev_priv->min_cdclk, sizeof(state->min_cdclk)); for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { min_cdclk = intel_crtc_compute_min_cdclk(crtc_state); if (min_cdclk < 0) return min_cdclk; state->min_cdclk[i] = min_cdclk; } min_cdclk = state->cdclk.force_min_cdclk; for_each_pipe(dev_priv, pipe) min_cdclk = max(state->min_cdclk[pipe], min_cdclk); return min_cdclk; } /* * Note that this functions assumes that 0 is * the lowest voltage value, and higher values * correspond to increasingly higher voltages. * * Should that relationship no longer hold on * future platforms this code will need to be * adjusted. */ static u8 cnl_compute_min_voltage_level(struct intel_atomic_state *state) { struct drm_i915_private *dev_priv = to_i915(state->base.dev); struct intel_crtc *crtc; struct intel_crtc_state *crtc_state; u8 min_voltage_level; int i; enum pipe pipe; memcpy(state->min_voltage_level, dev_priv->min_voltage_level, sizeof(state->min_voltage_level)); for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { if (crtc_state->base.enable) state->min_voltage_level[i] = crtc_state->min_voltage_level; else state->min_voltage_level[i] = 0; } min_voltage_level = 0; for_each_pipe(dev_priv, pipe) min_voltage_level = max(state->min_voltage_level[pipe], min_voltage_level); return min_voltage_level; } static int vlv_modeset_calc_cdclk(struct intel_atomic_state *state) { struct drm_i915_private *dev_priv = to_i915(state->base.dev); int min_cdclk, cdclk; min_cdclk = intel_compute_min_cdclk(state); if (min_cdclk < 0) return min_cdclk; cdclk = vlv_calc_cdclk(dev_priv, min_cdclk); state->cdclk.logical.cdclk = cdclk; state->cdclk.logical.voltage_level = vlv_calc_voltage_level(dev_priv, cdclk); if (!state->active_crtcs) { cdclk = vlv_calc_cdclk(dev_priv, state->cdclk.force_min_cdclk); state->cdclk.actual.cdclk = cdclk; state->cdclk.actual.voltage_level = vlv_calc_voltage_level(dev_priv, cdclk); } else { state->cdclk.actual = state->cdclk.logical; } return 0; } static int bdw_modeset_calc_cdclk(struct intel_atomic_state *state) { int min_cdclk, cdclk; min_cdclk = intel_compute_min_cdclk(state); if (min_cdclk < 0) return min_cdclk; /* * FIXME should also account for plane ratio * once 64bpp pixel formats are supported. */ cdclk = bdw_calc_cdclk(min_cdclk); state->cdclk.logical.cdclk = cdclk; state->cdclk.logical.voltage_level = bdw_calc_voltage_level(cdclk); if (!state->active_crtcs) { cdclk = bdw_calc_cdclk(state->cdclk.force_min_cdclk); state->cdclk.actual.cdclk = cdclk; state->cdclk.actual.voltage_level = bdw_calc_voltage_level(cdclk); } else { state->cdclk.actual = state->cdclk.logical; } return 0; } static int skl_dpll0_vco(struct intel_atomic_state *state) { struct drm_i915_private *dev_priv = to_i915(state->base.dev); struct intel_crtc *crtc; struct intel_crtc_state *crtc_state; int vco, i; vco = state->cdclk.logical.vco; if (!vco) vco = dev_priv->skl_preferred_vco_freq; for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { if (!crtc_state->base.enable) continue; if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_EDP)) continue; /* * DPLL0 VCO may need to be adjusted to get the correct * clock for eDP. This will affect cdclk as well. */ switch (crtc_state->port_clock / 2) { case 108000: case 216000: vco = 8640000; break; default: vco = 8100000; break; } } return vco; } static int skl_modeset_calc_cdclk(struct intel_atomic_state *state) { int min_cdclk, cdclk, vco; min_cdclk = intel_compute_min_cdclk(state); if (min_cdclk < 0) return min_cdclk; vco = skl_dpll0_vco(state); /* * FIXME should also account for plane ratio * once 64bpp pixel formats are supported. */ cdclk = skl_calc_cdclk(min_cdclk, vco); state->cdclk.logical.vco = vco; state->cdclk.logical.cdclk = cdclk; state->cdclk.logical.voltage_level = skl_calc_voltage_level(cdclk); if (!state->active_crtcs) { cdclk = skl_calc_cdclk(state->cdclk.force_min_cdclk, vco); state->cdclk.actual.vco = vco; state->cdclk.actual.cdclk = cdclk; state->cdclk.actual.voltage_level = skl_calc_voltage_level(cdclk); } else { state->cdclk.actual = state->cdclk.logical; } return 0; } static int bxt_modeset_calc_cdclk(struct intel_atomic_state *state) { struct drm_i915_private *dev_priv = to_i915(state->base.dev); int min_cdclk, cdclk, vco; min_cdclk = intel_compute_min_cdclk(state); if (min_cdclk < 0) return min_cdclk; if (IS_GEMINILAKE(dev_priv)) { cdclk = glk_calc_cdclk(min_cdclk); vco = glk_de_pll_vco(dev_priv, cdclk); } else { cdclk = bxt_calc_cdclk(min_cdclk); vco = bxt_de_pll_vco(dev_priv, cdclk); } state->cdclk.logical.vco = vco; state->cdclk.logical.cdclk = cdclk; state->cdclk.logical.voltage_level = bxt_calc_voltage_level(cdclk); if (!state->active_crtcs) { if (IS_GEMINILAKE(dev_priv)) { cdclk = glk_calc_cdclk(state->cdclk.force_min_cdclk); vco = glk_de_pll_vco(dev_priv, cdclk); } else { cdclk = bxt_calc_cdclk(state->cdclk.force_min_cdclk); vco = bxt_de_pll_vco(dev_priv, cdclk); } state->cdclk.actual.vco = vco; state->cdclk.actual.cdclk = cdclk; state->cdclk.actual.voltage_level = bxt_calc_voltage_level(cdclk); } else { state->cdclk.actual = state->cdclk.logical; } return 0; } static int cnl_modeset_calc_cdclk(struct intel_atomic_state *state) { struct drm_i915_private *dev_priv = to_i915(state->base.dev); int min_cdclk, cdclk, vco; min_cdclk = intel_compute_min_cdclk(state); if (min_cdclk < 0) return min_cdclk; cdclk = cnl_calc_cdclk(min_cdclk); vco = cnl_cdclk_pll_vco(dev_priv, cdclk); state->cdclk.logical.vco = vco; state->cdclk.logical.cdclk = cdclk; state->cdclk.logical.voltage_level = max(cnl_calc_voltage_level(cdclk), cnl_compute_min_voltage_level(state)); if (!state->active_crtcs) { cdclk = cnl_calc_cdclk(state->cdclk.force_min_cdclk); vco = cnl_cdclk_pll_vco(dev_priv, cdclk); state->cdclk.actual.vco = vco; state->cdclk.actual.cdclk = cdclk; state->cdclk.actual.voltage_level = cnl_calc_voltage_level(cdclk); } else { state->cdclk.actual = state->cdclk.logical; } return 0; } static int icl_modeset_calc_cdclk(struct intel_atomic_state *state) { struct drm_i915_private *dev_priv = to_i915(state->base.dev); unsigned int ref = state->cdclk.logical.ref; int min_cdclk, cdclk, vco; min_cdclk = intel_compute_min_cdclk(state); if (min_cdclk < 0) return min_cdclk; cdclk = icl_calc_cdclk(min_cdclk, ref); vco = icl_calc_cdclk_pll_vco(dev_priv, cdclk); state->cdclk.logical.vco = vco; state->cdclk.logical.cdclk = cdclk; state->cdclk.logical.voltage_level = max(icl_calc_voltage_level(dev_priv, cdclk), cnl_compute_min_voltage_level(state)); if (!state->active_crtcs) { cdclk = icl_calc_cdclk(state->cdclk.force_min_cdclk, ref); vco = icl_calc_cdclk_pll_vco(dev_priv, cdclk); state->cdclk.actual.vco = vco; state->cdclk.actual.cdclk = cdclk; state->cdclk.actual.voltage_level = icl_calc_voltage_level(dev_priv, cdclk); } else { state->cdclk.actual = state->cdclk.logical; } return 0; } static int intel_compute_max_dotclk(struct drm_i915_private *dev_priv) { int max_cdclk_freq = dev_priv->max_cdclk_freq; if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) return 2 * max_cdclk_freq; else if (IS_GEN(dev_priv, 9) || IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) return max_cdclk_freq; else if (IS_CHERRYVIEW(dev_priv)) return max_cdclk_freq*95/100; else if (INTEL_GEN(dev_priv) < 4) return 2*max_cdclk_freq*90/100; else return max_cdclk_freq*90/100; } /** * intel_update_max_cdclk - Determine the maximum support CDCLK frequency * @dev_priv: i915 device * * Determine the maximum CDCLK frequency the platform supports, and also * derive the maximum dot clock frequency the maximum CDCLK frequency * allows. */ void intel_update_max_cdclk(struct drm_i915_private *dev_priv) { if (IS_ELKHARTLAKE(dev_priv)) { if (dev_priv->cdclk.hw.ref == 24000) dev_priv->max_cdclk_freq = 552000; else dev_priv->max_cdclk_freq = 556800; } else if (INTEL_GEN(dev_priv) >= 11) { if (dev_priv->cdclk.hw.ref == 24000) dev_priv->max_cdclk_freq = 648000; else dev_priv->max_cdclk_freq = 652800; } else if (IS_CANNONLAKE(dev_priv)) { dev_priv->max_cdclk_freq = 528000; } else if (IS_GEN9_BC(dev_priv)) { u32 limit = I915_READ(SKL_DFSM) & SKL_DFSM_CDCLK_LIMIT_MASK; int max_cdclk, vco; vco = dev_priv->skl_preferred_vco_freq; WARN_ON(vco != 8100000 && vco != 8640000); /* * Use the lower (vco 8640) cdclk values as a * first guess. skl_calc_cdclk() will correct it * if the preferred vco is 8100 instead. */ if (limit == SKL_DFSM_CDCLK_LIMIT_675) max_cdclk = 617143; else if (limit == SKL_DFSM_CDCLK_LIMIT_540) max_cdclk = 540000; else if (limit == SKL_DFSM_CDCLK_LIMIT_450) max_cdclk = 432000; else max_cdclk = 308571; dev_priv->max_cdclk_freq = skl_calc_cdclk(max_cdclk, vco); } else if (IS_GEMINILAKE(dev_priv)) { dev_priv->max_cdclk_freq = 316800; } else if (IS_BROXTON(dev_priv)) { dev_priv->max_cdclk_freq = 624000; } else if (IS_BROADWELL(dev_priv)) { /* * FIXME with extra cooling we can allow * 540 MHz for ULX and 675 Mhz for ULT. * How can we know if extra cooling is * available? PCI ID, VTB, something else? */ if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT) dev_priv->max_cdclk_freq = 450000; else if (IS_BDW_ULX(dev_priv)) dev_priv->max_cdclk_freq = 450000; else if (IS_BDW_ULT(dev_priv)) dev_priv->max_cdclk_freq = 540000; else dev_priv->max_cdclk_freq = 675000; } else if (IS_CHERRYVIEW(dev_priv)) { dev_priv->max_cdclk_freq = 320000; } else if (IS_VALLEYVIEW(dev_priv)) { dev_priv->max_cdclk_freq = 400000; } else { /* otherwise assume cdclk is fixed */ dev_priv->max_cdclk_freq = dev_priv->cdclk.hw.cdclk; } dev_priv->max_dotclk_freq = intel_compute_max_dotclk(dev_priv); DRM_DEBUG_DRIVER("Max CD clock rate: %d kHz\n", dev_priv->max_cdclk_freq); DRM_DEBUG_DRIVER("Max dotclock rate: %d kHz\n", dev_priv->max_dotclk_freq); } /** * intel_update_cdclk - Determine the current CDCLK frequency * @dev_priv: i915 device * * Determine the current CDCLK frequency. */ void intel_update_cdclk(struct drm_i915_private *dev_priv) { dev_priv->display.get_cdclk(dev_priv, &dev_priv->cdclk.hw); /* * 9:0 CMBUS [sic] CDCLK frequency (cdfreq): * Programmng [sic] note: bit[9:2] should be programmed to the number * of cdclk that generates 4MHz reference clock freq which is used to * generate GMBus clock. This will vary with the cdclk freq. */ if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->cdclk.hw.cdclk, 1000)); } static int cnp_rawclk(struct drm_i915_private *dev_priv) { u32 rawclk; int divider, fraction; if (I915_READ(SFUSE_STRAP) & SFUSE_STRAP_RAW_FREQUENCY) { /* 24 MHz */ divider = 24000; fraction = 0; } else { /* 19.2 MHz */ divider = 19000; fraction = 200; } rawclk = CNP_RAWCLK_DIV(divider / 1000); if (fraction) { int numerator = 1; rawclk |= CNP_RAWCLK_DEN(DIV_ROUND_CLOSEST(numerator * 1000, fraction) - 1); if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP) rawclk |= ICP_RAWCLK_NUM(numerator); } I915_WRITE(PCH_RAWCLK_FREQ, rawclk); return divider + fraction; } static int pch_rawclk(struct drm_i915_private *dev_priv) { return (I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK) * 1000; } static int vlv_hrawclk(struct drm_i915_private *dev_priv) { /* RAWCLK_FREQ_VLV register updated from power well code */ return vlv_get_cck_clock_hpll(dev_priv, "hrawclk", CCK_DISPLAY_REF_CLOCK_CONTROL); } static int g4x_hrawclk(struct drm_i915_private *dev_priv) { u32 clkcfg; /* hrawclock is 1/4 the FSB frequency */ clkcfg = I915_READ(CLKCFG); switch (clkcfg & CLKCFG_FSB_MASK) { case CLKCFG_FSB_400: return 100000; case CLKCFG_FSB_533: return 133333; case CLKCFG_FSB_667: return 166667; case CLKCFG_FSB_800: return 200000; case CLKCFG_FSB_1067: case CLKCFG_FSB_1067_ALT: return 266667; case CLKCFG_FSB_1333: case CLKCFG_FSB_1333_ALT: return 333333; default: return 133333; } } /** * intel_update_rawclk - Determine the current RAWCLK frequency * @dev_priv: i915 device * * Determine the current RAWCLK frequency. RAWCLK is a fixed * frequency clock so this needs to done only once. */ void intel_update_rawclk(struct drm_i915_private *dev_priv) { if (INTEL_PCH_TYPE(dev_priv) >= PCH_CNP) dev_priv->rawclk_freq = cnp_rawclk(dev_priv); else if (HAS_PCH_SPLIT(dev_priv)) dev_priv->rawclk_freq = pch_rawclk(dev_priv); else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) dev_priv->rawclk_freq = vlv_hrawclk(dev_priv); else if (IS_G4X(dev_priv) || IS_PINEVIEW(dev_priv)) dev_priv->rawclk_freq = g4x_hrawclk(dev_priv); else /* no rawclk on other platforms, or no need to know it */ return; DRM_DEBUG_DRIVER("rawclk rate: %d kHz\n", dev_priv->rawclk_freq); } /** * intel_init_cdclk_hooks - Initialize CDCLK related modesetting hooks * @dev_priv: i915 device */ void intel_init_cdclk_hooks(struct drm_i915_private *dev_priv) { if (INTEL_GEN(dev_priv) >= 11) { dev_priv->display.set_cdclk = icl_set_cdclk; dev_priv->display.modeset_calc_cdclk = icl_modeset_calc_cdclk; } else if (IS_CANNONLAKE(dev_priv)) { dev_priv->display.set_cdclk = cnl_set_cdclk; dev_priv->display.modeset_calc_cdclk = cnl_modeset_calc_cdclk; } else if (IS_GEN9_LP(dev_priv)) { dev_priv->display.set_cdclk = bxt_set_cdclk; dev_priv->display.modeset_calc_cdclk = bxt_modeset_calc_cdclk; } else if (IS_GEN9_BC(dev_priv)) { dev_priv->display.set_cdclk = skl_set_cdclk; dev_priv->display.modeset_calc_cdclk = skl_modeset_calc_cdclk; } else if (IS_BROADWELL(dev_priv)) { dev_priv->display.set_cdclk = bdw_set_cdclk; dev_priv->display.modeset_calc_cdclk = bdw_modeset_calc_cdclk; } else if (IS_CHERRYVIEW(dev_priv)) { dev_priv->display.set_cdclk = chv_set_cdclk; dev_priv->display.modeset_calc_cdclk = vlv_modeset_calc_cdclk; } else if (IS_VALLEYVIEW(dev_priv)) { dev_priv->display.set_cdclk = vlv_set_cdclk; dev_priv->display.modeset_calc_cdclk = vlv_modeset_calc_cdclk; } if (INTEL_GEN(dev_priv) >= 11) dev_priv->display.get_cdclk = icl_get_cdclk; else if (IS_CANNONLAKE(dev_priv)) dev_priv->display.get_cdclk = cnl_get_cdclk; else if (IS_GEN9_LP(dev_priv)) dev_priv->display.get_cdclk = bxt_get_cdclk; else if (IS_GEN9_BC(dev_priv)) dev_priv->display.get_cdclk = skl_get_cdclk; else if (IS_BROADWELL(dev_priv)) dev_priv->display.get_cdclk = bdw_get_cdclk; else if (IS_HASWELL(dev_priv)) dev_priv->display.get_cdclk = hsw_get_cdclk; else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) dev_priv->display.get_cdclk = vlv_get_cdclk; else if (IS_GEN(dev_priv, 6) || IS_IVYBRIDGE(dev_priv)) dev_priv->display.get_cdclk = fixed_400mhz_get_cdclk; else if (IS_GEN(dev_priv, 5)) dev_priv->display.get_cdclk = fixed_450mhz_get_cdclk; else if (IS_GM45(dev_priv)) dev_priv->display.get_cdclk = gm45_get_cdclk; else if (IS_G45(dev_priv)) dev_priv->display.get_cdclk = g33_get_cdclk; else if (IS_I965GM(dev_priv)) dev_priv->display.get_cdclk = i965gm_get_cdclk; else if (IS_I965G(dev_priv)) dev_priv->display.get_cdclk = fixed_400mhz_get_cdclk; else if (IS_PINEVIEW(dev_priv)) dev_priv->display.get_cdclk = pnv_get_cdclk; else if (IS_G33(dev_priv)) dev_priv->display.get_cdclk = g33_get_cdclk; else if (IS_I945GM(dev_priv)) dev_priv->display.get_cdclk = i945gm_get_cdclk; else if (IS_I945G(dev_priv)) dev_priv->display.get_cdclk = fixed_400mhz_get_cdclk; else if (IS_I915GM(dev_priv)) dev_priv->display.get_cdclk = i915gm_get_cdclk; else if (IS_I915G(dev_priv)) dev_priv->display.get_cdclk = fixed_333mhz_get_cdclk; else if (IS_I865G(dev_priv)) dev_priv->display.get_cdclk = fixed_266mhz_get_cdclk; else if (IS_I85X(dev_priv)) dev_priv->display.get_cdclk = i85x_get_cdclk; else if (IS_I845G(dev_priv)) dev_priv->display.get_cdclk = fixed_200mhz_get_cdclk; else { /* 830 */ WARN(!IS_I830(dev_priv), "Unknown platform. Assuming 133 MHz CDCLK\n"); dev_priv->display.get_cdclk = fixed_133mhz_get_cdclk; } }