/* * Copyright 2015 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * */ #include "smumgr.h" #include "smu74.h" #include "smu_ucode_xfer_vi.h" #include "polaris10_smumgr.h" #include "smu74_discrete.h" #include "smu/smu_7_1_3_d.h" #include "smu/smu_7_1_3_sh_mask.h" #include "gmc/gmc_8_1_d.h" #include "gmc/gmc_8_1_sh_mask.h" #include "oss/oss_3_0_d.h" #include "gca/gfx_8_0_d.h" #include "bif/bif_5_0_d.h" #include "bif/bif_5_0_sh_mask.h" #include "polaris10_pwrvirus.h" #include "ppatomctrl.h" #include "pp_debug.h" #include "cgs_common.h" #define POLARIS10_SMC_SIZE 0x20000 #define VOLTAGE_SCALE 4 /* Microcode file is stored in this buffer */ #define BUFFER_SIZE 80000 #define MAX_STRING_SIZE 15 #define BUFFER_SIZETWO 131072 /* 128 *1024 */ #define SMC_RAM_END 0x40000 static const SMU74_Discrete_GraphicsLevel avfs_graphics_level_polaris10[8] = { /* Min pcie DeepSleep Activity CgSpll CgSpll CcPwr CcPwr Sclk Enabled Enabled Voltage Power */ /* Voltage, DpmLevel, DivId, Level, FuncCntl3, FuncCntl4, DynRm, DynRm1 Did, Padding,ForActivity, ForThrottle, UpHyst, DownHyst, DownHyst, Throttle */ { 0x100ea446, 0x00, 0x03, 0x3200, 0, 0, 0, 0, 0, 0, 0x01, 0x01, 0x0a, 0x00, 0x00, 0x00, { 0x30750000, 0x3000, 0, 0x2600, 0, 0, 0x0004, 0x8f02, 0xffff, 0x2f00, 0x300e, 0x2700 } }, { 0x400ea446, 0x01, 0x04, 0x3200, 0, 0, 0, 0, 0, 0, 0x01, 0x01, 0x0a, 0x00, 0x00, 0x00, { 0x409c0000, 0x2000, 0, 0x1e00, 1, 1, 0x0004, 0x8300, 0xffff, 0x1f00, 0xcb5e, 0x1a00 } }, { 0x740ea446, 0x01, 0x00, 0x3200, 0, 0, 0, 0, 0, 0, 0x01, 0x01, 0x0a, 0x00, 0x00, 0x00, { 0x50c30000, 0x2800, 0, 0x2000, 1, 1, 0x0004, 0x0c02, 0xffff, 0x2700, 0x6433, 0x2100 } }, { 0xa40ea446, 0x01, 0x00, 0x3200, 0, 0, 0, 0, 0, 0, 0x01, 0x01, 0x0a, 0x00, 0x00, 0x00, { 0x60ea0000, 0x3000, 0, 0x2600, 1, 1, 0x0004, 0x8f02, 0xffff, 0x2f00, 0x300e, 0x2700 } }, { 0xd80ea446, 0x01, 0x00, 0x3200, 0, 0, 0, 0, 0, 0, 0x01, 0x01, 0x0a, 0x00, 0x00, 0x00, { 0x70110100, 0x3800, 0, 0x2c00, 1, 1, 0x0004, 0x1203, 0xffff, 0x3600, 0xc9e2, 0x2e00 } }, { 0x3c0fa446, 0x01, 0x00, 0x3200, 0, 0, 0, 0, 0, 0, 0x01, 0x01, 0x0a, 0x00, 0x00, 0x00, { 0x80380100, 0x2000, 0, 0x1e00, 2, 1, 0x0004, 0x8300, 0xffff, 0x1f00, 0xcb5e, 0x1a00 } }, { 0x6c0fa446, 0x01, 0x00, 0x3200, 0, 0, 0, 0, 0, 0, 0x01, 0x01, 0x0a, 0x00, 0x00, 0x00, { 0x905f0100, 0x2400, 0, 0x1e00, 2, 1, 0x0004, 0x8901, 0xffff, 0x2300, 0x314c, 0x1d00 } }, { 0xa00fa446, 0x01, 0x00, 0x3200, 0, 0, 0, 0, 0, 0, 0x01, 0x01, 0x0a, 0x00, 0x00, 0x00, { 0xa0860100, 0x2800, 0, 0x2000, 2, 1, 0x0004, 0x0c02, 0xffff, 0x2700, 0x6433, 0x2100 } } }; static const SMU74_Discrete_MemoryLevel avfs_memory_level_polaris10 = {0x100ea446, 0, 0x30750000, 0x01, 0x01, 0x01, 0x00, 0x00, 0x64, 0x00, 0x00, 0x1f00, 0x00, 0x00}; /** * Set the address for reading/writing the SMC SRAM space. * @param smumgr the address of the powerplay hardware manager. * @param smcAddress the address in the SMC RAM to access. */ static int polaris10_set_smc_sram_address(struct pp_smumgr *smumgr, uint32_t smc_addr, uint32_t limit) { PP_ASSERT_WITH_CODE((0 == (3 & smc_addr)), "SMC address must be 4 byte aligned.", return -EINVAL); PP_ASSERT_WITH_CODE((limit > (smc_addr + 3)), "SMC addr is beyond the SMC RAM area.", return -EINVAL); cgs_write_register(smumgr->device, mmSMC_IND_INDEX_11, smc_addr); SMUM_WRITE_FIELD(smumgr->device, SMC_IND_ACCESS_CNTL, AUTO_INCREMENT_IND_11, 0); return 0; } /** * Copy bytes from SMC RAM space into driver memory. * * @param smumgr the address of the powerplay SMU manager. * @param smc_start_address the start address in the SMC RAM to copy bytes from * @param src the byte array to copy the bytes to. * @param byte_count the number of bytes to copy. */ int polaris10_copy_bytes_from_smc(struct pp_smumgr *smumgr, uint32_t smc_start_address, uint32_t *dest, uint32_t byte_count, uint32_t limit) { uint32_t data; uint32_t addr; uint8_t *dest_byte; uint8_t i, data_byte[4] = {0}; uint32_t *pdata = (uint32_t *)&data_byte; PP_ASSERT_WITH_CODE((0 == (3 & smc_start_address)), "SMC address must be 4 byte aligned.", return -1;); PP_ASSERT_WITH_CODE((limit > (smc_start_address + byte_count)), "SMC address is beyond the SMC RAM area.", return -1); addr = smc_start_address; while (byte_count >= 4) { polaris10_read_smc_sram_dword(smumgr, addr, &data, limit); *dest = PP_SMC_TO_HOST_UL(data); dest += 1; byte_count -= 4; addr += 4; } if (byte_count) { polaris10_read_smc_sram_dword(smumgr, addr, &data, limit); *pdata = PP_SMC_TO_HOST_UL(data); /* Cast dest into byte type in dest_byte. This way, we don't overflow if the allocated memory is not 4-byte aligned. */ dest_byte = (uint8_t *)dest; for (i = 0; i < byte_count; i++) dest_byte[i] = data_byte[i]; } return 0; } /** * Copy bytes from an array into the SMC RAM space. * * @param pSmuMgr the address of the powerplay SMU manager. * @param smc_start_address the start address in the SMC RAM to copy bytes to. * @param src the byte array to copy the bytes from. * @param byte_count the number of bytes to copy. */ int polaris10_copy_bytes_to_smc(struct pp_smumgr *smumgr, uint32_t smc_start_address, const uint8_t *src, uint32_t byte_count, uint32_t limit) { int result; uint32_t data = 0; uint32_t original_data; uint32_t addr = 0; uint32_t extra_shift; PP_ASSERT_WITH_CODE((0 == (3 & smc_start_address)), "SMC address must be 4 byte aligned.", return -1); PP_ASSERT_WITH_CODE((limit > (smc_start_address + byte_count)), "SMC address is beyond the SMC RAM area.", return -1); addr = smc_start_address; while (byte_count >= 4) { /* Bytes are written into the SMC addres space with the MSB first. */ data = src[0] * 0x1000000 + src[1] * 0x10000 + src[2] * 0x100 + src[3]; result = polaris10_set_smc_sram_address(smumgr, addr, limit); if (0 != result) return result; cgs_write_register(smumgr->device, mmSMC_IND_DATA_11, data); src += 4; byte_count -= 4; addr += 4; } if (0 != byte_count) { data = 0; result = polaris10_set_smc_sram_address(smumgr, addr, limit); if (0 != result) return result; original_data = cgs_read_register(smumgr->device, mmSMC_IND_DATA_11); extra_shift = 8 * (4 - byte_count); while (byte_count > 0) { /* Bytes are written into the SMC addres space with the MSB first. */ data = (0x100 * data) + *src++; byte_count--; } data <<= extra_shift; data |= (original_data & ~((~0UL) << extra_shift)); result = polaris10_set_smc_sram_address(smumgr, addr, limit); if (0 != result) return result; cgs_write_register(smumgr->device, mmSMC_IND_DATA_11, data); } return 0; } static int polaris10_program_jump_on_start(struct pp_smumgr *smumgr) { static const unsigned char data[4] = { 0xE0, 0x00, 0x80, 0x40 }; polaris10_copy_bytes_to_smc(smumgr, 0x0, data, 4, sizeof(data)+1); return 0; } /** * Return if the SMC is currently running. * * @param smumgr the address of the powerplay hardware manager. */ bool polaris10_is_smc_ram_running(struct pp_smumgr *smumgr) { return ((0 == SMUM_READ_VFPF_INDIRECT_FIELD(smumgr->device, CGS_IND_REG__SMC, SMC_SYSCON_CLOCK_CNTL_0, ck_disable)) && (0x20100 <= cgs_read_ind_register(smumgr->device, CGS_IND_REG__SMC, ixSMC_PC_C))); } static bool polaris10_is_hw_avfs_present(struct pp_smumgr *smumgr) { uint32_t efuse; efuse = cgs_read_ind_register(smumgr->device, CGS_IND_REG__SMC, ixSMU_EFUSE_0 + (49*4)); efuse &= 0x00000001; if (efuse) return true; return false; } /** * Send a message to the SMC, and wait for its response. * * @param smumgr the address of the powerplay hardware manager. * @param msg the message to send. * @return The response that came from the SMC. */ int polaris10_send_msg_to_smc(struct pp_smumgr *smumgr, uint16_t msg) { int ret; if (!polaris10_is_smc_ram_running(smumgr)) return -1; SMUM_WAIT_FIELD_UNEQUAL(smumgr, SMC_RESP_0, SMC_RESP, 0); ret = SMUM_READ_FIELD(smumgr->device, SMC_RESP_0, SMC_RESP); if (ret != 1) printk("\n failed to send pre message %x ret is %d \n", msg, ret); cgs_write_register(smumgr->device, mmSMC_MESSAGE_0, msg); SMUM_WAIT_FIELD_UNEQUAL(smumgr, SMC_RESP_0, SMC_RESP, 0); ret = SMUM_READ_FIELD(smumgr->device, SMC_RESP_0, SMC_RESP); if (ret != 1) printk("\n failed to send message %x ret is %d \n", msg, ret); return 0; } /** * Send a message to the SMC, and do not wait for its response. * * @param smumgr the address of the powerplay hardware manager. * @param msg the message to send. * @return Always return 0. */ int polaris10_send_msg_to_smc_without_waiting(struct pp_smumgr *smumgr, uint16_t msg) { cgs_write_register(smumgr->device, mmSMC_MESSAGE_0, msg); return 0; } /** * Send a message to the SMC with parameter * * @param smumgr: the address of the powerplay hardware manager. * @param msg: the message to send. * @param parameter: the parameter to send * @return The response that came from the SMC. */ int polaris10_send_msg_to_smc_with_parameter(struct pp_smumgr *smumgr, uint16_t msg, uint32_t parameter) { if (!polaris10_is_smc_ram_running(smumgr)) { return -1; } SMUM_WAIT_FIELD_UNEQUAL(smumgr, SMC_RESP_0, SMC_RESP, 0); cgs_write_register(smumgr->device, mmSMC_MSG_ARG_0, parameter); return polaris10_send_msg_to_smc(smumgr, msg); } /** * Send a message to the SMC with parameter, do not wait for response * * @param smumgr: the address of the powerplay hardware manager. * @param msg: the message to send. * @param parameter: the parameter to send * @return The response that came from the SMC. */ int polaris10_send_msg_to_smc_with_parameter_without_waiting(struct pp_smumgr *smumgr, uint16_t msg, uint32_t parameter) { cgs_write_register(smumgr->device, mmSMC_MSG_ARG_0, parameter); return polaris10_send_msg_to_smc_without_waiting(smumgr, msg); } int polaris10_send_msg_to_smc_offset(struct pp_smumgr *smumgr) { cgs_write_register(smumgr->device, mmSMC_MSG_ARG_0, 0x20000); cgs_write_register(smumgr->device, mmSMC_MESSAGE_0, PPSMC_MSG_Test); SMUM_WAIT_FIELD_UNEQUAL(smumgr, SMC_RESP_0, SMC_RESP, 0); if (1 != SMUM_READ_FIELD(smumgr->device, SMC_RESP_0, SMC_RESP)) printk("Failed to send Message.\n"); return 0; } /** * Wait until the SMC is doing nithing. Doing nothing means that the SMC is either turned off or it is sitting on the STOP instruction. * * @param smumgr the address of the powerplay hardware manager. * @param msg the message to send. * @return The response that came from the SMC. */ int polaris10_wait_for_smc_inactive(struct pp_smumgr *smumgr) { /* If the SMC is not even on it qualifies as inactive. */ if (!polaris10_is_smc_ram_running(smumgr)) return -1; SMUM_WAIT_VFPF_INDIRECT_FIELD(smumgr, SMC_IND, SMC_SYSCON_CLOCK_CNTL_0, cken, 0); return 0; } /** * Upload the SMC firmware to the SMC microcontroller. * * @param smumgr the address of the powerplay hardware manager. * @param pFirmware the data structure containing the various sections of the firmware. */ static int polaris10_upload_smc_firmware_data(struct pp_smumgr *smumgr, uint32_t length, uint32_t *src, uint32_t limit) { uint32_t byte_count = length; PP_ASSERT_WITH_CODE((limit >= byte_count), "SMC address is beyond the SMC RAM area.", return -1); cgs_write_register(smumgr->device, mmSMC_IND_INDEX_11, 0x20000); SMUM_WRITE_FIELD(smumgr->device, SMC_IND_ACCESS_CNTL, AUTO_INCREMENT_IND_11, 1); for (; byte_count >= 4; byte_count -= 4) cgs_write_register(smumgr->device, mmSMC_IND_DATA_11, *src++); SMUM_WRITE_FIELD(smumgr->device, SMC_IND_ACCESS_CNTL, AUTO_INCREMENT_IND_11, 0); PP_ASSERT_WITH_CODE((0 == byte_count), "SMC size must be dividable by 4.", return -1); return 0; } static enum cgs_ucode_id polaris10_convert_fw_type_to_cgs(uint32_t fw_type) { enum cgs_ucode_id result = CGS_UCODE_ID_MAXIMUM; switch (fw_type) { case UCODE_ID_SMU: result = CGS_UCODE_ID_SMU; break; case UCODE_ID_SMU_SK: result = CGS_UCODE_ID_SMU_SK; break; case UCODE_ID_SDMA0: result = CGS_UCODE_ID_SDMA0; break; case UCODE_ID_SDMA1: result = CGS_UCODE_ID_SDMA1; break; case UCODE_ID_CP_CE: result = CGS_UCODE_ID_CP_CE; break; case UCODE_ID_CP_PFP: result = CGS_UCODE_ID_CP_PFP; break; case UCODE_ID_CP_ME: result = CGS_UCODE_ID_CP_ME; break; case UCODE_ID_CP_MEC: result = CGS_UCODE_ID_CP_MEC; break; case UCODE_ID_CP_MEC_JT1: result = CGS_UCODE_ID_CP_MEC_JT1; break; case UCODE_ID_CP_MEC_JT2: result = CGS_UCODE_ID_CP_MEC_JT2; break; case UCODE_ID_RLC_G: result = CGS_UCODE_ID_RLC_G; break; default: break; } return result; } static int polaris10_upload_smu_firmware_image(struct pp_smumgr *smumgr) { int result = 0; struct polaris10_smumgr *smu_data = (struct polaris10_smumgr *)(smumgr->backend); struct cgs_firmware_info info = {0}; if (smu_data->security_hard_key == 1) cgs_get_firmware_info(smumgr->device, polaris10_convert_fw_type_to_cgs(UCODE_ID_SMU), &info); else cgs_get_firmware_info(smumgr->device, polaris10_convert_fw_type_to_cgs(UCODE_ID_SMU_SK), &info); /* TO DO cgs_init_samu_load_smu(smumgr->device, (uint32_t *)info.kptr, info.image_size, smu_data->post_initial_boot);*/ result = polaris10_upload_smc_firmware_data(smumgr, info.image_size, (uint32_t *)info.kptr, POLARIS10_SMC_SIZE); return result; } /** * Read a 32bit value from the SMC SRAM space. * ALL PARAMETERS ARE IN HOST BYTE ORDER. * @param smumgr the address of the powerplay hardware manager. * @param smcAddress the address in the SMC RAM to access. * @param value and output parameter for the data read from the SMC SRAM. */ int polaris10_read_smc_sram_dword(struct pp_smumgr *smumgr, uint32_t smc_addr, uint32_t *value, uint32_t limit) { int result; result = polaris10_set_smc_sram_address(smumgr, smc_addr, limit); if (result) return result; *value = cgs_read_register(smumgr->device, mmSMC_IND_DATA_11); return 0; } /** * Write a 32bit value to the SMC SRAM space. * ALL PARAMETERS ARE IN HOST BYTE ORDER. * @param smumgr the address of the powerplay hardware manager. * @param smc_addr the address in the SMC RAM to access. * @param value to write to the SMC SRAM. */ int polaris10_write_smc_sram_dword(struct pp_smumgr *smumgr, uint32_t smc_addr, uint32_t value, uint32_t limit) { int result; result = polaris10_set_smc_sram_address(smumgr, smc_addr, limit); if (result) return result; cgs_write_register(smumgr->device, mmSMC_IND_DATA_11, value); return 0; } int polaris10_smu_fini(struct pp_smumgr *smumgr) { if (smumgr->backend) { kfree(smumgr->backend); smumgr->backend = NULL; } cgs_rel_firmware(smumgr->device, CGS_UCODE_ID_SMU); return 0; } /* Convert the firmware type to SMU type mask. For MEC, we need to check all MEC related type */ static uint32_t polaris10_get_mask_for_firmware_type(uint32_t fw_type) { uint32_t result = 0; switch (fw_type) { case UCODE_ID_SDMA0: result = UCODE_ID_SDMA0_MASK; break; case UCODE_ID_SDMA1: result = UCODE_ID_SDMA1_MASK; break; case UCODE_ID_CP_CE: result = UCODE_ID_CP_CE_MASK; break; case UCODE_ID_CP_PFP: result = UCODE_ID_CP_PFP_MASK; break; case UCODE_ID_CP_ME: result = UCODE_ID_CP_ME_MASK; break; case UCODE_ID_CP_MEC_JT1: case UCODE_ID_CP_MEC_JT2: result = UCODE_ID_CP_MEC_MASK; break; case UCODE_ID_RLC_G: result = UCODE_ID_RLC_G_MASK; break; default: printk("UCode type is out of range! \n"); result = 0; } return result; } /* Populate one firmware image to the data structure */ static int polaris10_populate_single_firmware_entry(struct pp_smumgr *smumgr, uint32_t fw_type, struct SMU_Entry *entry) { int result = 0; struct cgs_firmware_info info = {0}; result = cgs_get_firmware_info(smumgr->device, polaris10_convert_fw_type_to_cgs(fw_type), &info); if (!result) { entry->version = info.version; entry->id = (uint16_t)fw_type; entry->image_addr_high = smu_upper_32_bits(info.mc_addr); entry->image_addr_low = smu_lower_32_bits(info.mc_addr); entry->meta_data_addr_high = 0; entry->meta_data_addr_low = 0; entry->data_size_byte = info.image_size; entry->num_register_entries = 0; } if (fw_type == UCODE_ID_RLC_G) entry->flags = 1; else entry->flags = 0; return 0; } static int polaris10_request_smu_load_fw(struct pp_smumgr *smumgr) { struct polaris10_smumgr *smu_data = (struct polaris10_smumgr *)(smumgr->backend); uint32_t fw_to_load; int result = 0; struct SMU_DRAMData_TOC *toc; if (!smumgr->reload_fw) { printk(KERN_INFO "[ powerplay ] skip reloading...\n"); return 0; } if (smu_data->soft_regs_start) cgs_write_ind_register(smumgr->device, CGS_IND_REG__SMC, smu_data->soft_regs_start + offsetof(SMU74_SoftRegisters, UcodeLoadStatus), 0x0); polaris10_send_msg_to_smc_with_parameter(smumgr, PPSMC_MSG_SMU_DRAM_ADDR_HI, smu_data->smu_buffer.mc_addr_high); polaris10_send_msg_to_smc_with_parameter(smumgr, PPSMC_MSG_SMU_DRAM_ADDR_LO, smu_data->smu_buffer.mc_addr_low); toc = (struct SMU_DRAMData_TOC *)smu_data->header; toc->num_entries = 0; toc->structure_version = 1; PP_ASSERT_WITH_CODE(0 == polaris10_populate_single_firmware_entry(smumgr, UCODE_ID_RLC_G, &toc->entry[toc->num_entries++]), "Failed to Get Firmware Entry.", return -1); PP_ASSERT_WITH_CODE(0 == polaris10_populate_single_firmware_entry(smumgr, UCODE_ID_CP_CE, &toc->entry[toc->num_entries++]), "Failed to Get Firmware Entry.", return -1); PP_ASSERT_WITH_CODE(0 == polaris10_populate_single_firmware_entry(smumgr, UCODE_ID_CP_PFP, &toc->entry[toc->num_entries++]), "Failed to Get Firmware Entry.", return -1); PP_ASSERT_WITH_CODE(0 == polaris10_populate_single_firmware_entry(smumgr, UCODE_ID_CP_ME, &toc->entry[toc->num_entries++]), "Failed to Get Firmware Entry.", return -1); PP_ASSERT_WITH_CODE(0 == polaris10_populate_single_firmware_entry(smumgr, UCODE_ID_CP_MEC, &toc->entry[toc->num_entries++]), "Failed to Get Firmware Entry.", return -1); PP_ASSERT_WITH_CODE(0 == polaris10_populate_single_firmware_entry(smumgr, UCODE_ID_CP_MEC_JT1, &toc->entry[toc->num_entries++]), "Failed to Get Firmware Entry.", return -1); PP_ASSERT_WITH_CODE(0 == polaris10_populate_single_firmware_entry(smumgr, UCODE_ID_CP_MEC_JT2, &toc->entry[toc->num_entries++]), "Failed to Get Firmware Entry.", return -1); PP_ASSERT_WITH_CODE(0 == polaris10_populate_single_firmware_entry(smumgr, UCODE_ID_SDMA0, &toc->entry[toc->num_entries++]), "Failed to Get Firmware Entry.", return -1); PP_ASSERT_WITH_CODE(0 == polaris10_populate_single_firmware_entry(smumgr, UCODE_ID_SDMA1, &toc->entry[toc->num_entries++]), "Failed to Get Firmware Entry.", return -1); polaris10_send_msg_to_smc_with_parameter(smumgr, PPSMC_MSG_DRV_DRAM_ADDR_HI, smu_data->header_buffer.mc_addr_high); polaris10_send_msg_to_smc_with_parameter(smumgr, PPSMC_MSG_DRV_DRAM_ADDR_LO, smu_data->header_buffer.mc_addr_low); fw_to_load = UCODE_ID_RLC_G_MASK + UCODE_ID_SDMA0_MASK + UCODE_ID_SDMA1_MASK + UCODE_ID_CP_CE_MASK + UCODE_ID_CP_ME_MASK + UCODE_ID_CP_PFP_MASK + UCODE_ID_CP_MEC_MASK; if (polaris10_send_msg_to_smc_with_parameter(smumgr, PPSMC_MSG_LoadUcodes, fw_to_load)) printk(KERN_ERR "Fail to Request SMU Load uCode"); return result; } /* Check if the FW has been loaded, SMU will not return if loading has not finished. */ static int polaris10_check_fw_load_finish(struct pp_smumgr *smumgr, uint32_t fw_type) { struct polaris10_smumgr *smu_data = (struct polaris10_smumgr *)(smumgr->backend); uint32_t fw_mask = polaris10_get_mask_for_firmware_type(fw_type); uint32_t ret; /* Check SOFT_REGISTERS_TABLE_28.UcodeLoadStatus */ ret = smum_wait_on_indirect_register(smumgr, mmSMC_IND_INDEX_11, smu_data->soft_regs_start + offsetof(SMU74_SoftRegisters, UcodeLoadStatus), fw_mask, fw_mask); return ret; } static int polaris10_reload_firmware(struct pp_smumgr *smumgr) { return smumgr->smumgr_funcs->start_smu(smumgr); } static int polaris10_setup_pwr_virus(struct pp_smumgr *smumgr) { int i; int result = -1; uint32_t reg, data; const PWR_Command_Table *pvirus = pwr_virus_table; struct polaris10_smumgr *smu_data = (struct polaris10_smumgr *)(smumgr->backend); for (i = 0; i < PWR_VIRUS_TABLE_SIZE; i++) { switch (pvirus->command) { case PwrCmdWrite: reg = pvirus->reg; data = pvirus->data; cgs_write_register(smumgr->device, reg, data); break; case PwrCmdEnd: result = 0; break; default: printk("Table Exit with Invalid Command!"); smu_data->avfs.avfs_btc_status = AVFS_BTC_VIRUS_FAIL; result = -1; break; } pvirus++; } return result; } static int polaris10_perform_btc(struct pp_smumgr *smumgr) { int result = 0; struct polaris10_smumgr *smu_data = (struct polaris10_smumgr *)(smumgr->backend); if (0 != smu_data->avfs.avfs_btc_param) { if (0 != polaris10_send_msg_to_smc_with_parameter(smumgr, PPSMC_MSG_PerformBtc, smu_data->avfs.avfs_btc_param)) { printk("[AVFS][SmuPolaris10_PerformBtc] PerformBTC SMU msg failed"); result = -1; } } if (smu_data->avfs.avfs_btc_param > 1) { /* Soft-Reset to reset the engine before loading uCode */ /* halt */ cgs_write_register(smumgr->device, mmCP_MEC_CNTL, 0x50000000); /* reset everything */ cgs_write_register(smumgr->device, mmGRBM_SOFT_RESET, 0xffffffff); cgs_write_register(smumgr->device, mmGRBM_SOFT_RESET, 0); } return result; } int polaris10_setup_graphics_level_structure(struct pp_smumgr *smumgr) { uint32_t vr_config; uint32_t dpm_table_start; uint16_t u16_boot_mvdd; uint32_t graphics_level_address, vr_config_address, graphics_level_size; graphics_level_size = sizeof(avfs_graphics_level_polaris10); u16_boot_mvdd = PP_HOST_TO_SMC_US(1300 * VOLTAGE_SCALE); PP_ASSERT_WITH_CODE(0 == polaris10_read_smc_sram_dword(smumgr, SMU7_FIRMWARE_HEADER_LOCATION + offsetof(SMU74_Firmware_Header, DpmTable), &dpm_table_start, 0x40000), "[AVFS][Polaris10_SetupGfxLvlStruct] SMU could not communicate starting address of DPM table", return -1); /* Default value for VRConfig = VR_MERGED_WITH_VDDC + VR_STATIC_VOLTAGE(VDDCI) */ vr_config = 0x01000500; /* Real value:0x50001 */ vr_config_address = dpm_table_start + offsetof(SMU74_Discrete_DpmTable, VRConfig); PP_ASSERT_WITH_CODE(0 == polaris10_copy_bytes_to_smc(smumgr, vr_config_address, (uint8_t *)&vr_config, sizeof(uint32_t), 0x40000), "[AVFS][Polaris10_SetupGfxLvlStruct] Problems copying VRConfig value over to SMC", return -1); graphics_level_address = dpm_table_start + offsetof(SMU74_Discrete_DpmTable, GraphicsLevel); PP_ASSERT_WITH_CODE(0 == polaris10_copy_bytes_to_smc(smumgr, graphics_level_address, (uint8_t *)(&avfs_graphics_level_polaris10), graphics_level_size, 0x40000), "[AVFS][Polaris10_SetupGfxLvlStruct] Copying of SCLK DPM table failed!", return -1); graphics_level_address = dpm_table_start + offsetof(SMU74_Discrete_DpmTable, MemoryLevel); PP_ASSERT_WITH_CODE(0 == polaris10_copy_bytes_to_smc(smumgr, graphics_level_address, (uint8_t *)(&avfs_memory_level_polaris10), sizeof(avfs_memory_level_polaris10), 0x40000), "[AVFS][Polaris10_SetupGfxLvlStruct] Copying of MCLK DPM table failed!", return -1); /* MVDD Boot value - neccessary for getting rid of the hang that occurs during Mclk DPM enablement */ graphics_level_address = dpm_table_start + offsetof(SMU74_Discrete_DpmTable, BootMVdd); PP_ASSERT_WITH_CODE(0 == polaris10_copy_bytes_to_smc(smumgr, graphics_level_address, (uint8_t *)(&u16_boot_mvdd), sizeof(u16_boot_mvdd), 0x40000), "[AVFS][Polaris10_SetupGfxLvlStruct] Copying of DPM table failed!", return -1); return 0; } int polaris10_avfs_event_mgr(struct pp_smumgr *smumgr, bool SMU_VFT_INTACT) { struct polaris10_smumgr *smu_data = (struct polaris10_smumgr *)(smumgr->backend); switch (smu_data->avfs.avfs_btc_status) { case AVFS_BTC_COMPLETED_PREVIOUSLY: break; case AVFS_BTC_BOOT: /* Cold Boot State - Post SMU Start */ smu_data->avfs.avfs_btc_status = AVFS_BTC_DPMTABLESETUP_FAILED; PP_ASSERT_WITH_CODE(0 == polaris10_setup_graphics_level_structure(smumgr), "[AVFS][Polaris10_AVFSEventMgr] Could not Copy Graphics Level table over to SMU", return -1); if (smu_data->avfs.avfs_btc_param > 1) { printk("[AVFS][Polaris10_AVFSEventMgr] AC BTC has not been successfully verified on Fiji. There may be in this setting."); smu_data->avfs.avfs_btc_status = AVFS_BTC_VIRUS_FAIL; PP_ASSERT_WITH_CODE(-1 == polaris10_setup_pwr_virus(smumgr), "[AVFS][Polaris10_AVFSEventMgr] Could not setup Pwr Virus for AVFS ", return -1); } smu_data->avfs.avfs_btc_status = AVFS_BTC_FAILED; PP_ASSERT_WITH_CODE(0 == polaris10_perform_btc(smumgr), "[AVFS][Polaris10_AVFSEventMgr] Failure at SmuPolaris10_PerformBTC. AVFS Disabled", return -1); break; case AVFS_BTC_DISABLED: case AVFS_BTC_NOTSUPPORTED: break; default: printk("[AVFS] Something is broken. See log!"); break; } return 0; } static int polaris10_start_smu_in_protection_mode(struct pp_smumgr *smumgr) { int result = 0; /* Wait for smc boot up */ /* SMUM_WAIT_VFPF_INDIRECT_FIELD_UNEQUAL(smumgr, SMC_IND, RCU_UC_EVENTS, boot_seq_done, 0) */ /* Assert reset */ SMUM_WRITE_VFPF_INDIRECT_FIELD(smumgr->device, CGS_IND_REG__SMC, SMC_SYSCON_RESET_CNTL, rst_reg, 1); result = polaris10_upload_smu_firmware_image(smumgr); if (result != 0) return result; /* Clear status */ cgs_write_ind_register(smumgr->device, CGS_IND_REG__SMC, ixSMU_STATUS, 0); SMUM_WRITE_VFPF_INDIRECT_FIELD(smumgr->device, CGS_IND_REG__SMC, SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 0); /* De-assert reset */ SMUM_WRITE_VFPF_INDIRECT_FIELD(smumgr->device, CGS_IND_REG__SMC, SMC_SYSCON_RESET_CNTL, rst_reg, 0); SMUM_WAIT_VFPF_INDIRECT_FIELD(smumgr, SMC_IND, RCU_UC_EVENTS, INTERRUPTS_ENABLED, 1); /* Call Test SMU message with 0x20000 offset to trigger SMU start */ polaris10_send_msg_to_smc_offset(smumgr); /* Wait done bit to be set */ /* Check pass/failed indicator */ SMUM_WAIT_VFPF_INDIRECT_FIELD_UNEQUAL(smumgr, SMC_IND, SMU_STATUS, SMU_DONE, 0); if (1 != SMUM_READ_VFPF_INDIRECT_FIELD(smumgr->device, CGS_IND_REG__SMC, SMU_STATUS, SMU_PASS)) PP_ASSERT_WITH_CODE(false, "SMU Firmware start failed!", return -1); cgs_write_ind_register(smumgr->device, CGS_IND_REG__SMC, ixFIRMWARE_FLAGS, 0); SMUM_WRITE_VFPF_INDIRECT_FIELD(smumgr->device, CGS_IND_REG__SMC, SMC_SYSCON_RESET_CNTL, rst_reg, 1); SMUM_WRITE_VFPF_INDIRECT_FIELD(smumgr->device, CGS_IND_REG__SMC, SMC_SYSCON_RESET_CNTL, rst_reg, 0); /* Wait for firmware to initialize */ SMUM_WAIT_VFPF_INDIRECT_FIELD(smumgr, SMC_IND, FIRMWARE_FLAGS, INTERRUPTS_ENABLED, 1); return result; } static int polaris10_start_smu_in_non_protection_mode(struct pp_smumgr *smumgr) { int result = 0; /* wait for smc boot up */ SMUM_WAIT_VFPF_INDIRECT_FIELD_UNEQUAL(smumgr, SMC_IND, RCU_UC_EVENTS, boot_seq_done, 0); /* Clear firmware interrupt enable flag */ /* SMUM_WRITE_VFPF_INDIRECT_FIELD(pSmuMgr, SMC_IND, SMC_SYSCON_MISC_CNTL, pre_fetcher_en, 1); */ cgs_write_ind_register(smumgr->device, CGS_IND_REG__SMC, ixFIRMWARE_FLAGS, 0); SMUM_WRITE_VFPF_INDIRECT_FIELD(smumgr->device, CGS_IND_REG__SMC, SMC_SYSCON_RESET_CNTL, rst_reg, 1); result = polaris10_upload_smu_firmware_image(smumgr); if (result != 0) return result; /* Set smc instruct start point at 0x0 */ polaris10_program_jump_on_start(smumgr); SMUM_WRITE_VFPF_INDIRECT_FIELD(smumgr->device, CGS_IND_REG__SMC, SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 0); SMUM_WRITE_VFPF_INDIRECT_FIELD(smumgr->device, CGS_IND_REG__SMC, SMC_SYSCON_RESET_CNTL, rst_reg, 0); /* Wait for firmware to initialize */ SMUM_WAIT_VFPF_INDIRECT_FIELD(smumgr, SMC_IND, FIRMWARE_FLAGS, INTERRUPTS_ENABLED, 1); return result; } static int polaris10_start_smu(struct pp_smumgr *smumgr) { int result = 0; struct polaris10_smumgr *smu_data = (struct polaris10_smumgr *)(smumgr->backend); bool SMU_VFT_INTACT; /* Only start SMC if SMC RAM is not running */ if (!polaris10_is_smc_ram_running(smumgr)) { SMU_VFT_INTACT = false; smu_data->protected_mode = (uint8_t) (SMUM_READ_VFPF_INDIRECT_FIELD(smumgr->device, CGS_IND_REG__SMC, SMU_FIRMWARE, SMU_MODE)); smu_data->security_hard_key = (uint8_t) (SMUM_READ_VFPF_INDIRECT_FIELD(smumgr->device, CGS_IND_REG__SMC, SMU_FIRMWARE, SMU_SEL)); /* Check if SMU is running in protected mode */ if (smu_data->protected_mode == 0) { result = polaris10_start_smu_in_non_protection_mode(smumgr); } else { result = polaris10_start_smu_in_protection_mode(smumgr); /* If failed, try with different security Key. */ if (result != 0) { smu_data->security_hard_key ^= 1; result = polaris10_start_smu_in_protection_mode(smumgr); } } if (result != 0) PP_ASSERT_WITH_CODE(0, "Failed to load SMU ucode.", return result); polaris10_avfs_event_mgr(smumgr, true); } else SMU_VFT_INTACT = true; /*Driver went offline but SMU was still alive and contains the VFT table */ smu_data->post_initial_boot = true; polaris10_avfs_event_mgr(smumgr, SMU_VFT_INTACT); /* Setup SoftRegsStart here for register lookup in case DummyBackEnd is used and ProcessFirmwareHeader is not executed */ polaris10_read_smc_sram_dword(smumgr, SMU7_FIRMWARE_HEADER_LOCATION + offsetof(SMU74_Firmware_Header, SoftRegisters), &(smu_data->soft_regs_start), 0x40000); result = polaris10_request_smu_load_fw(smumgr); return result; } static int polaris10_smu_init(struct pp_smumgr *smumgr) { struct polaris10_smumgr *smu_data; uint8_t *internal_buf; uint64_t mc_addr = 0; /* Allocate memory for backend private data */ smu_data = (struct polaris10_smumgr *)(smumgr->backend); smu_data->header_buffer.data_size = ((sizeof(struct SMU_DRAMData_TOC) / 4096) + 1) * 4096; smu_data->smu_buffer.data_size = 200*4096; smu_data->avfs.avfs_btc_status = AVFS_BTC_NOTSUPPORTED; /* Allocate FW image data structure and header buffer and * send the header buffer address to SMU */ smu_allocate_memory(smumgr->device, smu_data->header_buffer.data_size, CGS_GPU_MEM_TYPE__VISIBLE_CONTIG_FB, PAGE_SIZE, &mc_addr, &smu_data->header_buffer.kaddr, &smu_data->header_buffer.handle); smu_data->header = smu_data->header_buffer.kaddr; smu_data->header_buffer.mc_addr_high = smu_upper_32_bits(mc_addr); smu_data->header_buffer.mc_addr_low = smu_lower_32_bits(mc_addr); PP_ASSERT_WITH_CODE((NULL != smu_data->header), "Out of memory.", kfree(smumgr->backend); cgs_free_gpu_mem(smumgr->device, (cgs_handle_t)smu_data->header_buffer.handle); return -1); /* Allocate buffer for SMU internal buffer and send the address to SMU. * Iceland SMU does not need internal buffer.*/ smu_allocate_memory(smumgr->device, smu_data->smu_buffer.data_size, CGS_GPU_MEM_TYPE__VISIBLE_CONTIG_FB, PAGE_SIZE, &mc_addr, &smu_data->smu_buffer.kaddr, &smu_data->smu_buffer.handle); internal_buf = smu_data->smu_buffer.kaddr; smu_data->smu_buffer.mc_addr_high = smu_upper_32_bits(mc_addr); smu_data->smu_buffer.mc_addr_low = smu_lower_32_bits(mc_addr); PP_ASSERT_WITH_CODE((NULL != internal_buf), "Out of memory.", kfree(smumgr->backend); cgs_free_gpu_mem(smumgr->device, (cgs_handle_t)smu_data->smu_buffer.handle); return -1;); if (polaris10_is_hw_avfs_present(smumgr)) smu_data->avfs.avfs_btc_status = AVFS_BTC_BOOT; else smu_data->avfs.avfs_btc_status = AVFS_BTC_NOTSUPPORTED; return 0; } static const struct pp_smumgr_func polaris10_smu_funcs = { .smu_init = polaris10_smu_init, .smu_fini = polaris10_smu_fini, .start_smu = polaris10_start_smu, .check_fw_load_finish = polaris10_check_fw_load_finish, .request_smu_load_fw = polaris10_reload_firmware, .request_smu_load_specific_fw = NULL, .send_msg_to_smc = polaris10_send_msg_to_smc, .send_msg_to_smc_with_parameter = polaris10_send_msg_to_smc_with_parameter, .download_pptable_settings = NULL, .upload_pptable_settings = NULL, }; int polaris10_smum_init(struct pp_smumgr *smumgr) { struct polaris10_smumgr *polaris10_smu = NULL; polaris10_smu = kzalloc(sizeof(struct polaris10_smumgr), GFP_KERNEL); if (polaris10_smu == NULL) return -1; smumgr->backend = polaris10_smu; smumgr->smumgr_funcs = &polaris10_smu_funcs; return 0; }