// SPDX-License-Identifier: GPL-2.0-only /* * Generic Exynos Bus frequency driver with DEVFREQ Framework * * Copyright (c) 2016 Samsung Electronics Co., Ltd. * Author : Chanwoo Choi * * This driver support Exynos Bus frequency feature by using * DEVFREQ framework and is based on drivers/devfreq/exynos/exynos4_bus.c. */ #include #include #include #include #include #include #include #include #include #include #define DEFAULT_SATURATION_RATIO 40 struct exynos_bus { struct device *dev; struct platform_device *icc_pdev; struct devfreq *devfreq; struct devfreq_event_dev **edev; unsigned int edev_count; struct mutex lock; unsigned long curr_freq; struct opp_table *opp_table; struct clk *clk; unsigned int ratio; }; /* * Control the devfreq-event device to get the current state of bus */ #define exynos_bus_ops_edev(ops) \ static int exynos_bus_##ops(struct exynos_bus *bus) \ { \ int i, ret; \ \ for (i = 0; i < bus->edev_count; i++) { \ if (!bus->edev[i]) \ continue; \ ret = devfreq_event_##ops(bus->edev[i]); \ if (ret < 0) \ return ret; \ } \ \ return 0; \ } exynos_bus_ops_edev(enable_edev); exynos_bus_ops_edev(disable_edev); exynos_bus_ops_edev(set_event); static int exynos_bus_get_event(struct exynos_bus *bus, struct devfreq_event_data *edata) { struct devfreq_event_data event_data; unsigned long load_count = 0, total_count = 0; int i, ret = 0; for (i = 0; i < bus->edev_count; i++) { if (!bus->edev[i]) continue; ret = devfreq_event_get_event(bus->edev[i], &event_data); if (ret < 0) return ret; if (i == 0 || event_data.load_count > load_count) { load_count = event_data.load_count; total_count = event_data.total_count; } } edata->load_count = load_count; edata->total_count = total_count; return ret; } /* * devfreq function for both simple-ondemand and passive governor */ static int exynos_bus_target(struct device *dev, unsigned long *freq, u32 flags) { struct exynos_bus *bus = dev_get_drvdata(dev); struct dev_pm_opp *new_opp; int ret = 0; /* Get correct frequency for bus. */ new_opp = devfreq_recommended_opp(dev, freq, flags); if (IS_ERR(new_opp)) { dev_err(dev, "failed to get recommended opp instance\n"); return PTR_ERR(new_opp); } dev_pm_opp_put(new_opp); /* Change voltage and frequency according to new OPP level */ mutex_lock(&bus->lock); ret = dev_pm_opp_set_rate(dev, *freq); if (!ret) bus->curr_freq = *freq; mutex_unlock(&bus->lock); return ret; } static int exynos_bus_get_dev_status(struct device *dev, struct devfreq_dev_status *stat) { struct exynos_bus *bus = dev_get_drvdata(dev); struct devfreq_event_data edata; int ret; stat->current_frequency = bus->curr_freq; ret = exynos_bus_get_event(bus, &edata); if (ret < 0) { dev_err(dev, "failed to get event from devfreq-event devices\n"); stat->total_time = stat->busy_time = 0; goto err; } stat->busy_time = (edata.load_count * 100) / bus->ratio; stat->total_time = edata.total_count; dev_dbg(dev, "Usage of devfreq-event : %lu/%lu\n", stat->busy_time, stat->total_time); err: ret = exynos_bus_set_event(bus); if (ret < 0) { dev_err(dev, "failed to set event to devfreq-event devices\n"); return ret; } return ret; } static void exynos_bus_exit(struct device *dev) { struct exynos_bus *bus = dev_get_drvdata(dev); int ret; ret = exynos_bus_disable_edev(bus); if (ret < 0) dev_warn(dev, "failed to disable the devfreq-event devices\n"); platform_device_unregister(bus->icc_pdev); dev_pm_opp_of_remove_table(dev); clk_disable_unprepare(bus->clk); if (bus->opp_table) { dev_pm_opp_put_regulators(bus->opp_table); bus->opp_table = NULL; } } static void exynos_bus_passive_exit(struct device *dev) { struct exynos_bus *bus = dev_get_drvdata(dev); platform_device_unregister(bus->icc_pdev); dev_pm_opp_of_remove_table(dev); clk_disable_unprepare(bus->clk); } static int exynos_bus_parent_parse_of(struct device_node *np, struct exynos_bus *bus) { struct device *dev = bus->dev; struct opp_table *opp_table; const char *vdd = "vdd"; int i, ret, count, size; opp_table = dev_pm_opp_set_regulators(dev, &vdd, 1); if (IS_ERR(opp_table)) { ret = PTR_ERR(opp_table); dev_err(dev, "failed to set regulators %d\n", ret); return ret; } bus->opp_table = opp_table; /* * Get the devfreq-event devices to get the current utilization of * buses. This raw data will be used in devfreq ondemand governor. */ count = devfreq_event_get_edev_count(dev, "devfreq-events"); if (count < 0) { dev_err(dev, "failed to get the count of devfreq-event dev\n"); ret = count; goto err_regulator; } bus->edev_count = count; size = sizeof(*bus->edev) * count; bus->edev = devm_kzalloc(dev, size, GFP_KERNEL); if (!bus->edev) { ret = -ENOMEM; goto err_regulator; } for (i = 0; i < count; i++) { bus->edev[i] = devfreq_event_get_edev_by_phandle(dev, "devfreq-events", i); if (IS_ERR(bus->edev[i])) { ret = -EPROBE_DEFER; goto err_regulator; } } /* * Optionally, Get the saturation ratio according to Exynos SoC * When measuring the utilization of each AXI bus with devfreq-event * devices, the measured real cycle might be much lower than the * total cycle of bus during sampling rate. In result, the devfreq * simple-ondemand governor might not decide to change the current * frequency due to too utilization (= real cycle/total cycle). * So, this property is used to adjust the utilization when calculating * the busy_time in exynos_bus_get_dev_status(). */ if (of_property_read_u32(np, "exynos,saturation-ratio", &bus->ratio)) bus->ratio = DEFAULT_SATURATION_RATIO; return 0; err_regulator: dev_pm_opp_put_regulators(bus->opp_table); bus->opp_table = NULL; return ret; } static int exynos_bus_parse_of(struct device_node *np, struct exynos_bus *bus) { struct device *dev = bus->dev; struct dev_pm_opp *opp; unsigned long rate; int ret; /* Get the clock to provide each bus with source clock */ bus->clk = devm_clk_get(dev, "bus"); if (IS_ERR(bus->clk)) { dev_err(dev, "failed to get bus clock\n"); return PTR_ERR(bus->clk); } ret = clk_prepare_enable(bus->clk); if (ret < 0) { dev_err(dev, "failed to get enable clock\n"); return ret; } /* Get the freq and voltage from OPP table to scale the bus freq */ ret = dev_pm_opp_of_add_table(dev); if (ret < 0) { dev_err(dev, "failed to get OPP table\n"); goto err_clk; } rate = clk_get_rate(bus->clk); opp = devfreq_recommended_opp(dev, &rate, 0); if (IS_ERR(opp)) { dev_err(dev, "failed to find dev_pm_opp\n"); ret = PTR_ERR(opp); goto err_opp; } bus->curr_freq = dev_pm_opp_get_freq(opp); dev_pm_opp_put(opp); return 0; err_opp: dev_pm_opp_of_remove_table(dev); err_clk: clk_disable_unprepare(bus->clk); return ret; } static int exynos_bus_profile_init(struct exynos_bus *bus, struct devfreq_dev_profile *profile) { struct device *dev = bus->dev; struct devfreq_simple_ondemand_data *ondemand_data; int ret; /* Initialize the struct profile and governor data for parent device */ profile->polling_ms = 50; profile->target = exynos_bus_target; profile->get_dev_status = exynos_bus_get_dev_status; profile->exit = exynos_bus_exit; ondemand_data = devm_kzalloc(dev, sizeof(*ondemand_data), GFP_KERNEL); if (!ondemand_data) return -ENOMEM; ondemand_data->upthreshold = 40; ondemand_data->downdifferential = 5; /* Add devfreq device to monitor and handle the exynos bus */ bus->devfreq = devm_devfreq_add_device(dev, profile, DEVFREQ_GOV_SIMPLE_ONDEMAND, ondemand_data); if (IS_ERR(bus->devfreq)) { dev_err(dev, "failed to add devfreq device\n"); return PTR_ERR(bus->devfreq); } /* Register opp_notifier to catch the change of OPP */ ret = devm_devfreq_register_opp_notifier(dev, bus->devfreq); if (ret < 0) { dev_err(dev, "failed to register opp notifier\n"); return ret; } /* * Enable devfreq-event to get raw data which is used to determine * current bus load. */ ret = exynos_bus_enable_edev(bus); if (ret < 0) { dev_err(dev, "failed to enable devfreq-event devices\n"); return ret; } ret = exynos_bus_set_event(bus); if (ret < 0) { dev_err(dev, "failed to set event to devfreq-event devices\n"); goto err_edev; } return 0; err_edev: if (exynos_bus_disable_edev(bus)) dev_warn(dev, "failed to disable the devfreq-event devices\n"); return ret; } static int exynos_bus_profile_init_passive(struct exynos_bus *bus, struct devfreq_dev_profile *profile) { struct device *dev = bus->dev; struct devfreq_passive_data *passive_data; struct devfreq *parent_devfreq; /* Initialize the struct profile and governor data for passive device */ profile->target = exynos_bus_target; profile->exit = exynos_bus_passive_exit; /* Get the instance of parent devfreq device */ parent_devfreq = devfreq_get_devfreq_by_phandle(dev, "devfreq", 0); if (IS_ERR(parent_devfreq)) return -EPROBE_DEFER; passive_data = devm_kzalloc(dev, sizeof(*passive_data), GFP_KERNEL); if (!passive_data) return -ENOMEM; passive_data->parent = parent_devfreq; /* Add devfreq device for exynos bus with passive governor */ bus->devfreq = devm_devfreq_add_device(dev, profile, DEVFREQ_GOV_PASSIVE, passive_data); if (IS_ERR(bus->devfreq)) { dev_err(dev, "failed to add devfreq dev with passive governor\n"); return PTR_ERR(bus->devfreq); } return 0; } static int exynos_bus_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct device_node *np = dev->of_node, *node; struct devfreq_dev_profile *profile; struct exynos_bus *bus; int ret, max_state; unsigned long min_freq, max_freq; bool passive = false; if (!np) { dev_err(dev, "failed to find devicetree node\n"); return -EINVAL; } bus = devm_kzalloc(&pdev->dev, sizeof(*bus), GFP_KERNEL); if (!bus) return -ENOMEM; mutex_init(&bus->lock); bus->dev = &pdev->dev; platform_set_drvdata(pdev, bus); profile = devm_kzalloc(dev, sizeof(*profile), GFP_KERNEL); if (!profile) return -ENOMEM; node = of_parse_phandle(dev->of_node, "devfreq", 0); if (node) { of_node_put(node); passive = true; } else { ret = exynos_bus_parent_parse_of(np, bus); if (ret < 0) return ret; } /* Parse the device-tree to get the resource information */ ret = exynos_bus_parse_of(np, bus); if (ret < 0) goto err_reg; if (passive) ret = exynos_bus_profile_init_passive(bus, profile); else ret = exynos_bus_profile_init(bus, profile); if (ret < 0) goto err; /* Create child platform device for the interconnect provider */ if (of_get_property(dev->of_node, "#interconnect-cells", NULL)) { bus->icc_pdev = platform_device_register_data( dev, "exynos-generic-icc", PLATFORM_DEVID_AUTO, NULL, 0); if (IS_ERR(bus->icc_pdev)) { ret = PTR_ERR(bus->icc_pdev); goto err; } } max_state = bus->devfreq->profile->max_state; min_freq = (bus->devfreq->profile->freq_table[0] / 1000); max_freq = (bus->devfreq->profile->freq_table[max_state - 1] / 1000); pr_info("exynos-bus: new bus device registered: %s (%6ld KHz ~ %6ld KHz)\n", dev_name(dev), min_freq, max_freq); return 0; err: dev_pm_opp_of_remove_table(dev); clk_disable_unprepare(bus->clk); err_reg: if (!passive) { dev_pm_opp_put_regulators(bus->opp_table); bus->opp_table = NULL; } return ret; } static void exynos_bus_shutdown(struct platform_device *pdev) { struct exynos_bus *bus = dev_get_drvdata(&pdev->dev); devfreq_suspend_device(bus->devfreq); } #ifdef CONFIG_PM_SLEEP static int exynos_bus_resume(struct device *dev) { struct exynos_bus *bus = dev_get_drvdata(dev); int ret; ret = exynos_bus_enable_edev(bus); if (ret < 0) { dev_err(dev, "failed to enable the devfreq-event devices\n"); return ret; } return 0; } static int exynos_bus_suspend(struct device *dev) { struct exynos_bus *bus = dev_get_drvdata(dev); int ret; ret = exynos_bus_disable_edev(bus); if (ret < 0) { dev_err(dev, "failed to disable the devfreq-event devices\n"); return ret; } return 0; } #endif static const struct dev_pm_ops exynos_bus_pm = { SET_SYSTEM_SLEEP_PM_OPS(exynos_bus_suspend, exynos_bus_resume) }; static const struct of_device_id exynos_bus_of_match[] = { { .compatible = "samsung,exynos-bus", }, { /* sentinel */ }, }; MODULE_DEVICE_TABLE(of, exynos_bus_of_match); static struct platform_driver exynos_bus_platdrv = { .probe = exynos_bus_probe, .shutdown = exynos_bus_shutdown, .driver = { .name = "exynos-bus", .pm = &exynos_bus_pm, .of_match_table = of_match_ptr(exynos_bus_of_match), }, }; module_platform_driver(exynos_bus_platdrv); MODULE_DESCRIPTION("Generic Exynos Bus frequency driver"); MODULE_AUTHOR("Chanwoo Choi "); MODULE_LICENSE("GPL v2");