// SPDX-License-Identifier: GPL-2.0 /* Copyright (C) 2012-2018 ARM Limited or its affiliates. */ #include #include #include "cc_driver.h" #include "cc_buffer_mgr.h" #include "cc_request_mgr.h" #include "cc_ivgen.h" #include "cc_pm.h" #define CC_MAX_POLL_ITER 10 /* The highest descriptor count in used */ #define CC_MAX_DESC_SEQ_LEN 23 struct cc_req_mgr_handle { /* Request manager resources */ unsigned int hw_queue_size; /* HW capability */ unsigned int min_free_hw_slots; unsigned int max_used_sw_slots; struct cc_crypto_req req_queue[MAX_REQUEST_QUEUE_SIZE]; u32 req_queue_head; u32 req_queue_tail; u32 axi_completed; u32 q_free_slots; /* This lock protects access to HW register * that must be single request at a time */ spinlock_t hw_lock; struct cc_hw_desc compl_desc; u8 *dummy_comp_buff; dma_addr_t dummy_comp_buff_dma; /* backlog queue */ struct list_head backlog; unsigned int bl_len; spinlock_t bl_lock; /* protect backlog queue */ #ifdef COMP_IN_WQ struct workqueue_struct *workq; struct delayed_work compwork; #else struct tasklet_struct comptask; #endif bool is_runtime_suspended; }; struct cc_bl_item { struct cc_crypto_req creq; struct cc_hw_desc desc[CC_MAX_DESC_SEQ_LEN]; unsigned int len; struct list_head list; bool notif; }; static const u32 cc_cpp_int_masks[CC_CPP_NUM_ALGS][CC_CPP_NUM_SLOTS] = { { BIT(CC_HOST_IRR_REE_OP_ABORTED_AES_0_INT_BIT_SHIFT), BIT(CC_HOST_IRR_REE_OP_ABORTED_AES_1_INT_BIT_SHIFT), BIT(CC_HOST_IRR_REE_OP_ABORTED_AES_2_INT_BIT_SHIFT), BIT(CC_HOST_IRR_REE_OP_ABORTED_AES_3_INT_BIT_SHIFT), BIT(CC_HOST_IRR_REE_OP_ABORTED_AES_4_INT_BIT_SHIFT), BIT(CC_HOST_IRR_REE_OP_ABORTED_AES_5_INT_BIT_SHIFT), BIT(CC_HOST_IRR_REE_OP_ABORTED_AES_6_INT_BIT_SHIFT), BIT(CC_HOST_IRR_REE_OP_ABORTED_AES_7_INT_BIT_SHIFT) }, { BIT(CC_HOST_IRR_REE_OP_ABORTED_SM_0_INT_BIT_SHIFT), BIT(CC_HOST_IRR_REE_OP_ABORTED_SM_1_INT_BIT_SHIFT), BIT(CC_HOST_IRR_REE_OP_ABORTED_SM_2_INT_BIT_SHIFT), BIT(CC_HOST_IRR_REE_OP_ABORTED_SM_3_INT_BIT_SHIFT), BIT(CC_HOST_IRR_REE_OP_ABORTED_SM_4_INT_BIT_SHIFT), BIT(CC_HOST_IRR_REE_OP_ABORTED_SM_5_INT_BIT_SHIFT), BIT(CC_HOST_IRR_REE_OP_ABORTED_SM_6_INT_BIT_SHIFT), BIT(CC_HOST_IRR_REE_OP_ABORTED_SM_7_INT_BIT_SHIFT) } }; static void comp_handler(unsigned long devarg); #ifdef COMP_IN_WQ static void comp_work_handler(struct work_struct *work); #endif static inline u32 cc_cpp_int_mask(enum cc_cpp_alg alg, int slot) { alg = array_index_nospec(alg, CC_CPP_NUM_ALGS); slot = array_index_nospec(slot, CC_CPP_NUM_SLOTS); return cc_cpp_int_masks[alg][slot]; } void cc_req_mgr_fini(struct cc_drvdata *drvdata) { struct cc_req_mgr_handle *req_mgr_h = drvdata->request_mgr_handle; struct device *dev = drvdata_to_dev(drvdata); if (!req_mgr_h) return; /* Not allocated */ if (req_mgr_h->dummy_comp_buff_dma) { dma_free_coherent(dev, sizeof(u32), req_mgr_h->dummy_comp_buff, req_mgr_h->dummy_comp_buff_dma); } dev_dbg(dev, "max_used_hw_slots=%d\n", (req_mgr_h->hw_queue_size - req_mgr_h->min_free_hw_slots)); dev_dbg(dev, "max_used_sw_slots=%d\n", req_mgr_h->max_used_sw_slots); #ifdef COMP_IN_WQ flush_workqueue(req_mgr_h->workq); destroy_workqueue(req_mgr_h->workq); #else /* Kill tasklet */ tasklet_kill(&req_mgr_h->comptask); #endif kzfree(req_mgr_h); drvdata->request_mgr_handle = NULL; } int cc_req_mgr_init(struct cc_drvdata *drvdata) { struct cc_req_mgr_handle *req_mgr_h; struct device *dev = drvdata_to_dev(drvdata); int rc = 0; req_mgr_h = kzalloc(sizeof(*req_mgr_h), GFP_KERNEL); if (!req_mgr_h) { rc = -ENOMEM; goto req_mgr_init_err; } drvdata->request_mgr_handle = req_mgr_h; spin_lock_init(&req_mgr_h->hw_lock); spin_lock_init(&req_mgr_h->bl_lock); INIT_LIST_HEAD(&req_mgr_h->backlog); #ifdef COMP_IN_WQ dev_dbg(dev, "Initializing completion workqueue\n"); req_mgr_h->workq = create_singlethread_workqueue("ccree"); if (!req_mgr_h->workq) { dev_err(dev, "Failed creating work queue\n"); rc = -ENOMEM; goto req_mgr_init_err; } INIT_DELAYED_WORK(&req_mgr_h->compwork, comp_work_handler); #else dev_dbg(dev, "Initializing completion tasklet\n"); tasklet_init(&req_mgr_h->comptask, comp_handler, (unsigned long)drvdata); #endif req_mgr_h->hw_queue_size = cc_ioread(drvdata, CC_REG(DSCRPTR_QUEUE_SRAM_SIZE)); dev_dbg(dev, "hw_queue_size=0x%08X\n", req_mgr_h->hw_queue_size); if (req_mgr_h->hw_queue_size < MIN_HW_QUEUE_SIZE) { dev_err(dev, "Invalid HW queue size = %u (Min. required is %u)\n", req_mgr_h->hw_queue_size, MIN_HW_QUEUE_SIZE); rc = -ENOMEM; goto req_mgr_init_err; } req_mgr_h->min_free_hw_slots = req_mgr_h->hw_queue_size; req_mgr_h->max_used_sw_slots = 0; /* Allocate DMA word for "dummy" completion descriptor use */ req_mgr_h->dummy_comp_buff = dma_alloc_coherent(dev, sizeof(u32), &req_mgr_h->dummy_comp_buff_dma, GFP_KERNEL); if (!req_mgr_h->dummy_comp_buff) { dev_err(dev, "Not enough memory to allocate DMA (%zu) dropped buffer\n", sizeof(u32)); rc = -ENOMEM; goto req_mgr_init_err; } /* Init. "dummy" completion descriptor */ hw_desc_init(&req_mgr_h->compl_desc); set_din_const(&req_mgr_h->compl_desc, 0, sizeof(u32)); set_dout_dlli(&req_mgr_h->compl_desc, req_mgr_h->dummy_comp_buff_dma, sizeof(u32), NS_BIT, 1); set_flow_mode(&req_mgr_h->compl_desc, BYPASS); set_queue_last_ind(drvdata, &req_mgr_h->compl_desc); return 0; req_mgr_init_err: cc_req_mgr_fini(drvdata); return rc; } static void enqueue_seq(struct cc_drvdata *drvdata, struct cc_hw_desc seq[], unsigned int seq_len) { int i, w; void __iomem *reg = drvdata->cc_base + CC_REG(DSCRPTR_QUEUE_WORD0); struct device *dev = drvdata_to_dev(drvdata); /* * We do indeed write all 6 command words to the same * register. The HW supports this. */ for (i = 0; i < seq_len; i++) { for (w = 0; w <= 5; w++) writel_relaxed(seq[i].word[w], reg); if (cc_dump_desc) dev_dbg(dev, "desc[%02d]: 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", i, seq[i].word[0], seq[i].word[1], seq[i].word[2], seq[i].word[3], seq[i].word[4], seq[i].word[5]); } } /*! * Completion will take place if and only if user requested completion * by cc_send_sync_request(). * * \param dev * \param dx_compl_h The completion event to signal */ static void request_mgr_complete(struct device *dev, void *dx_compl_h, int dummy) { struct completion *this_compl = dx_compl_h; complete(this_compl); } static int cc_queues_status(struct cc_drvdata *drvdata, struct cc_req_mgr_handle *req_mgr_h, unsigned int total_seq_len) { unsigned long poll_queue; struct device *dev = drvdata_to_dev(drvdata); /* SW queue is checked only once as it will not * be chaned during the poll because the spinlock_bh * is held by the thread */ if (((req_mgr_h->req_queue_head + 1) & (MAX_REQUEST_QUEUE_SIZE - 1)) == req_mgr_h->req_queue_tail) { dev_err(dev, "SW FIFO is full. req_queue_head=%d sw_fifo_len=%d\n", req_mgr_h->req_queue_head, MAX_REQUEST_QUEUE_SIZE); return -ENOSPC; } if (req_mgr_h->q_free_slots >= total_seq_len) return 0; /* Wait for space in HW queue. Poll constant num of iterations. */ for (poll_queue = 0; poll_queue < CC_MAX_POLL_ITER ; poll_queue++) { req_mgr_h->q_free_slots = cc_ioread(drvdata, CC_REG(DSCRPTR_QUEUE_CONTENT)); if (req_mgr_h->q_free_slots < req_mgr_h->min_free_hw_slots) req_mgr_h->min_free_hw_slots = req_mgr_h->q_free_slots; if (req_mgr_h->q_free_slots >= total_seq_len) { /* If there is enough place return */ return 0; } dev_dbg(dev, "HW FIFO is full. q_free_slots=%d total_seq_len=%d\n", req_mgr_h->q_free_slots, total_seq_len); } /* No room in the HW queue try again later */ dev_dbg(dev, "HW FIFO full, timeout. req_queue_head=%d sw_fifo_len=%d q_free_slots=%d total_seq_len=%d\n", req_mgr_h->req_queue_head, MAX_REQUEST_QUEUE_SIZE, req_mgr_h->q_free_slots, total_seq_len); return -ENOSPC; } /*! * Enqueue caller request to crypto hardware. * Need to be called with HW lock held and PM running * * \param drvdata * \param cc_req The request to enqueue * \param desc The crypto sequence * \param len The crypto sequence length * \param add_comp If "true": add an artificial dout DMA to mark completion * * \return int Returns -EINPROGRESS or error code */ static int cc_do_send_request(struct cc_drvdata *drvdata, struct cc_crypto_req *cc_req, struct cc_hw_desc *desc, unsigned int len, bool add_comp, bool ivgen) { struct cc_req_mgr_handle *req_mgr_h = drvdata->request_mgr_handle; unsigned int used_sw_slots; unsigned int iv_seq_len = 0; unsigned int total_seq_len = len; /*initial sequence length*/ struct cc_hw_desc iv_seq[CC_IVPOOL_SEQ_LEN]; struct device *dev = drvdata_to_dev(drvdata); int rc; if (ivgen) { dev_dbg(dev, "Acquire IV from pool into %d DMA addresses %pad, %pad, %pad, IV-size=%u\n", cc_req->ivgen_dma_addr_len, &cc_req->ivgen_dma_addr[0], &cc_req->ivgen_dma_addr[1], &cc_req->ivgen_dma_addr[2], cc_req->ivgen_size); /* Acquire IV from pool */ rc = cc_get_iv(drvdata, cc_req->ivgen_dma_addr, cc_req->ivgen_dma_addr_len, cc_req->ivgen_size, iv_seq, &iv_seq_len); if (rc) { dev_err(dev, "Failed to generate IV (rc=%d)\n", rc); return rc; } total_seq_len += iv_seq_len; } used_sw_slots = ((req_mgr_h->req_queue_head - req_mgr_h->req_queue_tail) & (MAX_REQUEST_QUEUE_SIZE - 1)); if (used_sw_slots > req_mgr_h->max_used_sw_slots) req_mgr_h->max_used_sw_slots = used_sw_slots; /* Enqueue request - must be locked with HW lock*/ req_mgr_h->req_queue[req_mgr_h->req_queue_head] = *cc_req; req_mgr_h->req_queue_head = (req_mgr_h->req_queue_head + 1) & (MAX_REQUEST_QUEUE_SIZE - 1); /* TODO: Use circ_buf.h ? */ dev_dbg(dev, "Enqueue request head=%u\n", req_mgr_h->req_queue_head); /* * We are about to push command to the HW via the command registers * that may refernece hsot memory. We need to issue a memory barrier * to make sure there are no outstnading memory writes */ wmb(); /* STAT_PHASE_4: Push sequence */ if (ivgen) enqueue_seq(drvdata, iv_seq, iv_seq_len); enqueue_seq(drvdata, desc, len); if (add_comp) { enqueue_seq(drvdata, &req_mgr_h->compl_desc, 1); total_seq_len++; } if (req_mgr_h->q_free_slots < total_seq_len) { /* This situation should never occur. Maybe indicating problem * with resuming power. Set the free slot count to 0 and hope * for the best. */ dev_err(dev, "HW free slot count mismatch."); req_mgr_h->q_free_slots = 0; } else { /* Update the free slots in HW queue */ req_mgr_h->q_free_slots -= total_seq_len; } /* Operation still in process */ return -EINPROGRESS; } static void cc_enqueue_backlog(struct cc_drvdata *drvdata, struct cc_bl_item *bli) { struct cc_req_mgr_handle *mgr = drvdata->request_mgr_handle; struct device *dev = drvdata_to_dev(drvdata); spin_lock_bh(&mgr->bl_lock); list_add_tail(&bli->list, &mgr->backlog); ++mgr->bl_len; dev_dbg(dev, "+++bl len: %d\n", mgr->bl_len); spin_unlock_bh(&mgr->bl_lock); tasklet_schedule(&mgr->comptask); } static void cc_proc_backlog(struct cc_drvdata *drvdata) { struct cc_req_mgr_handle *mgr = drvdata->request_mgr_handle; struct cc_bl_item *bli; struct cc_crypto_req *creq; void *req; bool ivgen; unsigned int total_len; struct device *dev = drvdata_to_dev(drvdata); int rc; spin_lock(&mgr->bl_lock); while (mgr->bl_len) { bli = list_first_entry(&mgr->backlog, struct cc_bl_item, list); dev_dbg(dev, "---bl len: %d\n", mgr->bl_len); spin_unlock(&mgr->bl_lock); creq = &bli->creq; req = creq->user_arg; /* * Notify the request we're moving out of the backlog * but only if we haven't done so already. */ if (!bli->notif) { creq->user_cb(dev, req, -EINPROGRESS); bli->notif = true; } ivgen = !!creq->ivgen_dma_addr_len; total_len = bli->len + (ivgen ? CC_IVPOOL_SEQ_LEN : 0); spin_lock(&mgr->hw_lock); rc = cc_queues_status(drvdata, mgr, total_len); if (rc) { /* * There is still not room in the FIFO for * this request. Bail out. We'll return here * on the next completion irq. */ spin_unlock(&mgr->hw_lock); return; } rc = cc_do_send_request(drvdata, &bli->creq, bli->desc, bli->len, false, ivgen); spin_unlock(&mgr->hw_lock); if (rc != -EINPROGRESS) { cc_pm_put_suspend(dev); creq->user_cb(dev, req, rc); } /* Remove ourselves from the backlog list */ spin_lock(&mgr->bl_lock); list_del(&bli->list); --mgr->bl_len; } spin_unlock(&mgr->bl_lock); } int cc_send_request(struct cc_drvdata *drvdata, struct cc_crypto_req *cc_req, struct cc_hw_desc *desc, unsigned int len, struct crypto_async_request *req) { int rc; struct cc_req_mgr_handle *mgr = drvdata->request_mgr_handle; bool ivgen = !!cc_req->ivgen_dma_addr_len; unsigned int total_len = len + (ivgen ? CC_IVPOOL_SEQ_LEN : 0); struct device *dev = drvdata_to_dev(drvdata); bool backlog_ok = req->flags & CRYPTO_TFM_REQ_MAY_BACKLOG; gfp_t flags = cc_gfp_flags(req); struct cc_bl_item *bli; rc = cc_pm_get(dev); if (rc) { dev_err(dev, "ssi_power_mgr_runtime_get returned %x\n", rc); return rc; } spin_lock_bh(&mgr->hw_lock); rc = cc_queues_status(drvdata, mgr, total_len); #ifdef CC_DEBUG_FORCE_BACKLOG if (backlog_ok) rc = -ENOSPC; #endif /* CC_DEBUG_FORCE_BACKLOG */ if (rc == -ENOSPC && backlog_ok) { spin_unlock_bh(&mgr->hw_lock); bli = kmalloc(sizeof(*bli), flags); if (!bli) { cc_pm_put_suspend(dev); return -ENOMEM; } memcpy(&bli->creq, cc_req, sizeof(*cc_req)); memcpy(&bli->desc, desc, len * sizeof(*desc)); bli->len = len; bli->notif = false; cc_enqueue_backlog(drvdata, bli); return -EBUSY; } if (!rc) rc = cc_do_send_request(drvdata, cc_req, desc, len, false, ivgen); spin_unlock_bh(&mgr->hw_lock); return rc; } int cc_send_sync_request(struct cc_drvdata *drvdata, struct cc_crypto_req *cc_req, struct cc_hw_desc *desc, unsigned int len) { int rc; struct device *dev = drvdata_to_dev(drvdata); struct cc_req_mgr_handle *mgr = drvdata->request_mgr_handle; init_completion(&cc_req->seq_compl); cc_req->user_cb = request_mgr_complete; cc_req->user_arg = &cc_req->seq_compl; rc = cc_pm_get(dev); if (rc) { dev_err(dev, "ssi_power_mgr_runtime_get returned %x\n", rc); return rc; } while (true) { spin_lock_bh(&mgr->hw_lock); rc = cc_queues_status(drvdata, mgr, len + 1); if (!rc) break; spin_unlock_bh(&mgr->hw_lock); if (rc != -EAGAIN) { cc_pm_put_suspend(dev); return rc; } wait_for_completion_interruptible(&drvdata->hw_queue_avail); reinit_completion(&drvdata->hw_queue_avail); } rc = cc_do_send_request(drvdata, cc_req, desc, len, true, false); spin_unlock_bh(&mgr->hw_lock); if (rc != -EINPROGRESS) { cc_pm_put_suspend(dev); return rc; } wait_for_completion(&cc_req->seq_compl); return 0; } /*! * Enqueue caller request to crypto hardware during init process. * assume this function is not called in middle of a flow, * since we set QUEUE_LAST_IND flag in the last descriptor. * * \param drvdata * \param desc The crypto sequence * \param len The crypto sequence length * * \return int Returns "0" upon success */ int send_request_init(struct cc_drvdata *drvdata, struct cc_hw_desc *desc, unsigned int len) { struct cc_req_mgr_handle *req_mgr_h = drvdata->request_mgr_handle; unsigned int total_seq_len = len; /*initial sequence length*/ int rc = 0; /* Wait for space in HW and SW FIFO. Poll for as much as FIFO_TIMEOUT. */ rc = cc_queues_status(drvdata, req_mgr_h, total_seq_len); if (rc) return rc; set_queue_last_ind(drvdata, &desc[(len - 1)]); /* * We are about to push command to the HW via the command registers * that may refernece hsot memory. We need to issue a memory barrier * to make sure there are no outstnading memory writes */ wmb(); enqueue_seq(drvdata, desc, len); /* Update the free slots in HW queue */ req_mgr_h->q_free_slots = cc_ioread(drvdata, CC_REG(DSCRPTR_QUEUE_CONTENT)); return 0; } void complete_request(struct cc_drvdata *drvdata) { struct cc_req_mgr_handle *request_mgr_handle = drvdata->request_mgr_handle; complete(&drvdata->hw_queue_avail); #ifdef COMP_IN_WQ queue_delayed_work(request_mgr_handle->workq, &request_mgr_handle->compwork, 0); #else tasklet_schedule(&request_mgr_handle->comptask); #endif } #ifdef COMP_IN_WQ static void comp_work_handler(struct work_struct *work) { struct cc_drvdata *drvdata = container_of(work, struct cc_drvdata, compwork.work); comp_handler((unsigned long)drvdata); } #endif static void proc_completions(struct cc_drvdata *drvdata) { struct cc_crypto_req *cc_req; struct device *dev = drvdata_to_dev(drvdata); struct cc_req_mgr_handle *request_mgr_handle = drvdata->request_mgr_handle; unsigned int *tail = &request_mgr_handle->req_queue_tail; unsigned int *head = &request_mgr_handle->req_queue_head; int rc; u32 mask; while (request_mgr_handle->axi_completed) { request_mgr_handle->axi_completed--; /* Dequeue request */ if (*head == *tail) { /* We are supposed to handle a completion but our * queue is empty. This is not normal. Return and * hope for the best. */ dev_err(dev, "Request queue is empty head == tail %u\n", *head); break; } cc_req = &request_mgr_handle->req_queue[*tail]; if (cc_req->cpp.is_cpp) { dev_dbg(dev, "CPP request completion slot: %d alg:%d\n", cc_req->cpp.slot, cc_req->cpp.alg); mask = cc_cpp_int_mask(cc_req->cpp.alg, cc_req->cpp.slot); rc = (drvdata->irq & mask ? -EPERM : 0); dev_dbg(dev, "Got mask: %x irq: %x rc: %d\n", mask, drvdata->irq, rc); } else { dev_dbg(dev, "None CPP request completion\n"); rc = 0; } if (cc_req->user_cb) cc_req->user_cb(dev, cc_req->user_arg, rc); *tail = (*tail + 1) & (MAX_REQUEST_QUEUE_SIZE - 1); dev_dbg(dev, "Dequeue request tail=%u\n", *tail); dev_dbg(dev, "Request completed. axi_completed=%d\n", request_mgr_handle->axi_completed); cc_pm_put_suspend(dev); } } static inline u32 cc_axi_comp_count(struct cc_drvdata *drvdata) { return FIELD_GET(AXIM_MON_COMP_VALUE, cc_ioread(drvdata, drvdata->axim_mon_offset)); } /* Deferred service handler, run as interrupt-fired tasklet */ static void comp_handler(unsigned long devarg) { struct cc_drvdata *drvdata = (struct cc_drvdata *)devarg; struct cc_req_mgr_handle *request_mgr_handle = drvdata->request_mgr_handle; struct device *dev = drvdata_to_dev(drvdata); u32 irq; dev_dbg(dev, "Completion handler called!\n"); irq = (drvdata->irq & drvdata->comp_mask); /* To avoid the interrupt from firing as we unmask it, * we clear it now */ cc_iowrite(drvdata, CC_REG(HOST_ICR), irq); /* Avoid race with above clear: Test completion counter once more */ request_mgr_handle->axi_completed += cc_axi_comp_count(drvdata); dev_dbg(dev, "AXI completion after updated: %d\n", request_mgr_handle->axi_completed); while (request_mgr_handle->axi_completed) { do { drvdata->irq |= cc_ioread(drvdata, CC_REG(HOST_IRR)); irq = (drvdata->irq & drvdata->comp_mask); proc_completions(drvdata); /* At this point (after proc_completions()), * request_mgr_handle->axi_completed is 0. */ request_mgr_handle->axi_completed += cc_axi_comp_count(drvdata); } while (request_mgr_handle->axi_completed > 0); cc_iowrite(drvdata, CC_REG(HOST_ICR), irq); request_mgr_handle->axi_completed += cc_axi_comp_count(drvdata); } /* after verifing that there is nothing to do, * unmask AXI completion interrupt */ cc_iowrite(drvdata, CC_REG(HOST_IMR), cc_ioread(drvdata, CC_REG(HOST_IMR)) & ~drvdata->comp_mask); cc_proc_backlog(drvdata); dev_dbg(dev, "Comp. handler done.\n"); } /* * resume the queue configuration - no need to take the lock as this happens * inside the spin lock protection */ #if defined(CONFIG_PM) int cc_resume_req_queue(struct cc_drvdata *drvdata) { struct cc_req_mgr_handle *request_mgr_handle = drvdata->request_mgr_handle; spin_lock_bh(&request_mgr_handle->hw_lock); request_mgr_handle->is_runtime_suspended = false; spin_unlock_bh(&request_mgr_handle->hw_lock); return 0; } /* * suspend the queue configuration. Since it is used for the runtime suspend * only verify that the queue can be suspended. */ int cc_suspend_req_queue(struct cc_drvdata *drvdata) { struct cc_req_mgr_handle *request_mgr_handle = drvdata->request_mgr_handle; /* lock the send_request */ spin_lock_bh(&request_mgr_handle->hw_lock); if (request_mgr_handle->req_queue_head != request_mgr_handle->req_queue_tail) { spin_unlock_bh(&request_mgr_handle->hw_lock); return -EBUSY; } request_mgr_handle->is_runtime_suspended = true; spin_unlock_bh(&request_mgr_handle->hw_lock); return 0; } bool cc_req_queue_suspended(struct cc_drvdata *drvdata) { struct cc_req_mgr_handle *request_mgr_handle = drvdata->request_mgr_handle; return request_mgr_handle->is_runtime_suspended; } #endif