/* SPDX-License-Identifier: GPL-2.0 */ #ifndef __NITROX_CSR_H #define __NITROX_CSR_H #include #include /* EMU clusters */ #define NR_CLUSTERS 4 /* Maximum cores per cluster, * varies based on partname */ #define AE_CORES_PER_CLUSTER 20 #define SE_CORES_PER_CLUSTER 16 #define AE_MAX_CORES (AE_CORES_PER_CLUSTER * NR_CLUSTERS) #define SE_MAX_CORES (SE_CORES_PER_CLUSTER * NR_CLUSTERS) #define ZIP_MAX_CORES 5 /* BIST registers */ #define EMU_BIST_STATUSX(_i) (0x1402700 + ((_i) * 0x40000)) #define UCD_BIST_STATUS 0x12C0070 #define NPS_CORE_BIST_REG 0x10000E8 #define NPS_CORE_NPC_BIST_REG 0x1000128 #define NPS_PKT_SLC_BIST_REG 0x1040088 #define NPS_PKT_IN_BIST_REG 0x1040100 #define POM_BIST_REG 0x11C0100 #define BMI_BIST_REG 0x1140080 #define EFL_CORE_BIST_REGX(_i) (0x1240100 + ((_i) * 0x400)) #define EFL_TOP_BIST_STAT 0x1241090 #define BMO_BIST_REG 0x1180080 #define LBC_BIST_STATUS 0x1200020 #define PEM_BIST_STATUSX(_i) (0x1080468 | ((_i) << 18)) /* EMU registers */ #define EMU_SE_ENABLEX(_i) (0x1400000 + ((_i) * 0x40000)) #define EMU_AE_ENABLEX(_i) (0x1400008 + ((_i) * 0x40000)) #define EMU_WD_INT_ENA_W1SX(_i) (0x1402318 + ((_i) * 0x40000)) #define EMU_GE_INT_ENA_W1SX(_i) (0x1402518 + ((_i) * 0x40000)) #define EMU_FUSE_MAPX(_i) (0x1402708 + ((_i) * 0x40000)) /* UCD registers */ #define UCD_UCODE_LOAD_BLOCK_NUM 0x12C0010 #define UCD_UCODE_LOAD_IDX_DATAX(_i) (0x12C0018 + ((_i) * 0x20)) #define UCD_SE_EID_UCODE_BLOCK_NUMX(_i) (0x12C0000 + ((_i) * 0x1000)) /* NPS core registers */ #define NPS_CORE_GBL_VFCFG 0x1000000 #define NPS_CORE_CONTROL 0x1000008 #define NPS_CORE_INT_ACTIVE 0x1000080 #define NPS_CORE_INT 0x10000A0 #define NPS_CORE_INT_ENA_W1S 0x10000B8 #define NPS_STATS_PKT_DMA_RD_CNT 0x1000180 #define NPS_STATS_PKT_DMA_WR_CNT 0x1000190 /* NPS packet registers */ #define NPS_PKT_INT 0x1040018 #define NPS_PKT_IN_RERR_HI 0x1040108 #define NPS_PKT_IN_RERR_HI_ENA_W1S 0x1040120 #define NPS_PKT_IN_RERR_LO 0x1040128 #define NPS_PKT_IN_RERR_LO_ENA_W1S 0x1040140 #define NPS_PKT_IN_ERR_TYPE 0x1040148 #define NPS_PKT_IN_ERR_TYPE_ENA_W1S 0x1040160 #define NPS_PKT_IN_INSTR_CTLX(_i) (0x10060 + ((_i) * 0x40000)) #define NPS_PKT_IN_INSTR_BADDRX(_i) (0x10068 + ((_i) * 0x40000)) #define NPS_PKT_IN_INSTR_RSIZEX(_i) (0x10070 + ((_i) * 0x40000)) #define NPS_PKT_IN_DONE_CNTSX(_i) (0x10080 + ((_i) * 0x40000)) #define NPS_PKT_IN_INSTR_BAOFF_DBELLX(_i) (0x10078 + ((_i) * 0x40000)) #define NPS_PKT_IN_INT_LEVELSX(_i) (0x10088 + ((_i) * 0x40000)) #define NPS_PKT_SLC_RERR_HI 0x1040208 #define NPS_PKT_SLC_RERR_HI_ENA_W1S 0x1040220 #define NPS_PKT_SLC_RERR_LO 0x1040228 #define NPS_PKT_SLC_RERR_LO_ENA_W1S 0x1040240 #define NPS_PKT_SLC_ERR_TYPE 0x1040248 #define NPS_PKT_SLC_ERR_TYPE_ENA_W1S 0x1040260 #define NPS_PKT_SLC_CTLX(_i) (0x10000 + ((_i) * 0x40000)) #define NPS_PKT_SLC_CNTSX(_i) (0x10008 + ((_i) * 0x40000)) #define NPS_PKT_SLC_INT_LEVELSX(_i) (0x10010 + ((_i) * 0x40000)) /* POM registers */ #define POM_INT_ENA_W1S 0x11C0018 #define POM_GRP_EXECMASKX(_i) (0x11C1100 | ((_i) * 8)) #define POM_INT 0x11C0000 #define POM_PERF_CTL 0x11CC400 /* BMI registers */ #define BMI_INT 0x1140000 #define BMI_CTL 0x1140020 #define BMI_INT_ENA_W1S 0x1140018 #define BMI_NPS_PKT_CNT 0x1140070 /* EFL registers */ #define EFL_CORE_INT_ENA_W1SX(_i) (0x1240018 + ((_i) * 0x400)) #define EFL_CORE_VF_ERR_INT0X(_i) (0x1240050 + ((_i) * 0x400)) #define EFL_CORE_VF_ERR_INT0_ENA_W1SX(_i) (0x1240068 + ((_i) * 0x400)) #define EFL_CORE_VF_ERR_INT1X(_i) (0x1240070 + ((_i) * 0x400)) #define EFL_CORE_VF_ERR_INT1_ENA_W1SX(_i) (0x1240088 + ((_i) * 0x400)) #define EFL_CORE_SE_ERR_INTX(_i) (0x12400A0 + ((_i) * 0x400)) #define EFL_RNM_CTL_STATUS 0x1241800 #define EFL_CORE_INTX(_i) (0x1240000 + ((_i) * 0x400)) /* BMO registers */ #define BMO_CTL2 0x1180028 #define BMO_NPS_SLC_PKT_CNT 0x1180078 /* LBC registers */ #define LBC_INT 0x1200000 #define LBC_INVAL_CTL 0x1201010 #define LBC_PLM_VF1_64_INT 0x1202008 #define LBC_INVAL_STATUS 0x1202010 #define LBC_INT_ENA_W1S 0x1203000 #define LBC_PLM_VF1_64_INT_ENA_W1S 0x1205008 #define LBC_PLM_VF65_128_INT 0x1206008 #define LBC_ELM_VF1_64_INT 0x1208000 #define LBC_PLM_VF65_128_INT_ENA_W1S 0x1209008 #define LBC_ELM_VF1_64_INT_ENA_W1S 0x120B000 #define LBC_ELM_VF65_128_INT 0x120C000 #define LBC_ELM_VF65_128_INT_ENA_W1S 0x120F000 #define RST_BOOT 0x10C1600 #define FUS_DAT1 0x10C1408 /* PEM registers */ #define PEM0_INT 0x1080428 /** * struct emu_fuse_map - EMU Fuse Map Registers * @ae_fuse: Fuse settings for AE 19..0 * @se_fuse: Fuse settings for SE 15..0 * * A set bit indicates the unit is fuse disabled. */ union emu_fuse_map { u64 value; struct { #if (defined(__BIG_ENDIAN_BITFIELD)) u64 valid : 1; u64 raz_52_62 : 11; u64 ae_fuse : 20; u64 raz_16_31 : 16; u64 se_fuse : 16; #else u64 se_fuse : 16; u64 raz_16_31 : 16; u64 ae_fuse : 20; u64 raz_52_62 : 11; u64 valid : 1; #endif } s; }; /** * struct emu_se_enable - Symmetric Engine Enable Registers * @enable: Individual enables for each of the clusters * 16 symmetric engines. */ union emu_se_enable { u64 value; struct { #if (defined(__BIG_ENDIAN_BITFIELD)) u64 raz : 48; u64 enable : 16; #else u64 enable : 16; u64 raz : 48; #endif } s; }; /** * struct emu_ae_enable - EMU Asymmetric engines. * @enable: Individual enables for each of the cluster's * 20 Asymmetric Engines. */ union emu_ae_enable { u64 value; struct { #if (defined(__BIG_ENDIAN_BITFIELD)) u64 raz : 44; u64 enable : 20; #else u64 enable : 20; u64 raz : 44; #endif } s; }; /** * struct emu_wd_int_ena_w1s - EMU Interrupt Enable Registers * @ae_wd: Reads or sets enable for EMU(0..3)_WD_INT[AE_WD] * @se_wd: Reads or sets enable for EMU(0..3)_WD_INT[SE_WD] */ union emu_wd_int_ena_w1s { u64 value; struct { #if (defined(__BIG_ENDIAN_BITFIELD)) u64 raz2 : 12; u64 ae_wd : 20; u64 raz1 : 16; u64 se_wd : 16; #else u64 se_wd : 16; u64 raz1 : 16; u64 ae_wd : 20; u64 raz2 : 12; #endif } s; }; /** * struct emu_ge_int_ena_w1s - EMU Interrupt Enable set registers * @ae_ge: Reads or sets enable for EMU(0..3)_GE_INT[AE_GE] * @se_ge: Reads or sets enable for EMU(0..3)_GE_INT[SE_GE] */ union emu_ge_int_ena_w1s { u64 value; struct { #if (defined(__BIG_ENDIAN_BITFIELD)) u64 raz_52_63 : 12; u64 ae_ge : 20; u64 raz_16_31: 16; u64 se_ge : 16; #else u64 se_ge : 16; u64 raz_16_31: 16; u64 ae_ge : 20; u64 raz_52_63 : 12; #endif } s; }; /** * struct nps_pkt_slc_ctl - Solicited Packet Out Control Registers * @rh: Indicates whether to remove or include the response header * 1 = Include, 0 = Remove * @z: If set, 8 trailing 0x00 bytes will be added to the end of the * outgoing packet. * @enb: Enable for this port. */ union nps_pkt_slc_ctl { u64 value; struct { #if defined(__BIG_ENDIAN_BITFIELD) u64 raz : 61; u64 rh : 1; u64 z : 1; u64 enb : 1; #else u64 enb : 1; u64 z : 1; u64 rh : 1; u64 raz : 61; #endif } s; }; /** * struct nps_pkt_slc_cnts - Solicited Packet Out Count Registers * @slc_int: Returns a 1 when: * NPS_PKT_SLC(i)_CNTS[CNT] > NPS_PKT_SLC(i)_INT_LEVELS[CNT], or * NPS_PKT_SLC(i)_CNTS[TIMER] > NPS_PKT_SLC(i)_INT_LEVELS[TIMET]. * To clear the bit, the CNTS register must be written to clear. * @in_int: Returns a 1 when: * NPS_PKT_IN(i)_DONE_CNTS[CNT] > NPS_PKT_IN(i)_INT_LEVELS[CNT]. * To clear the bit, the DONE_CNTS register must be written to clear. * @mbox_int: Returns a 1 when: * NPS_PKT_MBOX_PF_VF(i)_INT[INTR] is set. To clear the bit, * write NPS_PKT_MBOX_PF_VF(i)_INT[INTR] with 1. * @timer: Timer, incremented every 2048 coprocessor clock cycles * when [CNT] is not zero. The hardware clears both [TIMER] and * [INT] when [CNT] goes to 0. * @cnt: Packet counter. Hardware adds to [CNT] as it sends packets out. * On a write to this CSR, hardware subtracts the amount written to the * [CNT] field from [CNT]. */ union nps_pkt_slc_cnts { u64 value; struct { #if defined(__BIG_ENDIAN_BITFIELD) u64 slc_int : 1; u64 uns_int : 1; u64 in_int : 1; u64 mbox_int : 1; u64 resend : 1; u64 raz : 5; u64 timer : 22; u64 cnt : 32; #else u64 cnt : 32; u64 timer : 22; u64 raz : 5; u64 resend : 1; u64 mbox_int : 1; u64 in_int : 1; u64 uns_int : 1; u64 slc_int : 1; #endif } s; }; /** * struct nps_pkt_slc_int_levels - Solicited Packet Out Interrupt Levels * Registers. * @bmode: Determines whether NPS_PKT_SLC_CNTS[CNT] is a byte or * packet counter. * @timet: Output port counter time interrupt threshold. * @cnt: Output port counter interrupt threshold. */ union nps_pkt_slc_int_levels { u64 value; struct { #if defined(__BIG_ENDIAN_BITFIELD) u64 bmode : 1; u64 raz : 9; u64 timet : 22; u64 cnt : 32; #else u64 cnt : 32; u64 timet : 22; u64 raz : 9; u64 bmode : 1; #endif } s; }; /** * struct nps_pkt_inst - NPS Packet Interrupt Register * @in_err: Set when any NPS_PKT_IN_RERR_HI/LO bit and * corresponding NPS_PKT_IN_RERR_*_ENA_* bit are bot set. * @uns_err: Set when any NSP_PKT_UNS_RERR_HI/LO bit and * corresponding NPS_PKT_UNS_RERR_*_ENA_* bit are both set. * @slc_er: Set when any NSP_PKT_SLC_RERR_HI/LO bit and * corresponding NPS_PKT_SLC_RERR_*_ENA_* bit are both set. */ union nps_pkt_int { u64 value; struct { #if defined(__BIG_ENDIAN_BITFIELD) u64 raz : 54; u64 uns_wto : 1; u64 in_err : 1; u64 uns_err : 1; u64 slc_err : 1; u64 in_dbe : 1; u64 in_sbe : 1; u64 uns_dbe : 1; u64 uns_sbe : 1; u64 slc_dbe : 1; u64 slc_sbe : 1; #else u64 slc_sbe : 1; u64 slc_dbe : 1; u64 uns_sbe : 1; u64 uns_dbe : 1; u64 in_sbe : 1; u64 in_dbe : 1; u64 slc_err : 1; u64 uns_err : 1; u64 in_err : 1; u64 uns_wto : 1; u64 raz : 54; #endif } s; }; /** * struct nps_pkt_in_done_cnts - Input instruction ring counts registers * @slc_cnt: Returns a 1 when: * NPS_PKT_SLC(i)_CNTS[CNT] > NPS_PKT_SLC(i)_INT_LEVELS[CNT], or * NPS_PKT_SLC(i)_CNTS[TIMER] > NPS_PKT_SCL(i)_INT_LEVELS[TIMET] * To clear the bit, the CNTS register must be * written to clear the underlying condition * @uns_int: Return a 1 when: * NPS_PKT_UNS(i)_CNTS[CNT] > NPS_PKT_UNS(i)_INT_LEVELS[CNT], or * NPS_PKT_UNS(i)_CNTS[TIMER] > NPS_PKT_UNS(i)_INT_LEVELS[TIMET] * To clear the bit, the CNTS register must be * written to clear the underlying condition * @in_int: Returns a 1 when: * NPS_PKT_IN(i)_DONE_CNTS[CNT] > NPS_PKT_IN(i)_INT_LEVELS[CNT] * To clear the bit, the DONE_CNTS register * must be written to clear the underlying condition * @mbox_int: Returns a 1 when: * NPS_PKT_MBOX_PF_VF(i)_INT[INTR] is set. * To clear the bit, write NPS_PKT_MBOX_PF_VF(i)_INT[INTR] * with 1. * @resend: A write of 1 will resend an MSI-X interrupt message if any * of the following conditions are true for this ring "i". * NPS_PKT_SLC(i)_CNTS[CNT] > NPS_PKT_SLC(i)_INT_LEVELS[CNT] * NPS_PKT_SLC(i)_CNTS[TIMER] > NPS_PKT_SLC(i)_INT_LEVELS[TIMET] * NPS_PKT_UNS(i)_CNTS[CNT] > NPS_PKT_UNS(i)_INT_LEVELS[CNT] * NPS_PKT_UNS(i)_CNTS[TIMER] > NPS_PKT_UNS(i)_INT_LEVELS[TIMET] * NPS_PKT_IN(i)_DONE_CNTS[CNT] > NPS_PKT_IN(i)_INT_LEVELS[CNT] * NPS_PKT_MBOX_PF_VF(i)_INT[INTR] is set * @cnt: Packet counter. Hardware adds to [CNT] as it reads * packets. On a write to this CSR, hardware substracts the * amount written to the [CNT] field from [CNT], which will * clear PKT_IN(i)_INT_STATUS[INTR] if [CNT] becomes <= * NPS_PKT_IN(i)_INT_LEVELS[CNT]. This register should be * cleared before enabling a ring by reading the current * value and writing it back. */ union nps_pkt_in_done_cnts { u64 value; struct { #if defined(__BIG_ENDIAN_BITFIELD) u64 slc_int : 1; u64 uns_int : 1; u64 in_int : 1; u64 mbox_int : 1; u64 resend : 1; u64 raz : 27; u64 cnt : 32; #else u64 cnt : 32; u64 raz : 27; u64 resend : 1; u64 mbox_int : 1; u64 in_int : 1; u64 uns_int : 1; u64 slc_int : 1; #endif } s; }; /** * struct nps_pkt_in_instr_ctl - Input Instruction Ring Control Registers. * @is64b: If 1, the ring uses 64-byte instructions. If 0, the * ring uses 32-byte instructions. * @enb: Enable for the input ring. */ union nps_pkt_in_instr_ctl { u64 value; struct { #if (defined(__BIG_ENDIAN_BITFIELD)) u64 raz : 62; u64 is64b : 1; u64 enb : 1; #else u64 enb : 1; u64 is64b : 1; u64 raz : 62; #endif } s; }; /** * struct nps_pkt_in_instr_rsize - Input instruction ring size registers * @rsize: Ring size (number of instructions) */ union nps_pkt_in_instr_rsize { u64 value; struct { #if (defined(__BIG_ENDIAN_BITFIELD)) u64 raz : 32; u64 rsize : 32; #else u64 rsize : 32; u64 raz : 32; #endif } s; }; /** * struct nps_pkt_in_instr_baoff_dbell - Input instruction ring * base address offset and doorbell registers * @aoff: Address offset. The offset from the NPS_PKT_IN_INSTR_BADDR * where the next pointer is read. * @dbell: Pointer list doorbell count. Write operations to this field * increments the present value here. Read operations return the * present value. */ union nps_pkt_in_instr_baoff_dbell { u64 value; struct { #if (defined(__BIG_ENDIAN_BITFIELD)) u64 aoff : 32; u64 dbell : 32; #else u64 dbell : 32; u64 aoff : 32; #endif } s; }; /** * struct nps_core_int_ena_w1s - NPS core interrupt enable set register * @host_nps_wr_err: Reads or sets enable for * NPS_CORE_INT[HOST_NPS_WR_ERR]. * @npco_dma_malform: Reads or sets enable for * NPS_CORE_INT[NPCO_DMA_MALFORM]. * @exec_wr_timeout: Reads or sets enable for * NPS_CORE_INT[EXEC_WR_TIMEOUT]. * @host_wr_timeout: Reads or sets enable for * NPS_CORE_INT[HOST_WR_TIMEOUT]. * @host_wr_err: Reads or sets enable for * NPS_CORE_INT[HOST_WR_ERR] */ union nps_core_int_ena_w1s { u64 value; struct { #if (defined(__BIG_ENDIAN_BITFIELD)) u64 raz4 : 55; u64 host_nps_wr_err : 1; u64 npco_dma_malform : 1; u64 exec_wr_timeout : 1; u64 host_wr_timeout : 1; u64 host_wr_err : 1; u64 raz3 : 1; u64 raz2 : 1; u64 raz1 : 1; u64 raz0 : 1; #else u64 raz0 : 1; u64 raz1 : 1; u64 raz2 : 1; u64 raz3 : 1; u64 host_wr_err : 1; u64 host_wr_timeout : 1; u64 exec_wr_timeout : 1; u64 npco_dma_malform : 1; u64 host_nps_wr_err : 1; u64 raz4 : 55; #endif } s; }; /** * struct nps_core_gbl_vfcfg - Global VF Configuration Register. * @ilk_disable: When set, this bit indicates that the ILK interface has * been disabled. * @obaf: BMO allocation control * 0 = allocate per queue * 1 = allocate per VF * @ibaf: BMI allocation control * 0 = allocate per queue * 1 = allocate per VF * @zaf: ZIP allocation control * 0 = allocate per queue * 1 = allocate per VF * @aeaf: AE allocation control * 0 = allocate per queue * 1 = allocate per VF * @seaf: SE allocation control * 0 = allocation per queue * 1 = allocate per VF * @cfg: VF/PF mode. */ union nps_core_gbl_vfcfg { u64 value; struct { #if (defined(__BIG_ENDIAN_BITFIELD)) u64 raz :55; u64 ilk_disable :1; u64 obaf :1; u64 ibaf :1; u64 zaf :1; u64 aeaf :1; u64 seaf :1; u64 cfg :3; #else u64 cfg :3; u64 seaf :1; u64 aeaf :1; u64 zaf :1; u64 ibaf :1; u64 obaf :1; u64 ilk_disable :1; u64 raz :55; #endif } s; }; /** * struct nps_core_int_active - NPS Core Interrupt Active Register * @resend: Resend MSI-X interrupt if needs to handle interrupts * Sofware can set this bit and then exit the ISR. * @ocla: Set when any OCLA(0)_INT and corresponding OCLA(0_INT_ENA_W1C * bit are set * @mbox: Set when any NPS_PKT_MBOX_INT_LO/HI and corresponding * NPS_PKT_MBOX_INT_LO_ENA_W1C/HI_ENA_W1C bits are set * @emu: bit i is set in [EMU] when any EMU(i)_INT bit is set * @bmo: Set when any BMO_INT bit is set * @bmi: Set when any BMI_INT bit is set or when any non-RO * BMI_INT and corresponding BMI_INT_ENA_W1C bits are both set * @aqm: Set when any AQM_INT bit is set * @zqm: Set when any ZQM_INT bit is set * @efl: Set when any EFL_INT RO bit is set or when any non-RO EFL_INT * and corresponding EFL_INT_ENA_W1C bits are both set * @ilk: Set when any ILK_INT bit is set * @lbc: Set when any LBC_INT RO bit is set or when any non-RO LBC_INT * and corresponding LBC_INT_ENA_W1C bits are bot set * @pem: Set when any PEM(0)_INT RO bit is set or when any non-RO * PEM(0)_INT and corresponding PEM(0)_INT_ENA_W1C bit are both set * @ucd: Set when any UCD_INT bit is set * @zctl: Set when any ZIP_INT RO bit is set or when any non-RO ZIP_INT * and corresponding ZIP_INT_ENA_W1C bits are both set * @lbm: Set when any LBM_INT bit is set * @nps_pkt: Set when any NPS_PKT_INT bit is set * @nps_core: Set when any NPS_CORE_INT RO bit is set or when non-RO * NPS_CORE_INT and corresponding NSP_CORE_INT_ENA_W1C bits are both set */ union nps_core_int_active { u64 value; struct { #if (defined(__BIG_ENDIAN_BITFIELD)) u64 resend : 1; u64 raz : 43; u64 ocla : 1; u64 mbox : 1; u64 emu : 4; u64 bmo : 1; u64 bmi : 1; u64 aqm : 1; u64 zqm : 1; u64 efl : 1; u64 ilk : 1; u64 lbc : 1; u64 pem : 1; u64 pom : 1; u64 ucd : 1; u64 zctl : 1; u64 lbm : 1; u64 nps_pkt : 1; u64 nps_core : 1; #else u64 nps_core : 1; u64 nps_pkt : 1; u64 lbm : 1; u64 zctl: 1; u64 ucd : 1; u64 pom : 1; u64 pem : 1; u64 lbc : 1; u64 ilk : 1; u64 efl : 1; u64 zqm : 1; u64 aqm : 1; u64 bmi : 1; u64 bmo : 1; u64 emu : 4; u64 mbox : 1; u64 ocla : 1; u64 raz : 43; u64 resend : 1; #endif } s; }; /** * struct efl_core_int - EFL Interrupt Registers * @epci_decode_err: EPCI decoded a transacation that was unknown * This error should only occurred when there is a micrcode/SE error * and should be considered fatal * @ae_err: An AE uncorrectable error occurred. * See EFL_CORE(0..3)_AE_ERR_INT * @se_err: An SE uncorrectable error occurred. * See EFL_CORE(0..3)_SE_ERR_INT * @dbe: Double-bit error occurred in EFL * @sbe: Single-bit error occurred in EFL * @d_left: Asserted when new POM-Header-BMI-data is * being sent to an Exec, and that Exec has Not read all BMI * data associated with the previous POM header * @len_ovr: Asserted when an Exec-Read is issued that is more than * 14 greater in length that the BMI data left to be read */ union efl_core_int { u64 value; struct { #if (defined(__BIG_ENDIAN_BITFIELD)) u64 raz : 57; u64 epci_decode_err : 1; u64 ae_err : 1; u64 se_err : 1; u64 dbe : 1; u64 sbe : 1; u64 d_left : 1; u64 len_ovr : 1; #else u64 len_ovr : 1; u64 d_left : 1; u64 sbe : 1; u64 dbe : 1; u64 se_err : 1; u64 ae_err : 1; u64 epci_decode_err : 1; u64 raz : 57; #endif } s; }; /** * struct efl_core_int_ena_w1s - EFL core interrupt enable set register * @epci_decode_err: Reads or sets enable for * EFL_CORE(0..3)_INT[EPCI_DECODE_ERR]. * @d_left: Reads or sets enable for * EFL_CORE(0..3)_INT[D_LEFT]. * @len_ovr: Reads or sets enable for * EFL_CORE(0..3)_INT[LEN_OVR]. */ union efl_core_int_ena_w1s { u64 value; struct { #if (defined(__BIG_ENDIAN_BITFIELD)) u64 raz_7_63 : 57; u64 epci_decode_err : 1; u64 raz_2_5 : 4; u64 d_left : 1; u64 len_ovr : 1; #else u64 len_ovr : 1; u64 d_left : 1; u64 raz_2_5 : 4; u64 epci_decode_err : 1; u64 raz_7_63 : 57; #endif } s; }; /** * struct efl_rnm_ctl_status - RNM Control and Status Register * @ent_sel: Select input to RNM FIFO * @exp_ent: Exported entropy enable for random number generator * @rng_rst: Reset to RNG. Setting this bit to 1 cancels the generation * of the current random number. * @rnm_rst: Reset the RNM. Setting this bit to 1 clears all sorted numbers * in the random number memory. * @rng_en: Enabled the output of the RNG. * @ent_en: Entropy enable for random number generator. */ union efl_rnm_ctl_status { u64 value; struct { #if (defined(__BIG_ENDIAN_BITFIELD)) u64 raz_9_63 : 55; u64 ent_sel : 4; u64 exp_ent : 1; u64 rng_rst : 1; u64 rnm_rst : 1; u64 rng_en : 1; u64 ent_en : 1; #else u64 ent_en : 1; u64 rng_en : 1; u64 rnm_rst : 1; u64 rng_rst : 1; u64 exp_ent : 1; u64 ent_sel : 4; u64 raz_9_63 : 55; #endif } s; }; /** * struct bmi_ctl - BMI control register * @ilk_hdrq_thrsh: Maximum number of header queue locations * that ILK packets may consume. When the threshold is * exceeded ILK_XOFF is sent to the BMI_X2P_ARB. * @nps_hdrq_thrsh: Maximum number of header queue locations * that NPS packets may consume. When the threshold is * exceeded NPS_XOFF is sent to the BMI_X2P_ARB. * @totl_hdrq_thrsh: Maximum number of header queue locations * that the sum of ILK and NPS packets may consume. * @ilk_free_thrsh: Maximum number of buffers that ILK packet * flows may consume before ILK_XOFF is sent to the BMI_X2P_ARB. * @nps_free_thrsh: Maximum number of buffers that NPS packet * flows may consume before NPS XOFF is sent to the BMI_X2p_ARB. * @totl_free_thrsh: Maximum number of buffers that bot ILK and NPS * packet flows may consume before both NPS_XOFF and ILK_XOFF * are asserted to the BMI_X2P_ARB. * @max_pkt_len: Maximum packet length, integral number of 256B * buffers. */ union bmi_ctl { u64 value; struct { #if (defined(__BIG_ENDIAN_BITFIELD)) u64 raz_56_63 : 8; u64 ilk_hdrq_thrsh : 8; u64 nps_hdrq_thrsh : 8; u64 totl_hdrq_thrsh : 8; u64 ilk_free_thrsh : 8; u64 nps_free_thrsh : 8; u64 totl_free_thrsh : 8; u64 max_pkt_len : 8; #else u64 max_pkt_len : 8; u64 totl_free_thrsh : 8; u64 nps_free_thrsh : 8; u64 ilk_free_thrsh : 8; u64 totl_hdrq_thrsh : 8; u64 nps_hdrq_thrsh : 8; u64 ilk_hdrq_thrsh : 8; u64 raz_56_63 : 8; #endif } s; }; /** * struct bmi_int_ena_w1s - BMI interrupt enable set register * @ilk_req_oflw: Reads or sets enable for * BMI_INT[ILK_REQ_OFLW]. * @nps_req_oflw: Reads or sets enable for * BMI_INT[NPS_REQ_OFLW]. * @fpf_undrrn: Reads or sets enable for * BMI_INT[FPF_UNDRRN]. * @eop_err_ilk: Reads or sets enable for * BMI_INT[EOP_ERR_ILK]. * @eop_err_nps: Reads or sets enable for * BMI_INT[EOP_ERR_NPS]. * @sop_err_ilk: Reads or sets enable for * BMI_INT[SOP_ERR_ILK]. * @sop_err_nps: Reads or sets enable for * BMI_INT[SOP_ERR_NPS]. * @pkt_rcv_err_ilk: Reads or sets enable for * BMI_INT[PKT_RCV_ERR_ILK]. * @pkt_rcv_err_nps: Reads or sets enable for * BMI_INT[PKT_RCV_ERR_NPS]. * @max_len_err_ilk: Reads or sets enable for * BMI_INT[MAX_LEN_ERR_ILK]. * @max_len_err_nps: Reads or sets enable for * BMI_INT[MAX_LEN_ERR_NPS]. */ union bmi_int_ena_w1s { u64 value; struct { #if (defined(__BIG_ENDIAN_BITFIELD)) u64 raz_13_63 : 51; u64 ilk_req_oflw : 1; u64 nps_req_oflw : 1; u64 raz_10 : 1; u64 raz_9 : 1; u64 fpf_undrrn : 1; u64 eop_err_ilk : 1; u64 eop_err_nps : 1; u64 sop_err_ilk : 1; u64 sop_err_nps : 1; u64 pkt_rcv_err_ilk : 1; u64 pkt_rcv_err_nps : 1; u64 max_len_err_ilk : 1; u64 max_len_err_nps : 1; #else u64 max_len_err_nps : 1; u64 max_len_err_ilk : 1; u64 pkt_rcv_err_nps : 1; u64 pkt_rcv_err_ilk : 1; u64 sop_err_nps : 1; u64 sop_err_ilk : 1; u64 eop_err_nps : 1; u64 eop_err_ilk : 1; u64 fpf_undrrn : 1; u64 raz_9 : 1; u64 raz_10 : 1; u64 nps_req_oflw : 1; u64 ilk_req_oflw : 1; u64 raz_13_63 : 51; #endif } s; }; /** * struct bmo_ctl2 - BMO Control2 Register * @arb_sel: Determines P2X Arbitration * @ilk_buf_thrsh: Maximum number of buffers that the * ILK packet flows may consume before ILK XOFF is * asserted to the POM. * @nps_slc_buf_thrsh: Maximum number of buffers that the * NPS_SLC packet flow may consume before NPS_SLC XOFF is * asserted to the POM. * @nps_uns_buf_thrsh: Maximum number of buffers that the * NPS_UNS packet flow may consume before NPS_UNS XOFF is * asserted to the POM. * @totl_buf_thrsh: Maximum number of buffers that ILK, NPS_UNS and * NPS_SLC packet flows may consume before NPS_UNS XOFF, NSP_SLC and * ILK_XOFF are all asserted POM. */ union bmo_ctl2 { u64 value; struct { #if (defined(__BIG_ENDIAN_BITFIELD)) u64 arb_sel : 1; u64 raz_32_62 : 31; u64 ilk_buf_thrsh : 8; u64 nps_slc_buf_thrsh : 8; u64 nps_uns_buf_thrsh : 8; u64 totl_buf_thrsh : 8; #else u64 totl_buf_thrsh : 8; u64 nps_uns_buf_thrsh : 8; u64 nps_slc_buf_thrsh : 8; u64 ilk_buf_thrsh : 8; u64 raz_32_62 : 31; u64 arb_sel : 1; #endif } s; }; /** * struct pom_int_ena_w1s - POM interrupt enable set register * @illegal_intf: Reads or sets enable for POM_INT[ILLEGAL_INTF]. * @illegal_dport: Reads or sets enable for POM_INT[ILLEGAL_DPORT]. */ union pom_int_ena_w1s { u64 value; struct { #if (defined(__BIG_ENDIAN_BITFIELD)) u64 raz2 : 60; u64 illegal_intf : 1; u64 illegal_dport : 1; u64 raz1 : 1; u64 raz0 : 1; #else u64 raz0 : 1; u64 raz1 : 1; u64 illegal_dport : 1; u64 illegal_intf : 1; u64 raz2 : 60; #endif } s; }; /** * struct lbc_inval_ctl - LBC invalidation control register * @wait_timer: Wait timer for wait state. [WAIT_TIMER] must * always be written with its reset value. * @cam_inval_start: Software should write [CAM_INVAL_START]=1 * to initiate an LBC cache invalidation. After this, software * should read LBC_INVAL_STATUS until LBC_INVAL_STATUS[DONE] is set. * LBC hardware clears [CAVM_INVAL_START] before software can * observed LBC_INVAL_STATUS[DONE] to be set */ union lbc_inval_ctl { u64 value; struct { #if (defined(__BIG_ENDIAN_BITFIELD)) u64 raz2 : 48; u64 wait_timer : 8; u64 raz1 : 6; u64 cam_inval_start : 1; u64 raz0 : 1; #else u64 raz0 : 1; u64 cam_inval_start : 1; u64 raz1 : 6; u64 wait_timer : 8; u64 raz2 : 48; #endif } s; }; /** * struct lbc_int_ena_w1s - LBC interrupt enable set register * @cam_hard_err: Reads or sets enable for LBC_INT[CAM_HARD_ERR]. * @cam_inval_abort: Reads or sets enable for LBC_INT[CAM_INVAL_ABORT]. * @over_fetch_err: Reads or sets enable for LBC_INT[OVER_FETCH_ERR]. * @cache_line_to_err: Reads or sets enable for * LBC_INT[CACHE_LINE_TO_ERR]. * @cam_soft_err: Reads or sets enable for * LBC_INT[CAM_SOFT_ERR]. * @dma_rd_err: Reads or sets enable for * LBC_INT[DMA_RD_ERR]. */ union lbc_int_ena_w1s { u64 value; struct { #if (defined(__BIG_ENDIAN_BITFIELD)) u64 raz_10_63 : 54; u64 cam_hard_err : 1; u64 cam_inval_abort : 1; u64 over_fetch_err : 1; u64 cache_line_to_err : 1; u64 raz_2_5 : 4; u64 cam_soft_err : 1; u64 dma_rd_err : 1; #else u64 dma_rd_err : 1; u64 cam_soft_err : 1; u64 raz_2_5 : 4; u64 cache_line_to_err : 1; u64 over_fetch_err : 1; u64 cam_inval_abort : 1; u64 cam_hard_err : 1; u64 raz_10_63 : 54; #endif } s; }; /** * struct lbc_int - LBC interrupt summary register * @cam_hard_err: indicates a fatal hardware error. * It requires system reset. * When [CAM_HARD_ERR] is set, LBC stops logging any new information in * LBC_POM_MISS_INFO_LOG, * LBC_POM_MISS_ADDR_LOG, * LBC_EFL_MISS_INFO_LOG, and * LBC_EFL_MISS_ADDR_LOG. * Software should sample them. * @cam_inval_abort: indicates a fatal hardware error. * System reset is required. * @over_fetch_err: indicates a fatal hardware error * System reset is required * @cache_line_to_err: is a debug feature. * This timeout interrupt bit tells the software that * a cacheline in LBC has non-zero usage and the context * has not been used for greater than the * LBC_TO_CNT[TO_CNT] time interval. * @sbe: Memory SBE error. This is recoverable via ECC. * See LBC_ECC_INT for more details. * @dbe: Memory DBE error. This is a fatal and requires a * system reset. * @pref_dat_len_mismatch_err: Summary bit for context length * mismatch errors. * @rd_dat_len_mismatch_err: Summary bit for SE read data length * greater than data prefect length errors. * @cam_soft_err: is recoverable. Software must complete a * LBC_INVAL_CTL[CAM_INVAL_START] invalidation sequence and * then clear [CAM_SOFT_ERR]. * @dma_rd_err: A context prefect read of host memory returned with * a read error. */ union lbc_int { u64 value; struct { #if (defined(__BIG_ENDIAN_BITFIELD)) u64 raz_10_63 : 54; u64 cam_hard_err : 1; u64 cam_inval_abort : 1; u64 over_fetch_err : 1; u64 cache_line_to_err : 1; u64 sbe : 1; u64 dbe : 1; u64 pref_dat_len_mismatch_err : 1; u64 rd_dat_len_mismatch_err : 1; u64 cam_soft_err : 1; u64 dma_rd_err : 1; #else u64 dma_rd_err : 1; u64 cam_soft_err : 1; u64 rd_dat_len_mismatch_err : 1; u64 pref_dat_len_mismatch_err : 1; u64 dbe : 1; u64 sbe : 1; u64 cache_line_to_err : 1; u64 over_fetch_err : 1; u64 cam_inval_abort : 1; u64 cam_hard_err : 1; u64 raz_10_63 : 54; #endif } s; }; /** * struct lbc_inval_status: LBC Invalidation status register * @cam_clean_entry_complete_cnt: The number of entries that are * cleaned up successfully. * @cam_clean_entry_cnt: The number of entries that have the CAM * inval command issued. * @cam_inval_state: cam invalidation FSM state * @cam_inval_abort: cam invalidation abort * @cam_rst_rdy: lbc_cam reset ready * @done: LBC clears [DONE] when * LBC_INVAL_CTL[CAM_INVAL_START] is written with a one, * and sets [DONE] when it completes the invalidation * sequence. */ union lbc_inval_status { u64 value; struct { #if (defined(__BIG_ENDIAN_BITFIELD)) u64 raz3 : 23; u64 cam_clean_entry_complete_cnt : 9; u64 raz2 : 7; u64 cam_clean_entry_cnt : 9; u64 raz1 : 5; u64 cam_inval_state : 3; u64 raz0 : 5; u64 cam_inval_abort : 1; u64 cam_rst_rdy : 1; u64 done : 1; #else u64 done : 1; u64 cam_rst_rdy : 1; u64 cam_inval_abort : 1; u64 raz0 : 5; u64 cam_inval_state : 3; u64 raz1 : 5; u64 cam_clean_entry_cnt : 9; u64 raz2 : 7; u64 cam_clean_entry_complete_cnt : 9; u64 raz3 : 23; #endif } s; }; /** * struct rst_boot: RST Boot Register * @jtcsrdis: when set, internal CSR access via JTAG TAP controller * is disabled * @jt_tst_mode: JTAG test mode * @io_supply: I/O power supply setting based on IO_VDD_SELECT pin: * 0x1 = 1.8V * 0x2 = 2.5V * 0x4 = 3.3V * All other values are reserved * @pnr_mul: clock multiplier * @lboot: last boot cause mask, resets only with PLL_DC_OK * @rboot: determines whether core 0 remains in reset after * chip cold or warm or soft reset * @rboot_pin: read only access to REMOTE_BOOT pin */ union rst_boot { u64 value; struct { #if (defined(__BIG_ENDIAN_BITFIELD)) u64 raz_63 : 1; u64 jtcsrdis : 1; u64 raz_59_61 : 3; u64 jt_tst_mode : 1; u64 raz_40_57 : 18; u64 io_supply : 3; u64 raz_30_36 : 7; u64 pnr_mul : 6; u64 raz_12_23 : 12; u64 lboot : 10; u64 rboot : 1; u64 rboot_pin : 1; #else u64 rboot_pin : 1; u64 rboot : 1; u64 lboot : 10; u64 raz_12_23 : 12; u64 pnr_mul : 6; u64 raz_30_36 : 7; u64 io_supply : 3; u64 raz_40_57 : 18; u64 jt_tst_mode : 1; u64 raz_59_61 : 3; u64 jtcsrdis : 1; u64 raz_63 : 1; #endif }; }; /** * struct fus_dat1: Fuse Data 1 Register * @pll_mul: main clock PLL multiplier hardware limit * @pll_half_dis: main clock PLL control * @efus_lck: efuse lockdown * @zip_info: ZIP information * @bar2_sz_conf: when zero, BAR2 size conforms to * PCIe specification * @efus_ign: efuse ignore * @nozip: ZIP disable * @pll_alt_matrix: select alternate PLL matrix * @pll_bwadj_denom: select CLKF denominator for * BWADJ value * @chip_id: chip ID */ union fus_dat1 { u64 value; struct { #if (defined(__BIG_ENDIAN_BITFIELD)) u64 raz_57_63 : 7; u64 pll_mul : 3; u64 pll_half_dis : 1; u64 raz_43_52 : 10; u64 efus_lck : 3; u64 raz_26_39 : 14; u64 zip_info : 5; u64 bar2_sz_conf : 1; u64 efus_ign : 1; u64 nozip : 1; u64 raz_11_17 : 7; u64 pll_alt_matrix : 1; u64 pll_bwadj_denom : 2; u64 chip_id : 8; #else u64 chip_id : 8; u64 pll_bwadj_denom : 2; u64 pll_alt_matrix : 1; u64 raz_11_17 : 7; u64 nozip : 1; u64 efus_ign : 1; u64 bar2_sz_conf : 1; u64 zip_info : 5; u64 raz_26_39 : 14; u64 efus_lck : 3; u64 raz_43_52 : 10; u64 pll_half_dis : 1; u64 pll_mul : 3; u64 raz_57_63 : 7; #endif }; }; #endif /* __NITROX_CSR_H */