/* * Register map access API * * Copyright 2011 Wolfson Microelectronics plc * * Author: Mark Brown * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include #include #include #define CREATE_TRACE_POINTS #include "trace.h" #include "internal.h" /* * Sometimes for failures during very early init the trace * infrastructure isn't available early enough to be used. For this * sort of problem defining LOG_DEVICE will add printks for basic * register I/O on a specific device. */ #undef LOG_DEVICE static int _regmap_update_bits(struct regmap *map, unsigned int reg, unsigned int mask, unsigned int val, bool *change, bool force_write); static int _regmap_bus_reg_read(void *context, unsigned int reg, unsigned int *val); static int _regmap_bus_read(void *context, unsigned int reg, unsigned int *val); static int _regmap_bus_formatted_write(void *context, unsigned int reg, unsigned int val); static int _regmap_bus_reg_write(void *context, unsigned int reg, unsigned int val); static int _regmap_bus_raw_write(void *context, unsigned int reg, unsigned int val); bool regmap_reg_in_ranges(unsigned int reg, const struct regmap_range *ranges, unsigned int nranges) { const struct regmap_range *r; int i; for (i = 0, r = ranges; i < nranges; i++, r++) if (regmap_reg_in_range(reg, r)) return true; return false; } EXPORT_SYMBOL_GPL(regmap_reg_in_ranges); bool regmap_check_range_table(struct regmap *map, unsigned int reg, const struct regmap_access_table *table) { /* Check "no ranges" first */ if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges)) return false; /* In case zero "yes ranges" are supplied, any reg is OK */ if (!table->n_yes_ranges) return true; return regmap_reg_in_ranges(reg, table->yes_ranges, table->n_yes_ranges); } EXPORT_SYMBOL_GPL(regmap_check_range_table); bool regmap_writeable(struct regmap *map, unsigned int reg) { if (map->max_register && reg > map->max_register) return false; if (map->writeable_reg) return map->writeable_reg(map->dev, reg); if (map->wr_table) return regmap_check_range_table(map, reg, map->wr_table); return true; } bool regmap_cached(struct regmap *map, unsigned int reg) { int ret; unsigned int val; if (map->cache == REGCACHE_NONE) return false; if (!map->cache_ops) return false; if (map->max_register && reg > map->max_register) return false; map->lock(map->lock_arg); ret = regcache_read(map, reg, &val); map->unlock(map->lock_arg); if (ret) return false; return true; } bool regmap_readable(struct regmap *map, unsigned int reg) { if (!map->reg_read) return false; if (map->max_register && reg > map->max_register) return false; if (map->format.format_write) return false; if (map->readable_reg) return map->readable_reg(map->dev, reg); if (map->rd_table) return regmap_check_range_table(map, reg, map->rd_table); return true; } bool regmap_volatile(struct regmap *map, unsigned int reg) { if (!map->format.format_write && !regmap_readable(map, reg)) return false; if (map->volatile_reg) return map->volatile_reg(map->dev, reg); if (map->volatile_table) return regmap_check_range_table(map, reg, map->volatile_table); if (map->cache_ops) return false; else return true; } bool regmap_precious(struct regmap *map, unsigned int reg) { if (!regmap_readable(map, reg)) return false; if (map->precious_reg) return map->precious_reg(map->dev, reg); if (map->precious_table) return regmap_check_range_table(map, reg, map->precious_table); return false; } static bool regmap_volatile_range(struct regmap *map, unsigned int reg, size_t num) { unsigned int i; for (i = 0; i < num; i++) if (!regmap_volatile(map, reg + i)) return false; return true; } static void regmap_format_2_6_write(struct regmap *map, unsigned int reg, unsigned int val) { u8 *out = map->work_buf; *out = (reg << 6) | val; } static void regmap_format_4_12_write(struct regmap *map, unsigned int reg, unsigned int val) { __be16 *out = map->work_buf; *out = cpu_to_be16((reg << 12) | val); } static void regmap_format_7_9_write(struct regmap *map, unsigned int reg, unsigned int val) { __be16 *out = map->work_buf; *out = cpu_to_be16((reg << 9) | val); } static void regmap_format_10_14_write(struct regmap *map, unsigned int reg, unsigned int val) { u8 *out = map->work_buf; out[2] = val; out[1] = (val >> 8) | (reg << 6); out[0] = reg >> 2; } static void regmap_format_8(void *buf, unsigned int val, unsigned int shift) { u8 *b = buf; b[0] = val << shift; } static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift) { __be16 *b = buf; b[0] = cpu_to_be16(val << shift); } static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift) { __le16 *b = buf; b[0] = cpu_to_le16(val << shift); } static void regmap_format_16_native(void *buf, unsigned int val, unsigned int shift) { *(u16 *)buf = val << shift; } static void regmap_format_24(void *buf, unsigned int val, unsigned int shift) { u8 *b = buf; val <<= shift; b[0] = val >> 16; b[1] = val >> 8; b[2] = val; } static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift) { __be32 *b = buf; b[0] = cpu_to_be32(val << shift); } static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift) { __le32 *b = buf; b[0] = cpu_to_le32(val << shift); } static void regmap_format_32_native(void *buf, unsigned int val, unsigned int shift) { *(u32 *)buf = val << shift; } #ifdef CONFIG_64BIT static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift) { __be64 *b = buf; b[0] = cpu_to_be64((u64)val << shift); } static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift) { __le64 *b = buf; b[0] = cpu_to_le64((u64)val << shift); } static void regmap_format_64_native(void *buf, unsigned int val, unsigned int shift) { *(u64 *)buf = (u64)val << shift; } #endif static void regmap_parse_inplace_noop(void *buf) { } static unsigned int regmap_parse_8(const void *buf) { const u8 *b = buf; return b[0]; } static unsigned int regmap_parse_16_be(const void *buf) { const __be16 *b = buf; return be16_to_cpu(b[0]); } static unsigned int regmap_parse_16_le(const void *buf) { const __le16 *b = buf; return le16_to_cpu(b[0]); } static void regmap_parse_16_be_inplace(void *buf) { __be16 *b = buf; b[0] = be16_to_cpu(b[0]); } static void regmap_parse_16_le_inplace(void *buf) { __le16 *b = buf; b[0] = le16_to_cpu(b[0]); } static unsigned int regmap_parse_16_native(const void *buf) { return *(u16 *)buf; } static unsigned int regmap_parse_24(const void *buf) { const u8 *b = buf; unsigned int ret = b[2]; ret |= ((unsigned int)b[1]) << 8; ret |= ((unsigned int)b[0]) << 16; return ret; } static unsigned int regmap_parse_32_be(const void *buf) { const __be32 *b = buf; return be32_to_cpu(b[0]); } static unsigned int regmap_parse_32_le(const void *buf) { const __le32 *b = buf; return le32_to_cpu(b[0]); } static void regmap_parse_32_be_inplace(void *buf) { __be32 *b = buf; b[0] = be32_to_cpu(b[0]); } static void regmap_parse_32_le_inplace(void *buf) { __le32 *b = buf; b[0] = le32_to_cpu(b[0]); } static unsigned int regmap_parse_32_native(const void *buf) { return *(u32 *)buf; } #ifdef CONFIG_64BIT static unsigned int regmap_parse_64_be(const void *buf) { const __be64 *b = buf; return be64_to_cpu(b[0]); } static unsigned int regmap_parse_64_le(const void *buf) { const __le64 *b = buf; return le64_to_cpu(b[0]); } static void regmap_parse_64_be_inplace(void *buf) { __be64 *b = buf; b[0] = be64_to_cpu(b[0]); } static void regmap_parse_64_le_inplace(void *buf) { __le64 *b = buf; b[0] = le64_to_cpu(b[0]); } static unsigned int regmap_parse_64_native(const void *buf) { return *(u64 *)buf; } #endif static void regmap_lock_hwlock(void *__map) { struct regmap *map = __map; hwspin_lock_timeout(map->hwlock, UINT_MAX); } static void regmap_lock_hwlock_irq(void *__map) { struct regmap *map = __map; hwspin_lock_timeout_irq(map->hwlock, UINT_MAX); } static void regmap_lock_hwlock_irqsave(void *__map) { struct regmap *map = __map; hwspin_lock_timeout_irqsave(map->hwlock, UINT_MAX, &map->spinlock_flags); } static void regmap_unlock_hwlock(void *__map) { struct regmap *map = __map; hwspin_unlock(map->hwlock); } static void regmap_unlock_hwlock_irq(void *__map) { struct regmap *map = __map; hwspin_unlock_irq(map->hwlock); } static void regmap_unlock_hwlock_irqrestore(void *__map) { struct regmap *map = __map; hwspin_unlock_irqrestore(map->hwlock, &map->spinlock_flags); } static void regmap_lock_unlock_none(void *__map) { } static void regmap_lock_mutex(void *__map) { struct regmap *map = __map; mutex_lock(&map->mutex); } static void regmap_unlock_mutex(void *__map) { struct regmap *map = __map; mutex_unlock(&map->mutex); } static void regmap_lock_spinlock(void *__map) __acquires(&map->spinlock) { struct regmap *map = __map; unsigned long flags; spin_lock_irqsave(&map->spinlock, flags); map->spinlock_flags = flags; } static void regmap_unlock_spinlock(void *__map) __releases(&map->spinlock) { struct regmap *map = __map; spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags); } static void dev_get_regmap_release(struct device *dev, void *res) { /* * We don't actually have anything to do here; the goal here * is not to manage the regmap but to provide a simple way to * get the regmap back given a struct device. */ } static bool _regmap_range_add(struct regmap *map, struct regmap_range_node *data) { struct rb_root *root = &map->range_tree; struct rb_node **new = &(root->rb_node), *parent = NULL; while (*new) { struct regmap_range_node *this = rb_entry(*new, struct regmap_range_node, node); parent = *new; if (data->range_max < this->range_min) new = &((*new)->rb_left); else if (data->range_min > this->range_max) new = &((*new)->rb_right); else return false; } rb_link_node(&data->node, parent, new); rb_insert_color(&data->node, root); return true; } static struct regmap_range_node *_regmap_range_lookup(struct regmap *map, unsigned int reg) { struct rb_node *node = map->range_tree.rb_node; while (node) { struct regmap_range_node *this = rb_entry(node, struct regmap_range_node, node); if (reg < this->range_min) node = node->rb_left; else if (reg > this->range_max) node = node->rb_right; else return this; } return NULL; } static void regmap_range_exit(struct regmap *map) { struct rb_node *next; struct regmap_range_node *range_node; next = rb_first(&map->range_tree); while (next) { range_node = rb_entry(next, struct regmap_range_node, node); next = rb_next(&range_node->node); rb_erase(&range_node->node, &map->range_tree); kfree(range_node); } kfree(map->selector_work_buf); } int regmap_attach_dev(struct device *dev, struct regmap *map, const struct regmap_config *config) { struct regmap **m; map->dev = dev; regmap_debugfs_init(map, config->name); /* Add a devres resource for dev_get_regmap() */ m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL); if (!m) { regmap_debugfs_exit(map); return -ENOMEM; } *m = map; devres_add(dev, m); return 0; } EXPORT_SYMBOL_GPL(regmap_attach_dev); static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus, const struct regmap_config *config) { enum regmap_endian endian; /* Retrieve the endianness specification from the regmap config */ endian = config->reg_format_endian; /* If the regmap config specified a non-default value, use that */ if (endian != REGMAP_ENDIAN_DEFAULT) return endian; /* Retrieve the endianness specification from the bus config */ if (bus && bus->reg_format_endian_default) endian = bus->reg_format_endian_default; /* If the bus specified a non-default value, use that */ if (endian != REGMAP_ENDIAN_DEFAULT) return endian; /* Use this if no other value was found */ return REGMAP_ENDIAN_BIG; } enum regmap_endian regmap_get_val_endian(struct device *dev, const struct regmap_bus *bus, const struct regmap_config *config) { struct device_node *np; enum regmap_endian endian; /* Retrieve the endianness specification from the regmap config */ endian = config->val_format_endian; /* If the regmap config specified a non-default value, use that */ if (endian != REGMAP_ENDIAN_DEFAULT) return endian; /* If the dev and dev->of_node exist try to get endianness from DT */ if (dev && dev->of_node) { np = dev->of_node; /* Parse the device's DT node for an endianness specification */ if (of_property_read_bool(np, "big-endian")) endian = REGMAP_ENDIAN_BIG; else if (of_property_read_bool(np, "little-endian")) endian = REGMAP_ENDIAN_LITTLE; else if (of_property_read_bool(np, "native-endian")) endian = REGMAP_ENDIAN_NATIVE; /* If the endianness was specified in DT, use that */ if (endian != REGMAP_ENDIAN_DEFAULT) return endian; } /* Retrieve the endianness specification from the bus config */ if (bus && bus->val_format_endian_default) endian = bus->val_format_endian_default; /* If the bus specified a non-default value, use that */ if (endian != REGMAP_ENDIAN_DEFAULT) return endian; /* Use this if no other value was found */ return REGMAP_ENDIAN_BIG; } EXPORT_SYMBOL_GPL(regmap_get_val_endian); struct regmap *__regmap_init(struct device *dev, const struct regmap_bus *bus, void *bus_context, const struct regmap_config *config, struct lock_class_key *lock_key, const char *lock_name) { struct regmap *map; int ret = -EINVAL; enum regmap_endian reg_endian, val_endian; int i, j; if (!config) goto err; map = kzalloc(sizeof(*map), GFP_KERNEL); if (map == NULL) { ret = -ENOMEM; goto err; } if (config->name) { map->name = kstrdup_const(config->name, GFP_KERNEL); if (!map->name) { ret = -ENOMEM; goto err_map; } } if (config->disable_locking) { map->lock = map->unlock = regmap_lock_unlock_none; regmap_debugfs_disable(map); } else if (config->lock && config->unlock) { map->lock = config->lock; map->unlock = config->unlock; map->lock_arg = config->lock_arg; } else if (config->use_hwlock) { map->hwlock = hwspin_lock_request_specific(config->hwlock_id); if (!map->hwlock) { ret = -ENXIO; goto err_name; } switch (config->hwlock_mode) { case HWLOCK_IRQSTATE: map->lock = regmap_lock_hwlock_irqsave; map->unlock = regmap_unlock_hwlock_irqrestore; break; case HWLOCK_IRQ: map->lock = regmap_lock_hwlock_irq; map->unlock = regmap_unlock_hwlock_irq; break; default: map->lock = regmap_lock_hwlock; map->unlock = regmap_unlock_hwlock; break; } map->lock_arg = map; } else { if ((bus && bus->fast_io) || config->fast_io) { spin_lock_init(&map->spinlock); map->lock = regmap_lock_spinlock; map->unlock = regmap_unlock_spinlock; lockdep_set_class_and_name(&map->spinlock, lock_key, lock_name); } else { mutex_init(&map->mutex); map->lock = regmap_lock_mutex; map->unlock = regmap_unlock_mutex; lockdep_set_class_and_name(&map->mutex, lock_key, lock_name); } map->lock_arg = map; } /* * When we write in fast-paths with regmap_bulk_write() don't allocate * scratch buffers with sleeping allocations. */ if ((bus && bus->fast_io) || config->fast_io) map->alloc_flags = GFP_ATOMIC; else map->alloc_flags = GFP_KERNEL; map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8); map->format.pad_bytes = config->pad_bits / 8; map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8); map->format.buf_size = DIV_ROUND_UP(config->reg_bits + config->val_bits + config->pad_bits, 8); map->reg_shift = config->pad_bits % 8; if (config->reg_stride) map->reg_stride = config->reg_stride; else map->reg_stride = 1; if (is_power_of_2(map->reg_stride)) map->reg_stride_order = ilog2(map->reg_stride); else map->reg_stride_order = -1; map->use_single_read = config->use_single_rw || !bus || !bus->read; map->use_single_write = config->use_single_rw || !bus || !bus->write; map->can_multi_write = config->can_multi_write && bus && bus->write; if (bus) { map->max_raw_read = bus->max_raw_read; map->max_raw_write = bus->max_raw_write; } map->dev = dev; map->bus = bus; map->bus_context = bus_context; map->max_register = config->max_register; map->wr_table = config->wr_table; map->rd_table = config->rd_table; map->volatile_table = config->volatile_table; map->precious_table = config->precious_table; map->writeable_reg = config->writeable_reg; map->readable_reg = config->readable_reg; map->volatile_reg = config->volatile_reg; map->precious_reg = config->precious_reg; map->cache_type = config->cache_type; spin_lock_init(&map->async_lock); INIT_LIST_HEAD(&map->async_list); INIT_LIST_HEAD(&map->async_free); init_waitqueue_head(&map->async_waitq); if (config->read_flag_mask || config->write_flag_mask || config->zero_flag_mask) { map->read_flag_mask = config->read_flag_mask; map->write_flag_mask = config->write_flag_mask; } else if (bus) { map->read_flag_mask = bus->read_flag_mask; } if (!bus) { map->reg_read = config->reg_read; map->reg_write = config->reg_write; map->defer_caching = false; goto skip_format_initialization; } else if (!bus->read || !bus->write) { map->reg_read = _regmap_bus_reg_read; map->reg_write = _regmap_bus_reg_write; map->defer_caching = false; goto skip_format_initialization; } else { map->reg_read = _regmap_bus_read; map->reg_update_bits = bus->reg_update_bits; } reg_endian = regmap_get_reg_endian(bus, config); val_endian = regmap_get_val_endian(dev, bus, config); switch (config->reg_bits + map->reg_shift) { case 2: switch (config->val_bits) { case 6: map->format.format_write = regmap_format_2_6_write; break; default: goto err_hwlock; } break; case 4: switch (config->val_bits) { case 12: map->format.format_write = regmap_format_4_12_write; break; default: goto err_hwlock; } break; case 7: switch (config->val_bits) { case 9: map->format.format_write = regmap_format_7_9_write; break; default: goto err_hwlock; } break; case 10: switch (config->val_bits) { case 14: map->format.format_write = regmap_format_10_14_write; break; default: goto err_hwlock; } break; case 8: map->format.format_reg = regmap_format_8; break; case 16: switch (reg_endian) { case REGMAP_ENDIAN_BIG: map->format.format_reg = regmap_format_16_be; break; case REGMAP_ENDIAN_LITTLE: map->format.format_reg = regmap_format_16_le; break; case REGMAP_ENDIAN_NATIVE: map->format.format_reg = regmap_format_16_native; break; default: goto err_hwlock; } break; case 24: if (reg_endian != REGMAP_ENDIAN_BIG) goto err_hwlock; map->format.format_reg = regmap_format_24; break; case 32: switch (reg_endian) { case REGMAP_ENDIAN_BIG: map->format.format_reg = regmap_format_32_be; break; case REGMAP_ENDIAN_LITTLE: map->format.format_reg = regmap_format_32_le; break; case REGMAP_ENDIAN_NATIVE: map->format.format_reg = regmap_format_32_native; break; default: goto err_hwlock; } break; #ifdef CONFIG_64BIT case 64: switch (reg_endian) { case REGMAP_ENDIAN_BIG: map->format.format_reg = regmap_format_64_be; break; case REGMAP_ENDIAN_LITTLE: map->format.format_reg = regmap_format_64_le; break; case REGMAP_ENDIAN_NATIVE: map->format.format_reg = regmap_format_64_native; break; default: goto err_hwlock; } break; #endif default: goto err_hwlock; } if (val_endian == REGMAP_ENDIAN_NATIVE) map->format.parse_inplace = regmap_parse_inplace_noop; switch (config->val_bits) { case 8: map->format.format_val = regmap_format_8; map->format.parse_val = regmap_parse_8; map->format.parse_inplace = regmap_parse_inplace_noop; break; case 16: switch (val_endian) { case REGMAP_ENDIAN_BIG: map->format.format_val = regmap_format_16_be; map->format.parse_val = regmap_parse_16_be; map->format.parse_inplace = regmap_parse_16_be_inplace; break; case REGMAP_ENDIAN_LITTLE: map->format.format_val = regmap_format_16_le; map->format.parse_val = regmap_parse_16_le; map->format.parse_inplace = regmap_parse_16_le_inplace; break; case REGMAP_ENDIAN_NATIVE: map->format.format_val = regmap_format_16_native; map->format.parse_val = regmap_parse_16_native; break; default: goto err_hwlock; } break; case 24: if (val_endian != REGMAP_ENDIAN_BIG) goto err_hwlock; map->format.format_val = regmap_format_24; map->format.parse_val = regmap_parse_24; break; case 32: switch (val_endian) { case REGMAP_ENDIAN_BIG: map->format.format_val = regmap_format_32_be; map->format.parse_val = regmap_parse_32_be; map->format.parse_inplace = regmap_parse_32_be_inplace; break; case REGMAP_ENDIAN_LITTLE: map->format.format_val = regmap_format_32_le; map->format.parse_val = regmap_parse_32_le; map->format.parse_inplace = regmap_parse_32_le_inplace; break; case REGMAP_ENDIAN_NATIVE: map->format.format_val = regmap_format_32_native; map->format.parse_val = regmap_parse_32_native; break; default: goto err_hwlock; } break; #ifdef CONFIG_64BIT case 64: switch (val_endian) { case REGMAP_ENDIAN_BIG: map->format.format_val = regmap_format_64_be; map->format.parse_val = regmap_parse_64_be; map->format.parse_inplace = regmap_parse_64_be_inplace; break; case REGMAP_ENDIAN_LITTLE: map->format.format_val = regmap_format_64_le; map->format.parse_val = regmap_parse_64_le; map->format.parse_inplace = regmap_parse_64_le_inplace; break; case REGMAP_ENDIAN_NATIVE: map->format.format_val = regmap_format_64_native; map->format.parse_val = regmap_parse_64_native; break; default: goto err_hwlock; } break; #endif } if (map->format.format_write) { if ((reg_endian != REGMAP_ENDIAN_BIG) || (val_endian != REGMAP_ENDIAN_BIG)) goto err_hwlock; map->use_single_write = true; } if (!map->format.format_write && !(map->format.format_reg && map->format.format_val)) goto err_hwlock; map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL); if (map->work_buf == NULL) { ret = -ENOMEM; goto err_hwlock; } if (map->format.format_write) { map->defer_caching = false; map->reg_write = _regmap_bus_formatted_write; } else if (map->format.format_val) { map->defer_caching = true; map->reg_write = _regmap_bus_raw_write; } skip_format_initialization: map->range_tree = RB_ROOT; for (i = 0; i < config->num_ranges; i++) { const struct regmap_range_cfg *range_cfg = &config->ranges[i]; struct regmap_range_node *new; /* Sanity check */ if (range_cfg->range_max < range_cfg->range_min) { dev_err(map->dev, "Invalid range %d: %d < %d\n", i, range_cfg->range_max, range_cfg->range_min); goto err_range; } if (range_cfg->range_max > map->max_register) { dev_err(map->dev, "Invalid range %d: %d > %d\n", i, range_cfg->range_max, map->max_register); goto err_range; } if (range_cfg->selector_reg > map->max_register) { dev_err(map->dev, "Invalid range %d: selector out of map\n", i); goto err_range; } if (range_cfg->window_len == 0) { dev_err(map->dev, "Invalid range %d: window_len 0\n", i); goto err_range; } /* Make sure, that this register range has no selector or data window within its boundary */ for (j = 0; j < config->num_ranges; j++) { unsigned sel_reg = config->ranges[j].selector_reg; unsigned win_min = config->ranges[j].window_start; unsigned win_max = win_min + config->ranges[j].window_len - 1; /* Allow data window inside its own virtual range */ if (j == i) continue; if (range_cfg->range_min <= sel_reg && sel_reg <= range_cfg->range_max) { dev_err(map->dev, "Range %d: selector for %d in window\n", i, j); goto err_range; } if (!(win_max < range_cfg->range_min || win_min > range_cfg->range_max)) { dev_err(map->dev, "Range %d: window for %d in window\n", i, j); goto err_range; } } new = kzalloc(sizeof(*new), GFP_KERNEL); if (new == NULL) { ret = -ENOMEM; goto err_range; } new->map = map; new->name = range_cfg->name; new->range_min = range_cfg->range_min; new->range_max = range_cfg->range_max; new->selector_reg = range_cfg->selector_reg; new->selector_mask = range_cfg->selector_mask; new->selector_shift = range_cfg->selector_shift; new->window_start = range_cfg->window_start; new->window_len = range_cfg->window_len; if (!_regmap_range_add(map, new)) { dev_err(map->dev, "Failed to add range %d\n", i); kfree(new); goto err_range; } if (map->selector_work_buf == NULL) { map->selector_work_buf = kzalloc(map->format.buf_size, GFP_KERNEL); if (map->selector_work_buf == NULL) { ret = -ENOMEM; goto err_range; } } } ret = regcache_init(map, config); if (ret != 0) goto err_range; if (dev) { ret = regmap_attach_dev(dev, map, config); if (ret != 0) goto err_regcache; } return map; err_regcache: regcache_exit(map); err_range: regmap_range_exit(map); kfree(map->work_buf); err_hwlock: if (map->hwlock) hwspin_lock_free(map->hwlock); err_name: kfree_const(map->name); err_map: kfree(map); err: return ERR_PTR(ret); } EXPORT_SYMBOL_GPL(__regmap_init); static void devm_regmap_release(struct device *dev, void *res) { regmap_exit(*(struct regmap **)res); } struct regmap *__devm_regmap_init(struct device *dev, const struct regmap_bus *bus, void *bus_context, const struct regmap_config *config, struct lock_class_key *lock_key, const char *lock_name) { struct regmap **ptr, *regmap; ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL); if (!ptr) return ERR_PTR(-ENOMEM); regmap = __regmap_init(dev, bus, bus_context, config, lock_key, lock_name); if (!IS_ERR(regmap)) { *ptr = regmap; devres_add(dev, ptr); } else { devres_free(ptr); } return regmap; } EXPORT_SYMBOL_GPL(__devm_regmap_init); static void regmap_field_init(struct regmap_field *rm_field, struct regmap *regmap, struct reg_field reg_field) { rm_field->regmap = regmap; rm_field->reg = reg_field.reg; rm_field->shift = reg_field.lsb; rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb); rm_field->id_size = reg_field.id_size; rm_field->id_offset = reg_field.id_offset; } /** * devm_regmap_field_alloc() - Allocate and initialise a register field. * * @dev: Device that will be interacted with * @regmap: regmap bank in which this register field is located. * @reg_field: Register field with in the bank. * * The return value will be an ERR_PTR() on error or a valid pointer * to a struct regmap_field. The regmap_field will be automatically freed * by the device management code. */ struct regmap_field *devm_regmap_field_alloc(struct device *dev, struct regmap *regmap, struct reg_field reg_field) { struct regmap_field *rm_field = devm_kzalloc(dev, sizeof(*rm_field), GFP_KERNEL); if (!rm_field) return ERR_PTR(-ENOMEM); regmap_field_init(rm_field, regmap, reg_field); return rm_field; } EXPORT_SYMBOL_GPL(devm_regmap_field_alloc); /** * devm_regmap_field_free() - Free a register field allocated using * devm_regmap_field_alloc. * * @dev: Device that will be interacted with * @field: regmap field which should be freed. * * Free register field allocated using devm_regmap_field_alloc(). Usually * drivers need not call this function, as the memory allocated via devm * will be freed as per device-driver life-cyle. */ void devm_regmap_field_free(struct device *dev, struct regmap_field *field) { devm_kfree(dev, field); } EXPORT_SYMBOL_GPL(devm_regmap_field_free); /** * regmap_field_alloc() - Allocate and initialise a register field. * * @regmap: regmap bank in which this register field is located. * @reg_field: Register field with in the bank. * * The return value will be an ERR_PTR() on error or a valid pointer * to a struct regmap_field. The regmap_field should be freed by the * user once its finished working with it using regmap_field_free(). */ struct regmap_field *regmap_field_alloc(struct regmap *regmap, struct reg_field reg_field) { struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL); if (!rm_field) return ERR_PTR(-ENOMEM); regmap_field_init(rm_field, regmap, reg_field); return rm_field; } EXPORT_SYMBOL_GPL(regmap_field_alloc); /** * regmap_field_free() - Free register field allocated using * regmap_field_alloc. * * @field: regmap field which should be freed. */ void regmap_field_free(struct regmap_field *field) { kfree(field); } EXPORT_SYMBOL_GPL(regmap_field_free); /** * regmap_reinit_cache() - Reinitialise the current register cache * * @map: Register map to operate on. * @config: New configuration. Only the cache data will be used. * * Discard any existing register cache for the map and initialize a * new cache. This can be used to restore the cache to defaults or to * update the cache configuration to reflect runtime discovery of the * hardware. * * No explicit locking is done here, the user needs to ensure that * this function will not race with other calls to regmap. */ int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config) { regcache_exit(map); regmap_debugfs_exit(map); map->max_register = config->max_register; map->writeable_reg = config->writeable_reg; map->readable_reg = config->readable_reg; map->volatile_reg = config->volatile_reg; map->precious_reg = config->precious_reg; map->cache_type = config->cache_type; regmap_debugfs_init(map, config->name); map->cache_bypass = false; map->cache_only = false; return regcache_init(map, config); } EXPORT_SYMBOL_GPL(regmap_reinit_cache); /** * regmap_exit() - Free a previously allocated register map * * @map: Register map to operate on. */ void regmap_exit(struct regmap *map) { struct regmap_async *async; regcache_exit(map); regmap_debugfs_exit(map); regmap_range_exit(map); if (map->bus && map->bus->free_context) map->bus->free_context(map->bus_context); kfree(map->work_buf); while (!list_empty(&map->async_free)) { async = list_first_entry_or_null(&map->async_free, struct regmap_async, list); list_del(&async->list); kfree(async->work_buf); kfree(async); } if (map->hwlock) hwspin_lock_free(map->hwlock); kfree_const(map->name); kfree(map); } EXPORT_SYMBOL_GPL(regmap_exit); static int dev_get_regmap_match(struct device *dev, void *res, void *data) { struct regmap **r = res; if (!r || !*r) { WARN_ON(!r || !*r); return 0; } /* If the user didn't specify a name match any */ if (data) return (*r)->name == data; else return 1; } /** * dev_get_regmap() - Obtain the regmap (if any) for a device * * @dev: Device to retrieve the map for * @name: Optional name for the register map, usually NULL. * * Returns the regmap for the device if one is present, or NULL. If * name is specified then it must match the name specified when * registering the device, if it is NULL then the first regmap found * will be used. Devices with multiple register maps are very rare, * generic code should normally not need to specify a name. */ struct regmap *dev_get_regmap(struct device *dev, const char *name) { struct regmap **r = devres_find(dev, dev_get_regmap_release, dev_get_regmap_match, (void *)name); if (!r) return NULL; return *r; } EXPORT_SYMBOL_GPL(dev_get_regmap); /** * regmap_get_device() - Obtain the device from a regmap * * @map: Register map to operate on. * * Returns the underlying device that the regmap has been created for. */ struct device *regmap_get_device(struct regmap *map) { return map->dev; } EXPORT_SYMBOL_GPL(regmap_get_device); static int _regmap_select_page(struct regmap *map, unsigned int *reg, struct regmap_range_node *range, unsigned int val_num) { void *orig_work_buf; unsigned int win_offset; unsigned int win_page; bool page_chg; int ret; win_offset = (*reg - range->range_min) % range->window_len; win_page = (*reg - range->range_min) / range->window_len; if (val_num > 1) { /* Bulk write shouldn't cross range boundary */ if (*reg + val_num - 1 > range->range_max) return -EINVAL; /* ... or single page boundary */ if (val_num > range->window_len - win_offset) return -EINVAL; } /* It is possible to have selector register inside data window. In that case, selector register is located on every page and it needs no page switching, when accessed alone. */ if (val_num > 1 || range->window_start + win_offset != range->selector_reg) { /* Use separate work_buf during page switching */ orig_work_buf = map->work_buf; map->work_buf = map->selector_work_buf; ret = _regmap_update_bits(map, range->selector_reg, range->selector_mask, win_page << range->selector_shift, &page_chg, false); map->work_buf = orig_work_buf; if (ret != 0) return ret; } *reg = range->window_start + win_offset; return 0; } static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes, unsigned long mask) { u8 *buf; int i; if (!mask || !map->work_buf) return; buf = map->work_buf; for (i = 0; i < max_bytes; i++) buf[i] |= (mask >> (8 * i)) & 0xff; } int _regmap_raw_write(struct regmap *map, unsigned int reg, const void *val, size_t val_len) { struct regmap_range_node *range; unsigned long flags; void *work_val = map->work_buf + map->format.reg_bytes + map->format.pad_bytes; void *buf; int ret = -ENOTSUPP; size_t len; int i; WARN_ON(!map->bus); /* Check for unwritable registers before we start */ if (map->writeable_reg) for (i = 0; i < val_len / map->format.val_bytes; i++) if (!map->writeable_reg(map->dev, reg + regmap_get_offset(map, i))) return -EINVAL; if (!map->cache_bypass && map->format.parse_val) { unsigned int ival; int val_bytes = map->format.val_bytes; for (i = 0; i < val_len / val_bytes; i++) { ival = map->format.parse_val(val + (i * val_bytes)); ret = regcache_write(map, reg + regmap_get_offset(map, i), ival); if (ret) { dev_err(map->dev, "Error in caching of register: %x ret: %d\n", reg + i, ret); return ret; } } if (map->cache_only) { map->cache_dirty = true; return 0; } } range = _regmap_range_lookup(map, reg); if (range) { int val_num = val_len / map->format.val_bytes; int win_offset = (reg - range->range_min) % range->window_len; int win_residue = range->window_len - win_offset; /* If the write goes beyond the end of the window split it */ while (val_num > win_residue) { dev_dbg(map->dev, "Writing window %d/%zu\n", win_residue, val_len / map->format.val_bytes); ret = _regmap_raw_write(map, reg, val, win_residue * map->format.val_bytes); if (ret != 0) return ret; reg += win_residue; val_num -= win_residue; val += win_residue * map->format.val_bytes; val_len -= win_residue * map->format.val_bytes; win_offset = (reg - range->range_min) % range->window_len; win_residue = range->window_len - win_offset; } ret = _regmap_select_page(map, ®, range, val_num); if (ret != 0) return ret; } map->format.format_reg(map->work_buf, reg, map->reg_shift); regmap_set_work_buf_flag_mask(map, map->format.reg_bytes, map->write_flag_mask); /* * Essentially all I/O mechanisms will be faster with a single * buffer to write. Since register syncs often generate raw * writes of single registers optimise that case. */ if (val != work_val && val_len == map->format.val_bytes) { memcpy(work_val, val, map->format.val_bytes); val = work_val; } if (map->async && map->bus->async_write) { struct regmap_async *async; trace_regmap_async_write_start(map, reg, val_len); spin_lock_irqsave(&map->async_lock, flags); async = list_first_entry_or_null(&map->async_free, struct regmap_async, list); if (async) list_del(&async->list); spin_unlock_irqrestore(&map->async_lock, flags); if (!async) { async = map->bus->async_alloc(); if (!async) return -ENOMEM; async->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL | GFP_DMA); if (!async->work_buf) { kfree(async); return -ENOMEM; } } async->map = map; /* If the caller supplied the value we can use it safely. */ memcpy(async->work_buf, map->work_buf, map->format.pad_bytes + map->format.reg_bytes + map->format.val_bytes); spin_lock_irqsave(&map->async_lock, flags); list_add_tail(&async->list, &map->async_list); spin_unlock_irqrestore(&map->async_lock, flags); if (val != work_val) ret = map->bus->async_write(map->bus_context, async->work_buf, map->format.reg_bytes + map->format.pad_bytes, val, val_len, async); else ret = map->bus->async_write(map->bus_context, async->work_buf, map->format.reg_bytes + map->format.pad_bytes + val_len, NULL, 0, async); if (ret != 0) { dev_err(map->dev, "Failed to schedule write: %d\n", ret); spin_lock_irqsave(&map->async_lock, flags); list_move(&async->list, &map->async_free); spin_unlock_irqrestore(&map->async_lock, flags); } return ret; } trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes); /* If we're doing a single register write we can probably just * send the work_buf directly, otherwise try to do a gather * write. */ if (val == work_val) ret = map->bus->write(map->bus_context, map->work_buf, map->format.reg_bytes + map->format.pad_bytes + val_len); else if (map->bus->gather_write) ret = map->bus->gather_write(map->bus_context, map->work_buf, map->format.reg_bytes + map->format.pad_bytes, val, val_len); /* If that didn't work fall back on linearising by hand. */ if (ret == -ENOTSUPP) { len = map->format.reg_bytes + map->format.pad_bytes + val_len; buf = kzalloc(len, GFP_KERNEL); if (!buf) return -ENOMEM; memcpy(buf, map->work_buf, map->format.reg_bytes); memcpy(buf + map->format.reg_bytes + map->format.pad_bytes, val, val_len); ret = map->bus->write(map->bus_context, buf, len); kfree(buf); } else if (ret != 0 && !map->cache_bypass && map->format.parse_val) { /* regcache_drop_region() takes lock that we already have, * thus call map->cache_ops->drop() directly */ if (map->cache_ops && map->cache_ops->drop) map->cache_ops->drop(map, reg, reg + 1); } trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes); return ret; } /** * regmap_can_raw_write - Test if regmap_raw_write() is supported * * @map: Map to check. */ bool regmap_can_raw_write(struct regmap *map) { return map->bus && map->bus->write && map->format.format_val && map->format.format_reg; } EXPORT_SYMBOL_GPL(regmap_can_raw_write); /** * regmap_get_raw_read_max - Get the maximum size we can read * * @map: Map to check. */ size_t regmap_get_raw_read_max(struct regmap *map) { return map->max_raw_read; } EXPORT_SYMBOL_GPL(regmap_get_raw_read_max); /** * regmap_get_raw_write_max - Get the maximum size we can read * * @map: Map to check. */ size_t regmap_get_raw_write_max(struct regmap *map) { return map->max_raw_write; } EXPORT_SYMBOL_GPL(regmap_get_raw_write_max); static int _regmap_bus_formatted_write(void *context, unsigned int reg, unsigned int val) { int ret; struct regmap_range_node *range; struct regmap *map = context; WARN_ON(!map->bus || !map->format.format_write); range = _regmap_range_lookup(map, reg); if (range) { ret = _regmap_select_page(map, ®, range, 1); if (ret != 0) return ret; } map->format.format_write(map, reg, val); trace_regmap_hw_write_start(map, reg, 1); ret = map->bus->write(map->bus_context, map->work_buf, map->format.buf_size); trace_regmap_hw_write_done(map, reg, 1); return ret; } static int _regmap_bus_reg_write(void *context, unsigned int reg, unsigned int val) { struct regmap *map = context; return map->bus->reg_write(map->bus_context, reg, val); } static int _regmap_bus_raw_write(void *context, unsigned int reg, unsigned int val) { struct regmap *map = context; WARN_ON(!map->bus || !map->format.format_val); map->format.format_val(map->work_buf + map->format.reg_bytes + map->format.pad_bytes, val, 0); return _regmap_raw_write(map, reg, map->work_buf + map->format.reg_bytes + map->format.pad_bytes, map->format.val_bytes); } static inline void *_regmap_map_get_context(struct regmap *map) { return (map->bus) ? map : map->bus_context; } int _regmap_write(struct regmap *map, unsigned int reg, unsigned int val) { int ret; void *context = _regmap_map_get_context(map); if (!regmap_writeable(map, reg)) return -EIO; if (!map->cache_bypass && !map->defer_caching) { ret = regcache_write(map, reg, val); if (ret != 0) return ret; if (map->cache_only) { map->cache_dirty = true; return 0; } } #ifdef LOG_DEVICE if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0) dev_info(map->dev, "%x <= %x\n", reg, val); #endif trace_regmap_reg_write(map, reg, val); return map->reg_write(context, reg, val); } /** * regmap_write() - Write a value to a single register * * @map: Register map to write to * @reg: Register to write to * @val: Value to be written * * A value of zero will be returned on success, a negative errno will * be returned in error cases. */ int regmap_write(struct regmap *map, unsigned int reg, unsigned int val) { int ret; if (!IS_ALIGNED(reg, map->reg_stride)) return -EINVAL; map->lock(map->lock_arg); ret = _regmap_write(map, reg, val); map->unlock(map->lock_arg); return ret; } EXPORT_SYMBOL_GPL(regmap_write); /** * regmap_write_async() - Write a value to a single register asynchronously * * @map: Register map to write to * @reg: Register to write to * @val: Value to be written * * A value of zero will be returned on success, a negative errno will * be returned in error cases. */ int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val) { int ret; if (!IS_ALIGNED(reg, map->reg_stride)) return -EINVAL; map->lock(map->lock_arg); map->async = true; ret = _regmap_write(map, reg, val); map->async = false; map->unlock(map->lock_arg); return ret; } EXPORT_SYMBOL_GPL(regmap_write_async); /** * regmap_raw_write() - Write raw values to one or more registers * * @map: Register map to write to * @reg: Initial register to write to * @val: Block of data to be written, laid out for direct transmission to the * device * @val_len: Length of data pointed to by val. * * This function is intended to be used for things like firmware * download where a large block of data needs to be transferred to the * device. No formatting will be done on the data provided. * * A value of zero will be returned on success, a negative errno will * be returned in error cases. */ int regmap_raw_write(struct regmap *map, unsigned int reg, const void *val, size_t val_len) { int ret; if (!regmap_can_raw_write(map)) return -EINVAL; if (val_len % map->format.val_bytes) return -EINVAL; if (map->max_raw_write && map->max_raw_write > val_len) return -E2BIG; map->lock(map->lock_arg); ret = _regmap_raw_write(map, reg, val, val_len); map->unlock(map->lock_arg); return ret; } EXPORT_SYMBOL_GPL(regmap_raw_write); /** * regmap_field_update_bits_base() - Perform a read/modify/write cycle a * register field. * * @field: Register field to write to * @mask: Bitmask to change * @val: Value to be written * @change: Boolean indicating if a write was done * @async: Boolean indicating asynchronously * @force: Boolean indicating use force update * * Perform a read/modify/write cycle on the register field with change, * async, force option. * * A value of zero will be returned on success, a negative errno will * be returned in error cases. */ int regmap_field_update_bits_base(struct regmap_field *field, unsigned int mask, unsigned int val, bool *change, bool async, bool force) { mask = (mask << field->shift) & field->mask; return regmap_update_bits_base(field->regmap, field->reg, mask, val << field->shift, change, async, force); } EXPORT_SYMBOL_GPL(regmap_field_update_bits_base); /** * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a * register field with port ID * * @field: Register field to write to * @id: port ID * @mask: Bitmask to change * @val: Value to be written * @change: Boolean indicating if a write was done * @async: Boolean indicating asynchronously * @force: Boolean indicating use force update * * A value of zero will be returned on success, a negative errno will * be returned in error cases. */ int regmap_fields_update_bits_base(struct regmap_field *field, unsigned int id, unsigned int mask, unsigned int val, bool *change, bool async, bool force) { if (id >= field->id_size) return -EINVAL; mask = (mask << field->shift) & field->mask; return regmap_update_bits_base(field->regmap, field->reg + (field->id_offset * id), mask, val << field->shift, change, async, force); } EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base); /** * regmap_bulk_write() - Write multiple registers to the device * * @map: Register map to write to * @reg: First register to be write from * @val: Block of data to be written, in native register size for device * @val_count: Number of registers to write * * This function is intended to be used for writing a large block of * data to the device either in single transfer or multiple transfer. * * A value of zero will be returned on success, a negative errno will * be returned in error cases. */ int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val, size_t val_count) { int ret = 0, i; size_t val_bytes = map->format.val_bytes; size_t total_size = val_bytes * val_count; if (!IS_ALIGNED(reg, map->reg_stride)) return -EINVAL; /* * Some devices don't support bulk write, for * them we have a series of single write operations in the first two if * blocks. * * The first if block is used for memory mapped io. It does not allow * val_bytes of 3 for example. * The second one is for busses that do not provide raw I/O. * The third one is used for busses which do not have these limitations * and can write arbitrary value lengths. */ if (!map->bus) { map->lock(map->lock_arg); for (i = 0; i < val_count; i++) { unsigned int ival; switch (val_bytes) { case 1: ival = *(u8 *)(val + (i * val_bytes)); break; case 2: ival = *(u16 *)(val + (i * val_bytes)); break; case 4: ival = *(u32 *)(val + (i * val_bytes)); break; #ifdef CONFIG_64BIT case 8: ival = *(u64 *)(val + (i * val_bytes)); break; #endif default: ret = -EINVAL; goto out; } ret = _regmap_write(map, reg + regmap_get_offset(map, i), ival); if (ret != 0) goto out; } out: map->unlock(map->lock_arg); } else if (map->bus && !map->format.parse_inplace) { const u8 *u8 = val; const u16 *u16 = val; const u32 *u32 = val; unsigned int ival; for (i = 0; i < val_count; i++) { switch (map->format.val_bytes) { case 4: ival = u32[i]; break; case 2: ival = u16[i]; break; case 1: ival = u8[i]; break; default: return -EINVAL; } ret = regmap_write(map, reg + regmap_get_offset(map, i), ival); if (ret) return ret; } } else if (map->use_single_write || (map->max_raw_write && map->max_raw_write < total_size)) { int chunk_stride = map->reg_stride; size_t chunk_size = val_bytes; size_t chunk_count = val_count; if (!map->use_single_write) { chunk_size = map->max_raw_write; if (chunk_size % val_bytes) chunk_size -= chunk_size % val_bytes; chunk_count = total_size / chunk_size; chunk_stride *= chunk_size / val_bytes; } map->lock(map->lock_arg); /* Write as many bytes as possible with chunk_size */ for (i = 0; i < chunk_count; i++) { ret = _regmap_raw_write(map, reg + (i * chunk_stride), val + (i * chunk_size), chunk_size); if (ret) break; } /* Write remaining bytes */ if (!ret && chunk_size * i < total_size) { ret = _regmap_raw_write(map, reg + (i * chunk_stride), val + (i * chunk_size), total_size - i * chunk_size); } map->unlock(map->lock_arg); } else { void *wval; if (!val_count) return -EINVAL; wval = kmemdup(val, val_count * val_bytes, map->alloc_flags); if (!wval) { dev_err(map->dev, "Error in memory allocation\n"); return -ENOMEM; } for (i = 0; i < val_count * val_bytes; i += val_bytes) map->format.parse_inplace(wval + i); map->lock(map->lock_arg); ret = _regmap_raw_write(map, reg, wval, val_bytes * val_count); map->unlock(map->lock_arg); kfree(wval); } return ret; } EXPORT_SYMBOL_GPL(regmap_bulk_write); /* * _regmap_raw_multi_reg_write() * * the (register,newvalue) pairs in regs have not been formatted, but * they are all in the same page and have been changed to being page * relative. The page register has been written if that was necessary. */ static int _regmap_raw_multi_reg_write(struct regmap *map, const struct reg_sequence *regs, size_t num_regs) { int ret; void *buf; int i; u8 *u8; size_t val_bytes = map->format.val_bytes; size_t reg_bytes = map->format.reg_bytes; size_t pad_bytes = map->format.pad_bytes; size_t pair_size = reg_bytes + pad_bytes + val_bytes; size_t len = pair_size * num_regs; if (!len) return -EINVAL; buf = kzalloc(len, GFP_KERNEL); if (!buf) return -ENOMEM; /* We have to linearise by hand. */ u8 = buf; for (i = 0; i < num_regs; i++) { unsigned int reg = regs[i].reg; unsigned int val = regs[i].def; trace_regmap_hw_write_start(map, reg, 1); map->format.format_reg(u8, reg, map->reg_shift); u8 += reg_bytes + pad_bytes; map->format.format_val(u8, val, 0); u8 += val_bytes; } u8 = buf; *u8 |= map->write_flag_mask; ret = map->bus->write(map->bus_context, buf, len); kfree(buf); for (i = 0; i < num_regs; i++) { int reg = regs[i].reg; trace_regmap_hw_write_done(map, reg, 1); } return ret; } static unsigned int _regmap_register_page(struct regmap *map, unsigned int reg, struct regmap_range_node *range) { unsigned int win_page = (reg - range->range_min) / range->window_len; return win_page; } static int _regmap_range_multi_paged_reg_write(struct regmap *map, struct reg_sequence *regs, size_t num_regs) { int ret; int i, n; struct reg_sequence *base; unsigned int this_page = 0; unsigned int page_change = 0; /* * the set of registers are not neccessarily in order, but * since the order of write must be preserved this algorithm * chops the set each time the page changes. This also applies * if there is a delay required at any point in the sequence. */ base = regs; for (i = 0, n = 0; i < num_regs; i++, n++) { unsigned int reg = regs[i].reg; struct regmap_range_node *range; range = _regmap_range_lookup(map, reg); if (range) { unsigned int win_page = _regmap_register_page(map, reg, range); if (i == 0) this_page = win_page; if (win_page != this_page) { this_page = win_page; page_change = 1; } } /* If we have both a page change and a delay make sure to * write the regs and apply the delay before we change the * page. */ if (page_change || regs[i].delay_us) { /* For situations where the first write requires * a delay we need to make sure we don't call * raw_multi_reg_write with n=0 * This can't occur with page breaks as we * never write on the first iteration */ if (regs[i].delay_us && i == 0) n = 1; ret = _regmap_raw_multi_reg_write(map, base, n); if (ret != 0) return ret; if (regs[i].delay_us) udelay(regs[i].delay_us); base += n; n = 0; if (page_change) { ret = _regmap_select_page(map, &base[n].reg, range, 1); if (ret != 0) return ret; page_change = 0; } } } if (n > 0) return _regmap_raw_multi_reg_write(map, base, n); return 0; } static int _regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs, size_t num_regs) { int i; int ret; if (!map->can_multi_write) { for (i = 0; i < num_regs; i++) { ret = _regmap_write(map, regs[i].reg, regs[i].def); if (ret != 0) return ret; if (regs[i].delay_us) udelay(regs[i].delay_us); } return 0; } if (!map->format.parse_inplace) return -EINVAL; if (map->writeable_reg) for (i = 0; i < num_regs; i++) { int reg = regs[i].reg; if (!map->writeable_reg(map->dev, reg)) return -EINVAL; if (!IS_ALIGNED(reg, map->reg_stride)) return -EINVAL; } if (!map->cache_bypass) { for (i = 0; i < num_regs; i++) { unsigned int val = regs[i].def; unsigned int reg = regs[i].reg; ret = regcache_write(map, reg, val); if (ret) { dev_err(map->dev, "Error in caching of register: %x ret: %d\n", reg, ret); return ret; } } if (map->cache_only) { map->cache_dirty = true; return 0; } } WARN_ON(!map->bus); for (i = 0; i < num_regs; i++) { unsigned int reg = regs[i].reg; struct regmap_range_node *range; /* Coalesce all the writes between a page break or a delay * in a sequence */ range = _regmap_range_lookup(map, reg); if (range || regs[i].delay_us) { size_t len = sizeof(struct reg_sequence)*num_regs; struct reg_sequence *base = kmemdup(regs, len, GFP_KERNEL); if (!base) return -ENOMEM; ret = _regmap_range_multi_paged_reg_write(map, base, num_regs); kfree(base); return ret; } } return _regmap_raw_multi_reg_write(map, regs, num_regs); } /** * regmap_multi_reg_write() - Write multiple registers to the device * * @map: Register map to write to * @regs: Array of structures containing register,value to be written * @num_regs: Number of registers to write * * Write multiple registers to the device where the set of register, value * pairs are supplied in any order, possibly not all in a single range. * * The 'normal' block write mode will send ultimately send data on the * target bus as R,V1,V2,V3,..,Vn where successively higher registers are * addressed. However, this alternative block multi write mode will send * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device * must of course support the mode. * * A value of zero will be returned on success, a negative errno will be * returned in error cases. */ int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs, int num_regs) { int ret; map->lock(map->lock_arg); ret = _regmap_multi_reg_write(map, regs, num_regs); map->unlock(map->lock_arg); return ret; } EXPORT_SYMBOL_GPL(regmap_multi_reg_write); /** * regmap_multi_reg_write_bypassed() - Write multiple registers to the * device but not the cache * * @map: Register map to write to * @regs: Array of structures containing register,value to be written * @num_regs: Number of registers to write * * Write multiple registers to the device but not the cache where the set * of register are supplied in any order. * * This function is intended to be used for writing a large block of data * atomically to the device in single transfer for those I2C client devices * that implement this alternative block write mode. * * A value of zero will be returned on success, a negative errno will * be returned in error cases. */ int regmap_multi_reg_write_bypassed(struct regmap *map, const struct reg_sequence *regs, int num_regs) { int ret; bool bypass; map->lock(map->lock_arg); bypass = map->cache_bypass; map->cache_bypass = true; ret = _regmap_multi_reg_write(map, regs, num_regs); map->cache_bypass = bypass; map->unlock(map->lock_arg); return ret; } EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed); /** * regmap_raw_write_async() - Write raw values to one or more registers * asynchronously * * @map: Register map to write to * @reg: Initial register to write to * @val: Block of data to be written, laid out for direct transmission to the * device. Must be valid until regmap_async_complete() is called. * @val_len: Length of data pointed to by val. * * This function is intended to be used for things like firmware * download where a large block of data needs to be transferred to the * device. No formatting will be done on the data provided. * * If supported by the underlying bus the write will be scheduled * asynchronously, helping maximise I/O speed on higher speed buses * like SPI. regmap_async_complete() can be called to ensure that all * asynchrnous writes have been completed. * * A value of zero will be returned on success, a negative errno will * be returned in error cases. */ int regmap_raw_write_async(struct regmap *map, unsigned int reg, const void *val, size_t val_len) { int ret; if (val_len % map->format.val_bytes) return -EINVAL; if (!IS_ALIGNED(reg, map->reg_stride)) return -EINVAL; map->lock(map->lock_arg); map->async = true; ret = _regmap_raw_write(map, reg, val, val_len); map->async = false; map->unlock(map->lock_arg); return ret; } EXPORT_SYMBOL_GPL(regmap_raw_write_async); static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val, unsigned int val_len) { struct regmap_range_node *range; int ret; WARN_ON(!map->bus); if (!map->bus || !map->bus->read) return -EINVAL; range = _regmap_range_lookup(map, reg); if (range) { ret = _regmap_select_page(map, ®, range, val_len / map->format.val_bytes); if (ret != 0) return ret; } map->format.format_reg(map->work_buf, reg, map->reg_shift); regmap_set_work_buf_flag_mask(map, map->format.reg_bytes, map->read_flag_mask); trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes); ret = map->bus->read(map->bus_context, map->work_buf, map->format.reg_bytes + map->format.pad_bytes, val, val_len); trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes); return ret; } static int _regmap_bus_reg_read(void *context, unsigned int reg, unsigned int *val) { struct regmap *map = context; return map->bus->reg_read(map->bus_context, reg, val); } static int _regmap_bus_read(void *context, unsigned int reg, unsigned int *val) { int ret; struct regmap *map = context; void *work_val = map->work_buf + map->format.reg_bytes + map->format.pad_bytes; if (!map->format.parse_val) return -EINVAL; ret = _regmap_raw_read(map, reg, work_val, map->format.val_bytes); if (ret == 0) *val = map->format.parse_val(work_val); return ret; } static int _regmap_read(struct regmap *map, unsigned int reg, unsigned int *val) { int ret; void *context = _regmap_map_get_context(map); if (!map->cache_bypass) { ret = regcache_read(map, reg, val); if (ret == 0) return 0; } if (map->cache_only) return -EBUSY; if (!regmap_readable(map, reg)) return -EIO; ret = map->reg_read(context, reg, val); if (ret == 0) { #ifdef LOG_DEVICE if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0) dev_info(map->dev, "%x => %x\n", reg, *val); #endif trace_regmap_reg_read(map, reg, *val); if (!map->cache_bypass) regcache_write(map, reg, *val); } return ret; } /** * regmap_read() - Read a value from a single register * * @map: Register map to read from * @reg: Register to be read from * @val: Pointer to store read value * * A value of zero will be returned on success, a negative errno will * be returned in error cases. */ int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val) { int ret; if (!IS_ALIGNED(reg, map->reg_stride)) return -EINVAL; map->lock(map->lock_arg); ret = _regmap_read(map, reg, val); map->unlock(map->lock_arg); return ret; } EXPORT_SYMBOL_GPL(regmap_read); /** * regmap_raw_read() - Read raw data from the device * * @map: Register map to read from * @reg: First register to be read from * @val: Pointer to store read value * @val_len: Size of data to read * * A value of zero will be returned on success, a negative errno will * be returned in error cases. */ int regmap_raw_read(struct regmap *map, unsigned int reg, void *val, size_t val_len) { size_t val_bytes = map->format.val_bytes; size_t val_count = val_len / val_bytes; unsigned int v; int ret, i; if (!map->bus) return -EINVAL; if (val_len % map->format.val_bytes) return -EINVAL; if (!IS_ALIGNED(reg, map->reg_stride)) return -EINVAL; if (val_count == 0) return -EINVAL; map->lock(map->lock_arg); if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass || map->cache_type == REGCACHE_NONE) { size_t chunk_count, chunk_bytes; size_t chunk_regs = val_count; if (!map->bus->read) { ret = -ENOTSUPP; goto out; } if (map->use_single_read) chunk_regs = 1; else if (map->max_raw_read && val_len > map->max_raw_read) chunk_regs = map->max_raw_read / val_bytes; chunk_count = val_count / chunk_regs; chunk_bytes = chunk_regs * val_bytes; /* Read bytes that fit into whole chunks */ for (i = 0; i < chunk_count; i++) { ret = _regmap_raw_read(map, reg, val, chunk_bytes); if (ret != 0) goto out; reg += regmap_get_offset(map, chunk_regs); val += chunk_bytes; val_len -= chunk_bytes; } /* Read remaining bytes */ if (val_len) { ret = _regmap_raw_read(map, reg, val, val_len); if (ret != 0) goto out; } } else { /* Otherwise go word by word for the cache; should be low * cost as we expect to hit the cache. */ for (i = 0; i < val_count; i++) { ret = _regmap_read(map, reg + regmap_get_offset(map, i), &v); if (ret != 0) goto out; map->format.format_val(val + (i * val_bytes), v, 0); } } out: map->unlock(map->lock_arg); return ret; } EXPORT_SYMBOL_GPL(regmap_raw_read); /** * regmap_field_read() - Read a value to a single register field * * @field: Register field to read from * @val: Pointer to store read value * * A value of zero will be returned on success, a negative errno will * be returned in error cases. */ int regmap_field_read(struct regmap_field *field, unsigned int *val) { int ret; unsigned int reg_val; ret = regmap_read(field->regmap, field->reg, ®_val); if (ret != 0) return ret; reg_val &= field->mask; reg_val >>= field->shift; *val = reg_val; return ret; } EXPORT_SYMBOL_GPL(regmap_field_read); /** * regmap_fields_read() - Read a value to a single register field with port ID * * @field: Register field to read from * @id: port ID * @val: Pointer to store read value * * A value of zero will be returned on success, a negative errno will * be returned in error cases. */ int regmap_fields_read(struct regmap_field *field, unsigned int id, unsigned int *val) { int ret; unsigned int reg_val; if (id >= field->id_size) return -EINVAL; ret = regmap_read(field->regmap, field->reg + (field->id_offset * id), ®_val); if (ret != 0) return ret; reg_val &= field->mask; reg_val >>= field->shift; *val = reg_val; return ret; } EXPORT_SYMBOL_GPL(regmap_fields_read); /** * regmap_bulk_read() - Read multiple registers from the device * * @map: Register map to read from * @reg: First register to be read from * @val: Pointer to store read value, in native register size for device * @val_count: Number of registers to read * * A value of zero will be returned on success, a negative errno will * be returned in error cases. */ int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val, size_t val_count) { int ret, i; size_t val_bytes = map->format.val_bytes; bool vol = regmap_volatile_range(map, reg, val_count); if (!IS_ALIGNED(reg, map->reg_stride)) return -EINVAL; if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) { ret = regmap_raw_read(map, reg, val, val_bytes * val_count); if (ret != 0) return ret; for (i = 0; i < val_count * val_bytes; i += val_bytes) map->format.parse_inplace(val + i); } else { #ifdef CONFIG_64BIT u64 *u64 = val; #endif u32 *u32 = val; u16 *u16 = val; u8 *u8 = val; for (i = 0; i < val_count; i++) { unsigned int ival; ret = regmap_read(map, reg + regmap_get_offset(map, i), &ival); if (ret != 0) return ret; switch (map->format.val_bytes) { #ifdef CONFIG_64BIT case 8: u64[i] = ival; break; #endif case 4: u32[i] = ival; break; case 2: u16[i] = ival; break; case 1: u8[i] = ival; break; default: return -EINVAL; } } } return 0; } EXPORT_SYMBOL_GPL(regmap_bulk_read); static int _regmap_update_bits(struct regmap *map, unsigned int reg, unsigned int mask, unsigned int val, bool *change, bool force_write) { int ret; unsigned int tmp, orig; if (change) *change = false; if (regmap_volatile(map, reg) && map->reg_update_bits) { ret = map->reg_update_bits(map->bus_context, reg, mask, val); if (ret == 0 && change) *change = true; } else { ret = _regmap_read(map, reg, &orig); if (ret != 0) return ret; tmp = orig & ~mask; tmp |= val & mask; if (force_write || (tmp != orig)) { ret = _regmap_write(map, reg, tmp); if (ret == 0 && change) *change = true; } } return ret; } /** * regmap_update_bits_base() - Perform a read/modify/write cycle on a register * * @map: Register map to update * @reg: Register to update * @mask: Bitmask to change * @val: New value for bitmask * @change: Boolean indicating if a write was done * @async: Boolean indicating asynchronously * @force: Boolean indicating use force update * * Perform a read/modify/write cycle on a register map with change, async, force * options. * * If async is true: * * With most buses the read must be done synchronously so this is most useful * for devices with a cache which do not need to interact with the hardware to * determine the current register value. * * Returns zero for success, a negative number on error. */ int regmap_update_bits_base(struct regmap *map, unsigned int reg, unsigned int mask, unsigned int val, bool *change, bool async, bool force) { int ret; map->lock(map->lock_arg); map->async = async; ret = _regmap_update_bits(map, reg, mask, val, change, force); map->async = false; map->unlock(map->lock_arg); return ret; } EXPORT_SYMBOL_GPL(regmap_update_bits_base); void regmap_async_complete_cb(struct regmap_async *async, int ret) { struct regmap *map = async->map; bool wake; trace_regmap_async_io_complete(map); spin_lock(&map->async_lock); list_move(&async->list, &map->async_free); wake = list_empty(&map->async_list); if (ret != 0) map->async_ret = ret; spin_unlock(&map->async_lock); if (wake) wake_up(&map->async_waitq); } EXPORT_SYMBOL_GPL(regmap_async_complete_cb); static int regmap_async_is_done(struct regmap *map) { unsigned long flags; int ret; spin_lock_irqsave(&map->async_lock, flags); ret = list_empty(&map->async_list); spin_unlock_irqrestore(&map->async_lock, flags); return ret; } /** * regmap_async_complete - Ensure all asynchronous I/O has completed. * * @map: Map to operate on. * * Blocks until any pending asynchronous I/O has completed. Returns * an error code for any failed I/O operations. */ int regmap_async_complete(struct regmap *map) { unsigned long flags; int ret; /* Nothing to do with no async support */ if (!map->bus || !map->bus->async_write) return 0; trace_regmap_async_complete_start(map); wait_event(map->async_waitq, regmap_async_is_done(map)); spin_lock_irqsave(&map->async_lock, flags); ret = map->async_ret; map->async_ret = 0; spin_unlock_irqrestore(&map->async_lock, flags); trace_regmap_async_complete_done(map); return ret; } EXPORT_SYMBOL_GPL(regmap_async_complete); /** * regmap_register_patch - Register and apply register updates to be applied * on device initialistion * * @map: Register map to apply updates to. * @regs: Values to update. * @num_regs: Number of entries in regs. * * Register a set of register updates to be applied to the device * whenever the device registers are synchronised with the cache and * apply them immediately. Typically this is used to apply * corrections to be applied to the device defaults on startup, such * as the updates some vendors provide to undocumented registers. * * The caller must ensure that this function cannot be called * concurrently with either itself or regcache_sync(). */ int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs, int num_regs) { struct reg_sequence *p; int ret; bool bypass; if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n", num_regs)) return 0; p = krealloc(map->patch, sizeof(struct reg_sequence) * (map->patch_regs + num_regs), GFP_KERNEL); if (p) { memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs)); map->patch = p; map->patch_regs += num_regs; } else { return -ENOMEM; } map->lock(map->lock_arg); bypass = map->cache_bypass; map->cache_bypass = true; map->async = true; ret = _regmap_multi_reg_write(map, regs, num_regs); map->async = false; map->cache_bypass = bypass; map->unlock(map->lock_arg); regmap_async_complete(map); return ret; } EXPORT_SYMBOL_GPL(regmap_register_patch); /** * regmap_get_val_bytes() - Report the size of a register value * * @map: Register map to operate on. * * Report the size of a register value, mainly intended to for use by * generic infrastructure built on top of regmap. */ int regmap_get_val_bytes(struct regmap *map) { if (map->format.format_write) return -EINVAL; return map->format.val_bytes; } EXPORT_SYMBOL_GPL(regmap_get_val_bytes); /** * regmap_get_max_register() - Report the max register value * * @map: Register map to operate on. * * Report the max register value, mainly intended to for use by * generic infrastructure built on top of regmap. */ int regmap_get_max_register(struct regmap *map) { return map->max_register ? map->max_register : -EINVAL; } EXPORT_SYMBOL_GPL(regmap_get_max_register); /** * regmap_get_reg_stride() - Report the register address stride * * @map: Register map to operate on. * * Report the register address stride, mainly intended to for use by * generic infrastructure built on top of regmap. */ int regmap_get_reg_stride(struct regmap *map) { return map->reg_stride; } EXPORT_SYMBOL_GPL(regmap_get_reg_stride); int regmap_parse_val(struct regmap *map, const void *buf, unsigned int *val) { if (!map->format.parse_val) return -EINVAL; *val = map->format.parse_val(buf); return 0; } EXPORT_SYMBOL_GPL(regmap_parse_val); static int __init regmap_initcall(void) { regmap_debugfs_initcall(); return 0; } postcore_initcall(regmap_initcall);