// SPDX-License-Identifier: GPL-2.0+ /* * Renesas R-Car SATA driver * * Author: Vladimir Barinov <source@cogentembedded.com> * Copyright (C) 2013-2015 Cogent Embedded, Inc. * Copyright (C) 2013-2015 Renesas Solutions Corp. */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/ata.h> #include <linux/libata.h> #include <linux/of_device.h> #include <linux/platform_device.h> #include <linux/pm_runtime.h> #include <linux/err.h> #define DRV_NAME "sata_rcar" /* SH-Navi2G/ATAPI-ATA compatible task registers */ #define DATA_REG 0x100 #define SDEVCON_REG 0x138 /* SH-Navi2G/ATAPI module compatible control registers */ #define ATAPI_CONTROL1_REG 0x180 #define ATAPI_STATUS_REG 0x184 #define ATAPI_INT_ENABLE_REG 0x188 #define ATAPI_DTB_ADR_REG 0x198 #define ATAPI_DMA_START_ADR_REG 0x19C #define ATAPI_DMA_TRANS_CNT_REG 0x1A0 #define ATAPI_CONTROL2_REG 0x1A4 #define ATAPI_SIG_ST_REG 0x1B0 #define ATAPI_BYTE_SWAP_REG 0x1BC /* ATAPI control 1 register (ATAPI_CONTROL1) bits */ #define ATAPI_CONTROL1_ISM BIT(16) #define ATAPI_CONTROL1_DTA32M BIT(11) #define ATAPI_CONTROL1_RESET BIT(7) #define ATAPI_CONTROL1_DESE BIT(3) #define ATAPI_CONTROL1_RW BIT(2) #define ATAPI_CONTROL1_STOP BIT(1) #define ATAPI_CONTROL1_START BIT(0) /* ATAPI status register (ATAPI_STATUS) bits */ #define ATAPI_STATUS_SATAINT BIT(11) #define ATAPI_STATUS_DNEND BIT(6) #define ATAPI_STATUS_DEVTRM BIT(5) #define ATAPI_STATUS_DEVINT BIT(4) #define ATAPI_STATUS_ERR BIT(2) #define ATAPI_STATUS_NEND BIT(1) #define ATAPI_STATUS_ACT BIT(0) /* Interrupt enable register (ATAPI_INT_ENABLE) bits */ #define ATAPI_INT_ENABLE_SATAINT BIT(11) #define ATAPI_INT_ENABLE_DNEND BIT(6) #define ATAPI_INT_ENABLE_DEVTRM BIT(5) #define ATAPI_INT_ENABLE_DEVINT BIT(4) #define ATAPI_INT_ENABLE_ERR BIT(2) #define ATAPI_INT_ENABLE_NEND BIT(1) #define ATAPI_INT_ENABLE_ACT BIT(0) /* Access control registers for physical layer control register */ #define SATAPHYADDR_REG 0x200 #define SATAPHYWDATA_REG 0x204 #define SATAPHYACCEN_REG 0x208 #define SATAPHYRESET_REG 0x20C #define SATAPHYRDATA_REG 0x210 #define SATAPHYACK_REG 0x214 /* Physical layer control address command register (SATAPHYADDR) bits */ #define SATAPHYADDR_PHYRATEMODE BIT(10) #define SATAPHYADDR_PHYCMD_READ BIT(9) #define SATAPHYADDR_PHYCMD_WRITE BIT(8) /* Physical layer control enable register (SATAPHYACCEN) bits */ #define SATAPHYACCEN_PHYLANE BIT(0) /* Physical layer control reset register (SATAPHYRESET) bits */ #define SATAPHYRESET_PHYRST BIT(1) #define SATAPHYRESET_PHYSRES BIT(0) /* Physical layer control acknowledge register (SATAPHYACK) bits */ #define SATAPHYACK_PHYACK BIT(0) /* Serial-ATA HOST control registers */ #define BISTCONF_REG 0x102C #define SDATA_REG 0x1100 #define SSDEVCON_REG 0x1204 #define SCRSSTS_REG 0x1400 #define SCRSERR_REG 0x1404 #define SCRSCON_REG 0x1408 #define SCRSACT_REG 0x140C #define SATAINTSTAT_REG 0x1508 #define SATAINTMASK_REG 0x150C /* SATA INT status register (SATAINTSTAT) bits */ #define SATAINTSTAT_SERR BIT(3) #define SATAINTSTAT_ATA BIT(0) /* SATA INT mask register (SATAINTSTAT) bits */ #define SATAINTMASK_SERRMSK BIT(3) #define SATAINTMASK_ERRMSK BIT(2) #define SATAINTMASK_ERRCRTMSK BIT(1) #define SATAINTMASK_ATAMSK BIT(0) #define SATAINTMASK_ALL_GEN1 0x7ff #define SATAINTMASK_ALL_GEN2 0xfff #define SATA_RCAR_INT_MASK (SATAINTMASK_SERRMSK | \ SATAINTMASK_ATAMSK) /* Physical Layer Control Registers */ #define SATAPCTLR1_REG 0x43 #define SATAPCTLR2_REG 0x52 #define SATAPCTLR3_REG 0x5A #define SATAPCTLR4_REG 0x60 /* Descriptor table word 0 bit (when DTA32M = 1) */ #define SATA_RCAR_DTEND BIT(0) #define SATA_RCAR_DMA_BOUNDARY 0x1FFFFFFEUL /* Gen2 Physical Layer Control Registers */ #define RCAR_GEN2_PHY_CTL1_REG 0x1704 #define RCAR_GEN2_PHY_CTL1 0x34180002 #define RCAR_GEN2_PHY_CTL1_SS 0xC180 /* Spread Spectrum */ #define RCAR_GEN2_PHY_CTL2_REG 0x170C #define RCAR_GEN2_PHY_CTL2 0x00002303 #define RCAR_GEN2_PHY_CTL3_REG 0x171C #define RCAR_GEN2_PHY_CTL3 0x000B0194 #define RCAR_GEN2_PHY_CTL4_REG 0x1724 #define RCAR_GEN2_PHY_CTL4 0x00030994 #define RCAR_GEN2_PHY_CTL5_REG 0x1740 #define RCAR_GEN2_PHY_CTL5 0x03004001 #define RCAR_GEN2_PHY_CTL5_DC BIT(1) /* DC connection */ #define RCAR_GEN2_PHY_CTL5_TR BIT(2) /* Termination Resistor */ enum sata_rcar_type { RCAR_GEN1_SATA, RCAR_GEN2_SATA, RCAR_GEN3_SATA, RCAR_R8A7790_ES1_SATA, }; struct sata_rcar_priv { void __iomem *base; u32 sataint_mask; enum sata_rcar_type type; }; static void sata_rcar_gen1_phy_preinit(struct sata_rcar_priv *priv) { void __iomem *base = priv->base; /* idle state */ iowrite32(0, base + SATAPHYADDR_REG); /* reset */ iowrite32(SATAPHYRESET_PHYRST, base + SATAPHYRESET_REG); udelay(10); /* deassert reset */ iowrite32(0, base + SATAPHYRESET_REG); } static void sata_rcar_gen1_phy_write(struct sata_rcar_priv *priv, u16 reg, u32 val, int group) { void __iomem *base = priv->base; int timeout; /* deassert reset */ iowrite32(0, base + SATAPHYRESET_REG); /* lane 1 */ iowrite32(SATAPHYACCEN_PHYLANE, base + SATAPHYACCEN_REG); /* write phy register value */ iowrite32(val, base + SATAPHYWDATA_REG); /* set register group */ if (group) reg |= SATAPHYADDR_PHYRATEMODE; /* write command */ iowrite32(SATAPHYADDR_PHYCMD_WRITE | reg, base + SATAPHYADDR_REG); /* wait for ack */ for (timeout = 0; timeout < 100; timeout++) { val = ioread32(base + SATAPHYACK_REG); if (val & SATAPHYACK_PHYACK) break; } if (timeout >= 100) pr_err("%s timeout\n", __func__); /* idle state */ iowrite32(0, base + SATAPHYADDR_REG); } static void sata_rcar_gen1_phy_init(struct sata_rcar_priv *priv) { sata_rcar_gen1_phy_preinit(priv); sata_rcar_gen1_phy_write(priv, SATAPCTLR1_REG, 0x00200188, 0); sata_rcar_gen1_phy_write(priv, SATAPCTLR1_REG, 0x00200188, 1); sata_rcar_gen1_phy_write(priv, SATAPCTLR3_REG, 0x0000A061, 0); sata_rcar_gen1_phy_write(priv, SATAPCTLR2_REG, 0x20000000, 0); sata_rcar_gen1_phy_write(priv, SATAPCTLR2_REG, 0x20000000, 1); sata_rcar_gen1_phy_write(priv, SATAPCTLR4_REG, 0x28E80000, 0); } static void sata_rcar_gen2_phy_init(struct sata_rcar_priv *priv) { void __iomem *base = priv->base; iowrite32(RCAR_GEN2_PHY_CTL1, base + RCAR_GEN2_PHY_CTL1_REG); iowrite32(RCAR_GEN2_PHY_CTL2, base + RCAR_GEN2_PHY_CTL2_REG); iowrite32(RCAR_GEN2_PHY_CTL3, base + RCAR_GEN2_PHY_CTL3_REG); iowrite32(RCAR_GEN2_PHY_CTL4, base + RCAR_GEN2_PHY_CTL4_REG); iowrite32(RCAR_GEN2_PHY_CTL5 | RCAR_GEN2_PHY_CTL5_DC | RCAR_GEN2_PHY_CTL5_TR, base + RCAR_GEN2_PHY_CTL5_REG); } static void sata_rcar_freeze(struct ata_port *ap) { struct sata_rcar_priv *priv = ap->host->private_data; /* mask */ iowrite32(priv->sataint_mask, priv->base + SATAINTMASK_REG); ata_sff_freeze(ap); } static void sata_rcar_thaw(struct ata_port *ap) { struct sata_rcar_priv *priv = ap->host->private_data; void __iomem *base = priv->base; /* ack */ iowrite32(~(u32)SATA_RCAR_INT_MASK, base + SATAINTSTAT_REG); ata_sff_thaw(ap); /* unmask */ iowrite32(priv->sataint_mask & ~SATA_RCAR_INT_MASK, base + SATAINTMASK_REG); } static void sata_rcar_ioread16_rep(void __iomem *reg, void *buffer, int count) { u16 *ptr = buffer; while (count--) { u16 data = ioread32(reg); *ptr++ = data; } } static void sata_rcar_iowrite16_rep(void __iomem *reg, void *buffer, int count) { const u16 *ptr = buffer; while (count--) iowrite32(*ptr++, reg); } static u8 sata_rcar_check_status(struct ata_port *ap) { return ioread32(ap->ioaddr.status_addr); } static u8 sata_rcar_check_altstatus(struct ata_port *ap) { return ioread32(ap->ioaddr.altstatus_addr); } static void sata_rcar_set_devctl(struct ata_port *ap, u8 ctl) { iowrite32(ctl, ap->ioaddr.ctl_addr); } static void sata_rcar_dev_select(struct ata_port *ap, unsigned int device) { iowrite32(ATA_DEVICE_OBS, ap->ioaddr.device_addr); ata_sff_pause(ap); /* needed; also flushes, for mmio */ } static unsigned int sata_rcar_ata_devchk(struct ata_port *ap, unsigned int device) { struct ata_ioports *ioaddr = &ap->ioaddr; u8 nsect, lbal; sata_rcar_dev_select(ap, device); iowrite32(0x55, ioaddr->nsect_addr); iowrite32(0xaa, ioaddr->lbal_addr); iowrite32(0xaa, ioaddr->nsect_addr); iowrite32(0x55, ioaddr->lbal_addr); iowrite32(0x55, ioaddr->nsect_addr); iowrite32(0xaa, ioaddr->lbal_addr); nsect = ioread32(ioaddr->nsect_addr); lbal = ioread32(ioaddr->lbal_addr); if (nsect == 0x55 && lbal == 0xaa) return 1; /* found a device */ return 0; /* nothing found */ } static int sata_rcar_wait_after_reset(struct ata_link *link, unsigned long deadline) { struct ata_port *ap = link->ap; ata_msleep(ap, ATA_WAIT_AFTER_RESET); return ata_sff_wait_ready(link, deadline); } static int sata_rcar_bus_softreset(struct ata_port *ap, unsigned long deadline) { struct ata_ioports *ioaddr = &ap->ioaddr; DPRINTK("ata%u: bus reset via SRST\n", ap->print_id); /* software reset. causes dev0 to be selected */ iowrite32(ap->ctl, ioaddr->ctl_addr); udelay(20); iowrite32(ap->ctl | ATA_SRST, ioaddr->ctl_addr); udelay(20); iowrite32(ap->ctl, ioaddr->ctl_addr); ap->last_ctl = ap->ctl; /* wait the port to become ready */ return sata_rcar_wait_after_reset(&ap->link, deadline); } static int sata_rcar_softreset(struct ata_link *link, unsigned int *classes, unsigned long deadline) { struct ata_port *ap = link->ap; unsigned int devmask = 0; int rc; u8 err; /* determine if device 0 is present */ if (sata_rcar_ata_devchk(ap, 0)) devmask |= 1 << 0; /* issue bus reset */ DPRINTK("about to softreset, devmask=%x\n", devmask); rc = sata_rcar_bus_softreset(ap, deadline); /* if link is occupied, -ENODEV too is an error */ if (rc && (rc != -ENODEV || sata_scr_valid(link))) { ata_link_err(link, "SRST failed (errno=%d)\n", rc); return rc; } /* determine by signature whether we have ATA or ATAPI devices */ classes[0] = ata_sff_dev_classify(&link->device[0], devmask, &err); DPRINTK("classes[0]=%u\n", classes[0]); return 0; } static void sata_rcar_tf_load(struct ata_port *ap, const struct ata_taskfile *tf) { struct ata_ioports *ioaddr = &ap->ioaddr; unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR; if (tf->ctl != ap->last_ctl) { iowrite32(tf->ctl, ioaddr->ctl_addr); ap->last_ctl = tf->ctl; ata_wait_idle(ap); } if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) { iowrite32(tf->hob_feature, ioaddr->feature_addr); iowrite32(tf->hob_nsect, ioaddr->nsect_addr); iowrite32(tf->hob_lbal, ioaddr->lbal_addr); iowrite32(tf->hob_lbam, ioaddr->lbam_addr); iowrite32(tf->hob_lbah, ioaddr->lbah_addr); VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n", tf->hob_feature, tf->hob_nsect, tf->hob_lbal, tf->hob_lbam, tf->hob_lbah); } if (is_addr) { iowrite32(tf->feature, ioaddr->feature_addr); iowrite32(tf->nsect, ioaddr->nsect_addr); iowrite32(tf->lbal, ioaddr->lbal_addr); iowrite32(tf->lbam, ioaddr->lbam_addr); iowrite32(tf->lbah, ioaddr->lbah_addr); VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n", tf->feature, tf->nsect, tf->lbal, tf->lbam, tf->lbah); } if (tf->flags & ATA_TFLAG_DEVICE) { iowrite32(tf->device, ioaddr->device_addr); VPRINTK("device 0x%X\n", tf->device); } ata_wait_idle(ap); } static void sata_rcar_tf_read(struct ata_port *ap, struct ata_taskfile *tf) { struct ata_ioports *ioaddr = &ap->ioaddr; tf->command = sata_rcar_check_status(ap); tf->feature = ioread32(ioaddr->error_addr); tf->nsect = ioread32(ioaddr->nsect_addr); tf->lbal = ioread32(ioaddr->lbal_addr); tf->lbam = ioread32(ioaddr->lbam_addr); tf->lbah = ioread32(ioaddr->lbah_addr); tf->device = ioread32(ioaddr->device_addr); if (tf->flags & ATA_TFLAG_LBA48) { iowrite32(tf->ctl | ATA_HOB, ioaddr->ctl_addr); tf->hob_feature = ioread32(ioaddr->error_addr); tf->hob_nsect = ioread32(ioaddr->nsect_addr); tf->hob_lbal = ioread32(ioaddr->lbal_addr); tf->hob_lbam = ioread32(ioaddr->lbam_addr); tf->hob_lbah = ioread32(ioaddr->lbah_addr); iowrite32(tf->ctl, ioaddr->ctl_addr); ap->last_ctl = tf->ctl; } } static void sata_rcar_exec_command(struct ata_port *ap, const struct ata_taskfile *tf) { DPRINTK("ata%u: cmd 0x%X\n", ap->print_id, tf->command); iowrite32(tf->command, ap->ioaddr.command_addr); ata_sff_pause(ap); } static unsigned int sata_rcar_data_xfer(struct ata_queued_cmd *qc, unsigned char *buf, unsigned int buflen, int rw) { struct ata_port *ap = qc->dev->link->ap; void __iomem *data_addr = ap->ioaddr.data_addr; unsigned int words = buflen >> 1; /* Transfer multiple of 2 bytes */ if (rw == READ) sata_rcar_ioread16_rep(data_addr, buf, words); else sata_rcar_iowrite16_rep(data_addr, buf, words); /* Transfer trailing byte, if any. */ if (unlikely(buflen & 0x01)) { unsigned char pad[2] = { }; /* Point buf to the tail of buffer */ buf += buflen - 1; /* * Use io*16_rep() accessors here as well to avoid pointlessly * swapping bytes to and from on the big endian machines... */ if (rw == READ) { sata_rcar_ioread16_rep(data_addr, pad, 1); *buf = pad[0]; } else { pad[0] = *buf; sata_rcar_iowrite16_rep(data_addr, pad, 1); } words++; } return words << 1; } static void sata_rcar_drain_fifo(struct ata_queued_cmd *qc) { int count; struct ata_port *ap; /* We only need to flush incoming data when a command was running */ if (qc == NULL || qc->dma_dir == DMA_TO_DEVICE) return; ap = qc->ap; /* Drain up to 64K of data before we give up this recovery method */ for (count = 0; (ap->ops->sff_check_status(ap) & ATA_DRQ) && count < 65536; count += 2) ioread32(ap->ioaddr.data_addr); /* Can become DEBUG later */ if (count) ata_port_dbg(ap, "drained %d bytes to clear DRQ\n", count); } static int sata_rcar_scr_read(struct ata_link *link, unsigned int sc_reg, u32 *val) { if (sc_reg > SCR_ACTIVE) return -EINVAL; *val = ioread32(link->ap->ioaddr.scr_addr + (sc_reg << 2)); return 0; } static int sata_rcar_scr_write(struct ata_link *link, unsigned int sc_reg, u32 val) { if (sc_reg > SCR_ACTIVE) return -EINVAL; iowrite32(val, link->ap->ioaddr.scr_addr + (sc_reg << 2)); return 0; } static void sata_rcar_bmdma_fill_sg(struct ata_queued_cmd *qc) { struct ata_port *ap = qc->ap; struct ata_bmdma_prd *prd = ap->bmdma_prd; struct scatterlist *sg; unsigned int si; for_each_sg(qc->sg, sg, qc->n_elem, si) { u32 addr, sg_len; /* * Note: h/w doesn't support 64-bit, so we unconditionally * truncate dma_addr_t to u32. */ addr = (u32)sg_dma_address(sg); sg_len = sg_dma_len(sg); prd[si].addr = cpu_to_le32(addr); prd[si].flags_len = cpu_to_le32(sg_len); VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", si, addr, sg_len); } /* end-of-table flag */ prd[si - 1].addr |= cpu_to_le32(SATA_RCAR_DTEND); } static enum ata_completion_errors sata_rcar_qc_prep(struct ata_queued_cmd *qc) { if (!(qc->flags & ATA_QCFLAG_DMAMAP)) return AC_ERR_OK; sata_rcar_bmdma_fill_sg(qc); return AC_ERR_OK; } static void sata_rcar_bmdma_setup(struct ata_queued_cmd *qc) { struct ata_port *ap = qc->ap; unsigned int rw = qc->tf.flags & ATA_TFLAG_WRITE; struct sata_rcar_priv *priv = ap->host->private_data; void __iomem *base = priv->base; u32 dmactl; /* load PRD table addr. */ mb(); /* make sure PRD table writes are visible to controller */ iowrite32(ap->bmdma_prd_dma, base + ATAPI_DTB_ADR_REG); /* specify data direction, triple-check start bit is clear */ dmactl = ioread32(base + ATAPI_CONTROL1_REG); dmactl &= ~(ATAPI_CONTROL1_RW | ATAPI_CONTROL1_STOP); if (dmactl & ATAPI_CONTROL1_START) { dmactl &= ~ATAPI_CONTROL1_START; dmactl |= ATAPI_CONTROL1_STOP; } if (!rw) dmactl |= ATAPI_CONTROL1_RW; iowrite32(dmactl, base + ATAPI_CONTROL1_REG); /* issue r/w command */ ap->ops->sff_exec_command(ap, &qc->tf); } static void sata_rcar_bmdma_start(struct ata_queued_cmd *qc) { struct ata_port *ap = qc->ap; struct sata_rcar_priv *priv = ap->host->private_data; void __iomem *base = priv->base; u32 dmactl; /* start host DMA transaction */ dmactl = ioread32(base + ATAPI_CONTROL1_REG); dmactl &= ~ATAPI_CONTROL1_STOP; dmactl |= ATAPI_CONTROL1_START; iowrite32(dmactl, base + ATAPI_CONTROL1_REG); } static void sata_rcar_bmdma_stop(struct ata_queued_cmd *qc) { struct ata_port *ap = qc->ap; struct sata_rcar_priv *priv = ap->host->private_data; void __iomem *base = priv->base; u32 dmactl; /* force termination of DMA transfer if active */ dmactl = ioread32(base + ATAPI_CONTROL1_REG); if (dmactl & ATAPI_CONTROL1_START) { dmactl &= ~ATAPI_CONTROL1_START; dmactl |= ATAPI_CONTROL1_STOP; iowrite32(dmactl, base + ATAPI_CONTROL1_REG); } /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */ ata_sff_dma_pause(ap); } static u8 sata_rcar_bmdma_status(struct ata_port *ap) { struct sata_rcar_priv *priv = ap->host->private_data; u8 host_stat = 0; u32 status; status = ioread32(priv->base + ATAPI_STATUS_REG); if (status & ATAPI_STATUS_DEVINT) host_stat |= ATA_DMA_INTR; if (status & ATAPI_STATUS_ACT) host_stat |= ATA_DMA_ACTIVE; return host_stat; } static struct scsi_host_template sata_rcar_sht = { ATA_BASE_SHT(DRV_NAME), /* * This controller allows transfer chunks up to 512MB which cross 64KB * boundaries, therefore the DMA limits are more relaxed than standard * ATA SFF. */ .sg_tablesize = ATA_MAX_PRD, .dma_boundary = SATA_RCAR_DMA_BOUNDARY, }; static struct ata_port_operations sata_rcar_port_ops = { .inherits = &ata_bmdma_port_ops, .freeze = sata_rcar_freeze, .thaw = sata_rcar_thaw, .softreset = sata_rcar_softreset, .scr_read = sata_rcar_scr_read, .scr_write = sata_rcar_scr_write, .sff_dev_select = sata_rcar_dev_select, .sff_set_devctl = sata_rcar_set_devctl, .sff_check_status = sata_rcar_check_status, .sff_check_altstatus = sata_rcar_check_altstatus, .sff_tf_load = sata_rcar_tf_load, .sff_tf_read = sata_rcar_tf_read, .sff_exec_command = sata_rcar_exec_command, .sff_data_xfer = sata_rcar_data_xfer, .sff_drain_fifo = sata_rcar_drain_fifo, .qc_prep = sata_rcar_qc_prep, .bmdma_setup = sata_rcar_bmdma_setup, .bmdma_start = sata_rcar_bmdma_start, .bmdma_stop = sata_rcar_bmdma_stop, .bmdma_status = sata_rcar_bmdma_status, }; static void sata_rcar_serr_interrupt(struct ata_port *ap) { struct sata_rcar_priv *priv = ap->host->private_data; struct ata_eh_info *ehi = &ap->link.eh_info; int freeze = 0; u32 serror; serror = ioread32(priv->base + SCRSERR_REG); if (!serror) return; DPRINTK("SError @host_intr: 0x%x\n", serror); /* first, analyze and record host port events */ ata_ehi_clear_desc(ehi); if (serror & (SERR_DEV_XCHG | SERR_PHYRDY_CHG)) { /* Setup a soft-reset EH action */ ata_ehi_hotplugged(ehi); ata_ehi_push_desc(ehi, "%s", "hotplug"); freeze = serror & SERR_COMM_WAKE ? 0 : 1; } /* freeze or abort */ if (freeze) ata_port_freeze(ap); else ata_port_abort(ap); } static void sata_rcar_ata_interrupt(struct ata_port *ap) { struct ata_queued_cmd *qc; int handled = 0; qc = ata_qc_from_tag(ap, ap->link.active_tag); if (qc) handled |= ata_bmdma_port_intr(ap, qc); /* be sure to clear ATA interrupt */ if (!handled) sata_rcar_check_status(ap); } static irqreturn_t sata_rcar_interrupt(int irq, void *dev_instance) { struct ata_host *host = dev_instance; struct sata_rcar_priv *priv = host->private_data; void __iomem *base = priv->base; unsigned int handled = 0; struct ata_port *ap; u32 sataintstat; unsigned long flags; spin_lock_irqsave(&host->lock, flags); sataintstat = ioread32(base + SATAINTSTAT_REG); sataintstat &= SATA_RCAR_INT_MASK; if (!sataintstat) goto done; /* ack */ iowrite32(~sataintstat & priv->sataint_mask, base + SATAINTSTAT_REG); ap = host->ports[0]; if (sataintstat & SATAINTSTAT_ATA) sata_rcar_ata_interrupt(ap); if (sataintstat & SATAINTSTAT_SERR) sata_rcar_serr_interrupt(ap); handled = 1; done: spin_unlock_irqrestore(&host->lock, flags); return IRQ_RETVAL(handled); } static void sata_rcar_setup_port(struct ata_host *host) { struct ata_port *ap = host->ports[0]; struct ata_ioports *ioaddr = &ap->ioaddr; struct sata_rcar_priv *priv = host->private_data; void __iomem *base = priv->base; ap->ops = &sata_rcar_port_ops; ap->pio_mask = ATA_PIO4; ap->udma_mask = ATA_UDMA6; ap->flags |= ATA_FLAG_SATA; if (priv->type == RCAR_R8A7790_ES1_SATA) ap->flags |= ATA_FLAG_NO_DIPM; ioaddr->cmd_addr = base + SDATA_REG; ioaddr->ctl_addr = base + SSDEVCON_REG; ioaddr->scr_addr = base + SCRSSTS_REG; ioaddr->altstatus_addr = ioaddr->ctl_addr; ioaddr->data_addr = ioaddr->cmd_addr + (ATA_REG_DATA << 2); ioaddr->error_addr = ioaddr->cmd_addr + (ATA_REG_ERR << 2); ioaddr->feature_addr = ioaddr->cmd_addr + (ATA_REG_FEATURE << 2); ioaddr->nsect_addr = ioaddr->cmd_addr + (ATA_REG_NSECT << 2); ioaddr->lbal_addr = ioaddr->cmd_addr + (ATA_REG_LBAL << 2); ioaddr->lbam_addr = ioaddr->cmd_addr + (ATA_REG_LBAM << 2); ioaddr->lbah_addr = ioaddr->cmd_addr + (ATA_REG_LBAH << 2); ioaddr->device_addr = ioaddr->cmd_addr + (ATA_REG_DEVICE << 2); ioaddr->status_addr = ioaddr->cmd_addr + (ATA_REG_STATUS << 2); ioaddr->command_addr = ioaddr->cmd_addr + (ATA_REG_CMD << 2); } static void sata_rcar_init_module(struct sata_rcar_priv *priv) { void __iomem *base = priv->base; u32 val; /* SATA-IP reset state */ val = ioread32(base + ATAPI_CONTROL1_REG); val |= ATAPI_CONTROL1_RESET; iowrite32(val, base + ATAPI_CONTROL1_REG); /* ISM mode, PRD mode, DTEND flag at bit 0 */ val = ioread32(base + ATAPI_CONTROL1_REG); val |= ATAPI_CONTROL1_ISM; val |= ATAPI_CONTROL1_DESE; val |= ATAPI_CONTROL1_DTA32M; iowrite32(val, base + ATAPI_CONTROL1_REG); /* Release the SATA-IP from the reset state */ val = ioread32(base + ATAPI_CONTROL1_REG); val &= ~ATAPI_CONTROL1_RESET; iowrite32(val, base + ATAPI_CONTROL1_REG); /* ack and mask */ iowrite32(0, base + SATAINTSTAT_REG); iowrite32(priv->sataint_mask, base + SATAINTMASK_REG); /* enable interrupts */ iowrite32(ATAPI_INT_ENABLE_SATAINT, base + ATAPI_INT_ENABLE_REG); } static void sata_rcar_init_controller(struct ata_host *host) { struct sata_rcar_priv *priv = host->private_data; priv->sataint_mask = SATAINTMASK_ALL_GEN2; /* reset and setup phy */ switch (priv->type) { case RCAR_GEN1_SATA: priv->sataint_mask = SATAINTMASK_ALL_GEN1; sata_rcar_gen1_phy_init(priv); break; case RCAR_GEN2_SATA: case RCAR_R8A7790_ES1_SATA: sata_rcar_gen2_phy_init(priv); break; case RCAR_GEN3_SATA: break; default: dev_warn(host->dev, "SATA phy is not initialized\n"); break; } sata_rcar_init_module(priv); } static const struct of_device_id sata_rcar_match[] = { { /* Deprecated by "renesas,sata-r8a7779" */ .compatible = "renesas,rcar-sata", .data = (void *)RCAR_GEN1_SATA, }, { .compatible = "renesas,sata-r8a7779", .data = (void *)RCAR_GEN1_SATA, }, { .compatible = "renesas,sata-r8a7790", .data = (void *)RCAR_GEN2_SATA }, { .compatible = "renesas,sata-r8a7790-es1", .data = (void *)RCAR_R8A7790_ES1_SATA }, { .compatible = "renesas,sata-r8a7791", .data = (void *)RCAR_GEN2_SATA }, { .compatible = "renesas,sata-r8a7793", .data = (void *)RCAR_GEN2_SATA }, { .compatible = "renesas,sata-r8a7795", .data = (void *)RCAR_GEN3_SATA }, { .compatible = "renesas,rcar-gen2-sata", .data = (void *)RCAR_GEN2_SATA }, { .compatible = "renesas,rcar-gen3-sata", .data = (void *)RCAR_GEN3_SATA }, { }, }; MODULE_DEVICE_TABLE(of, sata_rcar_match); static int sata_rcar_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct ata_host *host; struct sata_rcar_priv *priv; struct resource *mem; int irq; int ret = 0; irq = platform_get_irq(pdev, 0); if (irq < 0) return irq; if (!irq) return -EINVAL; priv = devm_kzalloc(dev, sizeof(struct sata_rcar_priv), GFP_KERNEL); if (!priv) return -ENOMEM; priv->type = (enum sata_rcar_type)of_device_get_match_data(dev); pm_runtime_enable(dev); ret = pm_runtime_get_sync(dev); if (ret < 0) goto err_pm_put; host = ata_host_alloc(dev, 1); if (!host) { ret = -ENOMEM; goto err_pm_put; } host->private_data = priv; mem = platform_get_resource(pdev, IORESOURCE_MEM, 0); priv->base = devm_ioremap_resource(dev, mem); if (IS_ERR(priv->base)) { ret = PTR_ERR(priv->base); goto err_pm_put; } /* setup port */ sata_rcar_setup_port(host); /* initialize host controller */ sata_rcar_init_controller(host); ret = ata_host_activate(host, irq, sata_rcar_interrupt, 0, &sata_rcar_sht); if (!ret) return 0; err_pm_put: pm_runtime_put(dev); pm_runtime_disable(dev); return ret; } static int sata_rcar_remove(struct platform_device *pdev) { struct ata_host *host = platform_get_drvdata(pdev); struct sata_rcar_priv *priv = host->private_data; void __iomem *base = priv->base; ata_host_detach(host); /* disable interrupts */ iowrite32(0, base + ATAPI_INT_ENABLE_REG); /* ack and mask */ iowrite32(0, base + SATAINTSTAT_REG); iowrite32(priv->sataint_mask, base + SATAINTMASK_REG); pm_runtime_put(&pdev->dev); pm_runtime_disable(&pdev->dev); return 0; } #ifdef CONFIG_PM_SLEEP static int sata_rcar_suspend(struct device *dev) { struct ata_host *host = dev_get_drvdata(dev); struct sata_rcar_priv *priv = host->private_data; void __iomem *base = priv->base; int ret; ret = ata_host_suspend(host, PMSG_SUSPEND); if (!ret) { /* disable interrupts */ iowrite32(0, base + ATAPI_INT_ENABLE_REG); /* mask */ iowrite32(priv->sataint_mask, base + SATAINTMASK_REG); pm_runtime_put(dev); } return ret; } static int sata_rcar_resume(struct device *dev) { struct ata_host *host = dev_get_drvdata(dev); struct sata_rcar_priv *priv = host->private_data; void __iomem *base = priv->base; int ret; ret = pm_runtime_get_sync(dev); if (ret < 0) { pm_runtime_put(dev); return ret; } if (priv->type == RCAR_GEN3_SATA) { sata_rcar_init_module(priv); } else { /* ack and mask */ iowrite32(0, base + SATAINTSTAT_REG); iowrite32(priv->sataint_mask, base + SATAINTMASK_REG); /* enable interrupts */ iowrite32(ATAPI_INT_ENABLE_SATAINT, base + ATAPI_INT_ENABLE_REG); } ata_host_resume(host); return 0; } static int sata_rcar_restore(struct device *dev) { struct ata_host *host = dev_get_drvdata(dev); int ret; ret = pm_runtime_get_sync(dev); if (ret < 0) { pm_runtime_put(dev); return ret; } sata_rcar_setup_port(host); /* initialize host controller */ sata_rcar_init_controller(host); ata_host_resume(host); return 0; } static const struct dev_pm_ops sata_rcar_pm_ops = { .suspend = sata_rcar_suspend, .resume = sata_rcar_resume, .freeze = sata_rcar_suspend, .thaw = sata_rcar_resume, .poweroff = sata_rcar_suspend, .restore = sata_rcar_restore, }; #endif static struct platform_driver sata_rcar_driver = { .probe = sata_rcar_probe, .remove = sata_rcar_remove, .driver = { .name = DRV_NAME, .of_match_table = sata_rcar_match, #ifdef CONFIG_PM_SLEEP .pm = &sata_rcar_pm_ops, #endif }, }; module_platform_driver(sata_rcar_driver); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Vladimir Barinov"); MODULE_DESCRIPTION("Renesas R-Car SATA controller low level driver");