config FRAME_POINTER def_bool n config ZONE_DMA def_bool y config XTENSA def_bool y select HAVE_IDE select GENERIC_ATOMIC64 select HAVE_GENERIC_HARDIRQS select GENERIC_IRQ_SHOW select GENERIC_CPU_DEVICES select MODULES_USE_ELF_RELA select GENERIC_PCI_IOMAP help Xtensa processors are 32-bit RISC machines designed by Tensilica primarily for embedded systems. These processors are both configurable and extensible. The Linux port to the Xtensa architecture supports all processor configurations and extensions, with reasonable minimum requirements. The Xtensa Linux project has a home page at . config RWSEM_XCHGADD_ALGORITHM def_bool y config GENERIC_HWEIGHT def_bool y config GENERIC_GPIO def_bool y config ARCH_HAS_ILOG2_U32 def_bool n config ARCH_HAS_ILOG2_U64 def_bool n config NO_IOPORT def_bool y config HZ int default 100 source "init/Kconfig" source "kernel/Kconfig.freezer" config MMU def_bool n config VARIANT_IRQ_SWITCH def_bool n menu "Processor type and features" choice prompt "Xtensa Processor Configuration" default XTENSA_VARIANT_FSF config XTENSA_VARIANT_FSF bool "fsf - default (not generic) configuration" select MMU config XTENSA_VARIANT_DC232B bool "dc232b - Diamond 232L Standard Core Rev.B (LE)" select MMU help This variant refers to Tensilica's Diamond 232L Standard core Rev.B (LE). config XTENSA_VARIANT_S6000 bool "s6000 - Stretch software configurable processor" select VARIANT_IRQ_SWITCH select ARCH_REQUIRE_GPIOLIB select XTENSA_CALIBRATE_CCOUNT endchoice config XTENSA_UNALIGNED_USER bool "Unaligned memory access in use space" help The Xtensa architecture currently does not handle unaligned memory accesses in hardware but through an exception handler. Per default, unaligned memory accesses are disabled in user space. Say Y here to enable unaligned memory access in user space. source "kernel/Kconfig.preempt" config MATH_EMULATION bool "Math emulation" help Can we use information of configuration file? endmenu config XTENSA_CALIBRATE_CCOUNT def_bool n help On some platforms (XT2000, for example), the CPU clock rate can vary. The frequency can be determined, however, by measuring against a well known, fixed frequency, such as an UART oscillator. config SERIAL_CONSOLE def_bool n config XTENSA_ISS_NETWORK def_bool n menu "Bus options" config PCI bool "PCI support" default y help Find out whether you have a PCI motherboard. PCI is the name of a bus system, i.e. the way the CPU talks to the other stuff inside your box. Other bus systems are ISA, EISA, MicroChannel (MCA) or VESA. If you have PCI, say Y, otherwise N. source "drivers/pci/Kconfig" endmenu menu "Platform options" choice prompt "Xtensa System Type" default XTENSA_PLATFORM_ISS config XTENSA_PLATFORM_ISS bool "ISS" select XTENSA_CALIBRATE_CCOUNT select SERIAL_CONSOLE select XTENSA_ISS_NETWORK help ISS is an acronym for Tensilica's Instruction Set Simulator. config XTENSA_PLATFORM_XT2000 bool "XT2000" help XT2000 is the name of Tensilica's feature-rich emulation platform. This hardware is capable of running a full Linux distribution. config XTENSA_PLATFORM_S6105 bool "S6105" select SERIAL_CONSOLE endchoice config XTENSA_CPU_CLOCK int "CPU clock rate [MHz]" depends on !XTENSA_CALIBRATE_CCOUNT default 16 config GENERIC_CALIBRATE_DELAY bool "Auto calibration of the BogoMIPS value" help The BogoMIPS value can easily be derived from the CPU frequency. config CMDLINE_BOOL bool "Default bootloader kernel arguments" config CMDLINE string "Initial kernel command string" depends on CMDLINE_BOOL default "console=ttyS0,38400 root=/dev/ram" help On some architectures (EBSA110 and CATS), there is currently no way for the boot loader to pass arguments to the kernel. For these architectures, you should supply some command-line options at build time by entering them here. As a minimum, you should specify the memory size and the root device (e.g., mem=64M root=/dev/nfs). source "mm/Kconfig" config HOTPLUG bool "Support for hot-pluggable devices" help Say Y here if you want to plug devices into your computer while the system is running, and be able to use them quickly. In many cases, the devices can likewise be unplugged at any time too. One well known example of this is PCMCIA- or PC-cards, credit-card size devices such as network cards, modems or hard drives which are plugged into slots found on all modern laptop computers. Another example, used on modern desktops as well as laptops, is USB. Enable HOTPLUG and build a modular kernel. Get agent software (from ) and install it. Then your kernel will automatically call out to a user mode "policy agent" (/sbin/hotplug) to load modules and set up software needed to use devices as you hotplug them. source "drivers/pcmcia/Kconfig" source "drivers/pci/hotplug/Kconfig" endmenu menu "Executable file formats" # only elf supported config KCORE_ELF def_bool y depends on PROC_FS help If you enabled support for /proc file system then the file /proc/kcore will contain the kernel core image in ELF format. This can be used in gdb: $ cd /usr/src/linux ; gdb vmlinux /proc/kcore This is especially useful if you have compiled the kernel with the "-g" option to preserve debugging information. It is mainly used for examining kernel data structures on the live kernel. source "fs/Kconfig.binfmt" endmenu source "net/Kconfig" source "drivers/Kconfig" source "fs/Kconfig" menu "Xtensa initrd options" depends on BLK_DEV_INITRD config EMBEDDED_RAMDISK bool "Embed root filesystem ramdisk into the kernel" config EMBEDDED_RAMDISK_IMAGE string "Filename of gzipped ramdisk image" depends on EMBEDDED_RAMDISK default "ramdisk.gz" help This is the filename of the ramdisk image to be built into the kernel. Relative pathnames are relative to arch/xtensa/boot/ramdisk/. The ramdisk image is not part of the kernel distribution; you must provide one yourself. endmenu source "arch/xtensa/Kconfig.debug" source "security/Kconfig" source "crypto/Kconfig" source "lib/Kconfig"