/* SPDX-License-Identifier: GPL-2.0 */ #ifndef ARCH_X86_KVM_X86_H #define ARCH_X86_KVM_X86_H #include #include #include "kvm_cache_regs.h" #define KVM_DEFAULT_PLE_GAP 128 #define KVM_VMX_DEFAULT_PLE_WINDOW 4096 #define KVM_DEFAULT_PLE_WINDOW_GROW 2 #define KVM_DEFAULT_PLE_WINDOW_SHRINK 0 #define KVM_VMX_DEFAULT_PLE_WINDOW_MAX UINT_MAX #define KVM_SVM_DEFAULT_PLE_WINDOW_MAX USHRT_MAX #define KVM_SVM_DEFAULT_PLE_WINDOW 3000 static inline unsigned int __grow_ple_window(unsigned int val, unsigned int base, unsigned int modifier, unsigned int max) { u64 ret = val; if (modifier < 1) return base; if (modifier < base) ret *= modifier; else ret += modifier; return min(ret, (u64)max); } static inline unsigned int __shrink_ple_window(unsigned int val, unsigned int base, unsigned int modifier, unsigned int min) { if (modifier < 1) return base; if (modifier < base) val /= modifier; else val -= modifier; return max(val, min); } #define MSR_IA32_CR_PAT_DEFAULT 0x0007040600070406ULL static inline void kvm_clear_exception_queue(struct kvm_vcpu *vcpu) { vcpu->arch.exception.pending = false; vcpu->arch.exception.injected = false; } static inline void kvm_queue_interrupt(struct kvm_vcpu *vcpu, u8 vector, bool soft) { vcpu->arch.interrupt.pending = true; vcpu->arch.interrupt.soft = soft; vcpu->arch.interrupt.nr = vector; } static inline void kvm_clear_interrupt_queue(struct kvm_vcpu *vcpu) { vcpu->arch.interrupt.pending = false; } static inline bool kvm_event_needs_reinjection(struct kvm_vcpu *vcpu) { return vcpu->arch.exception.injected || vcpu->arch.interrupt.pending || vcpu->arch.nmi_injected; } static inline bool kvm_exception_is_soft(unsigned int nr) { return (nr == BP_VECTOR) || (nr == OF_VECTOR); } static inline bool is_protmode(struct kvm_vcpu *vcpu) { return kvm_read_cr0_bits(vcpu, X86_CR0_PE); } static inline int is_long_mode(struct kvm_vcpu *vcpu) { #ifdef CONFIG_X86_64 return vcpu->arch.efer & EFER_LMA; #else return 0; #endif } static inline bool is_64_bit_mode(struct kvm_vcpu *vcpu) { int cs_db, cs_l; if (!is_long_mode(vcpu)) return false; kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); return cs_l; } static inline bool is_la57_mode(struct kvm_vcpu *vcpu) { #ifdef CONFIG_X86_64 return (vcpu->arch.efer & EFER_LMA) && kvm_read_cr4_bits(vcpu, X86_CR4_LA57); #else return 0; #endif } static inline bool mmu_is_nested(struct kvm_vcpu *vcpu) { return vcpu->arch.walk_mmu == &vcpu->arch.nested_mmu; } static inline int is_pae(struct kvm_vcpu *vcpu) { return kvm_read_cr4_bits(vcpu, X86_CR4_PAE); } static inline int is_pse(struct kvm_vcpu *vcpu) { return kvm_read_cr4_bits(vcpu, X86_CR4_PSE); } static inline int is_paging(struct kvm_vcpu *vcpu) { return likely(kvm_read_cr0_bits(vcpu, X86_CR0_PG)); } static inline u32 bit(int bitno) { return 1 << (bitno & 31); } static inline u8 vcpu_virt_addr_bits(struct kvm_vcpu *vcpu) { return kvm_read_cr4_bits(vcpu, X86_CR4_LA57) ? 57 : 48; } static inline u8 ctxt_virt_addr_bits(struct x86_emulate_ctxt *ctxt) { return (ctxt->ops->get_cr(ctxt, 4) & X86_CR4_LA57) ? 57 : 48; } static inline u64 get_canonical(u64 la, u8 vaddr_bits) { return ((int64_t)la << (64 - vaddr_bits)) >> (64 - vaddr_bits); } static inline bool is_noncanonical_address(u64 la, struct kvm_vcpu *vcpu) { #ifdef CONFIG_X86_64 return get_canonical(la, vcpu_virt_addr_bits(vcpu)) != la; #else return false; #endif } static inline bool emul_is_noncanonical_address(u64 la, struct x86_emulate_ctxt *ctxt) { #ifdef CONFIG_X86_64 return get_canonical(la, ctxt_virt_addr_bits(ctxt)) != la; #else return false; #endif } static inline void vcpu_cache_mmio_info(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn, unsigned access) { /* * If this is a shadow nested page table, the "GVA" is * actually a nGPA. */ vcpu->arch.mmio_gva = mmu_is_nested(vcpu) ? 0 : gva & PAGE_MASK; vcpu->arch.access = access; vcpu->arch.mmio_gfn = gfn; vcpu->arch.mmio_gen = kvm_memslots(vcpu->kvm)->generation; } static inline bool vcpu_match_mmio_gen(struct kvm_vcpu *vcpu) { return vcpu->arch.mmio_gen == kvm_memslots(vcpu->kvm)->generation; } /* * Clear the mmio cache info for the given gva. If gva is MMIO_GVA_ANY, we * clear all mmio cache info. */ #define MMIO_GVA_ANY (~(gva_t)0) static inline void vcpu_clear_mmio_info(struct kvm_vcpu *vcpu, gva_t gva) { if (gva != MMIO_GVA_ANY && vcpu->arch.mmio_gva != (gva & PAGE_MASK)) return; vcpu->arch.mmio_gva = 0; } static inline bool vcpu_match_mmio_gva(struct kvm_vcpu *vcpu, unsigned long gva) { if (vcpu_match_mmio_gen(vcpu) && vcpu->arch.mmio_gva && vcpu->arch.mmio_gva == (gva & PAGE_MASK)) return true; return false; } static inline bool vcpu_match_mmio_gpa(struct kvm_vcpu *vcpu, gpa_t gpa) { if (vcpu_match_mmio_gen(vcpu) && vcpu->arch.mmio_gfn && vcpu->arch.mmio_gfn == gpa >> PAGE_SHIFT) return true; return false; } static inline unsigned long kvm_register_readl(struct kvm_vcpu *vcpu, enum kvm_reg reg) { unsigned long val = kvm_register_read(vcpu, reg); return is_64_bit_mode(vcpu) ? val : (u32)val; } static inline void kvm_register_writel(struct kvm_vcpu *vcpu, enum kvm_reg reg, unsigned long val) { if (!is_64_bit_mode(vcpu)) val = (u32)val; return kvm_register_write(vcpu, reg, val); } static inline bool kvm_check_has_quirk(struct kvm *kvm, u64 quirk) { return !(kvm->arch.disabled_quirks & quirk); } void kvm_set_pending_timer(struct kvm_vcpu *vcpu); int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip); void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr); u64 get_kvmclock_ns(struct kvm *kvm); int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val, unsigned int bytes, struct x86_exception *exception); int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val, unsigned int bytes, struct x86_exception *exception); void kvm_vcpu_mtrr_init(struct kvm_vcpu *vcpu); u8 kvm_mtrr_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn); bool kvm_mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data); int kvm_mtrr_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data); int kvm_mtrr_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata); bool kvm_mtrr_check_gfn_range_consistency(struct kvm_vcpu *vcpu, gfn_t gfn, int page_num); bool kvm_vector_hashing_enabled(void); #define KVM_SUPPORTED_XCR0 (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \ | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \ | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \ | XFEATURE_MASK_PKRU) extern u64 host_xcr0; extern u64 kvm_supported_xcr0(void); extern unsigned int min_timer_period_us; extern unsigned int lapic_timer_advance_ns; extern bool enable_vmware_backdoor; extern struct static_key kvm_no_apic_vcpu; static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec) { return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult, vcpu->arch.virtual_tsc_shift); } /* Same "calling convention" as do_div: * - divide (n << 32) by base * - put result in n * - return remainder */ #define do_shl32_div32(n, base) \ ({ \ u32 __quot, __rem; \ asm("divl %2" : "=a" (__quot), "=d" (__rem) \ : "rm" (base), "0" (0), "1" ((u32) n)); \ n = __quot; \ __rem; \ }) #define KVM_X86_DISABLE_EXITS_MWAIT (1 << 0) #define KVM_X86_DISABLE_EXITS_HTL (1 << 1) #define KVM_X86_DISABLE_EXITS_PAUSE (1 << 2) #define KVM_X86_DISABLE_VALID_EXITS (KVM_X86_DISABLE_EXITS_MWAIT | \ KVM_X86_DISABLE_EXITS_HTL | \ KVM_X86_DISABLE_EXITS_PAUSE) static inline bool kvm_mwait_in_guest(struct kvm *kvm) { return kvm->arch.mwait_in_guest; } static inline bool kvm_hlt_in_guest(struct kvm *kvm) { return kvm->arch.hlt_in_guest; } static inline bool kvm_pause_in_guest(struct kvm *kvm) { return kvm->arch.pause_in_guest; } DECLARE_PER_CPU(struct kvm_vcpu *, current_vcpu); static inline void kvm_before_interrupt(struct kvm_vcpu *vcpu) { __this_cpu_write(current_vcpu, vcpu); } static inline void kvm_after_interrupt(struct kvm_vcpu *vcpu) { __this_cpu_write(current_vcpu, NULL); } #endif