/****************************************************************************** * emulate.c * * Generic x86 (32-bit and 64-bit) instruction decoder and emulator. * * Copyright (c) 2005 Keir Fraser * * Linux coding style, mod r/m decoder, segment base fixes, real-mode * privileged instructions: * * Copyright (C) 2006 Qumranet * Copyright 2010 Red Hat, Inc. and/or its affilates. * * Avi Kivity * Yaniv Kamay * * This work is licensed under the terms of the GNU GPL, version 2. See * the COPYING file in the top-level directory. * * From: xen-unstable 10676:af9809f51f81a3c43f276f00c81a52ef558afda4 */ #ifndef __KERNEL__ #include #include #include #define DPRINTF(_f, _a ...) printf(_f , ## _a) #else #include #include "kvm_cache_regs.h" #define DPRINTF(x...) do {} while (0) #endif #include #include #include "x86.h" #include "tss.h" /* * Opcode effective-address decode tables. * Note that we only emulate instructions that have at least one memory * operand (excluding implicit stack references). We assume that stack * references and instruction fetches will never occur in special memory * areas that require emulation. So, for example, 'mov ,' need * not be handled. */ /* Operand sizes: 8-bit operands or specified/overridden size. */ #define ByteOp (1<<0) /* 8-bit operands. */ /* Destination operand type. */ #define ImplicitOps (1<<1) /* Implicit in opcode. No generic decode. */ #define DstReg (2<<1) /* Register operand. */ #define DstMem (3<<1) /* Memory operand. */ #define DstAcc (4<<1) /* Destination Accumulator */ #define DstDI (5<<1) /* Destination is in ES:(E)DI */ #define DstMem64 (6<<1) /* 64bit memory operand */ #define DstImmUByte (7<<1) /* 8-bit unsigned immediate operand */ #define DstMask (7<<1) /* Source operand type. */ #define SrcNone (0<<4) /* No source operand. */ #define SrcReg (1<<4) /* Register operand. */ #define SrcMem (2<<4) /* Memory operand. */ #define SrcMem16 (3<<4) /* Memory operand (16-bit). */ #define SrcMem32 (4<<4) /* Memory operand (32-bit). */ #define SrcImm (5<<4) /* Immediate operand. */ #define SrcImmByte (6<<4) /* 8-bit sign-extended immediate operand. */ #define SrcOne (7<<4) /* Implied '1' */ #define SrcImmUByte (8<<4) /* 8-bit unsigned immediate operand. */ #define SrcImmU (9<<4) /* Immediate operand, unsigned */ #define SrcSI (0xa<<4) /* Source is in the DS:RSI */ #define SrcImmFAddr (0xb<<4) /* Source is immediate far address */ #define SrcMemFAddr (0xc<<4) /* Source is far address in memory */ #define SrcAcc (0xd<<4) /* Source Accumulator */ #define SrcImmU16 (0xe<<4) /* Immediate operand, unsigned, 16 bits */ #define SrcMask (0xf<<4) /* Generic ModRM decode. */ #define ModRM (1<<8) /* Destination is only written; never read. */ #define Mov (1<<9) #define BitOp (1<<10) #define MemAbs (1<<11) /* Memory operand is absolute displacement */ #define String (1<<12) /* String instruction (rep capable) */ #define Stack (1<<13) /* Stack instruction (push/pop) */ #define Group (1<<14) /* Bits 3:5 of modrm byte extend opcode */ #define GroupDual (1<<15) /* Alternate decoding of mod == 3 */ /* Misc flags */ #define NoAccess (1<<23) /* Don't access memory (lea/invlpg/verr etc) */ #define Op3264 (1<<24) /* Operand is 64b in long mode, 32b otherwise */ #define Undefined (1<<25) /* No Such Instruction */ #define Lock (1<<26) /* lock prefix is allowed for the instruction */ #define Priv (1<<27) /* instruction generates #GP if current CPL != 0 */ #define No64 (1<<28) /* Source 2 operand type */ #define Src2None (0<<29) #define Src2CL (1<<29) #define Src2ImmByte (2<<29) #define Src2One (3<<29) #define Src2Imm (4<<29) #define Src2Mask (7<<29) #define X2(x...) x, x #define X3(x...) X2(x), x #define X4(x...) X2(x), X2(x) #define X5(x...) X4(x), x #define X6(x...) X4(x), X2(x) #define X7(x...) X4(x), X3(x) #define X8(x...) X4(x), X4(x) #define X16(x...) X8(x), X8(x) struct opcode { u32 flags; union { int (*execute)(struct x86_emulate_ctxt *ctxt); struct opcode *group; struct group_dual *gdual; } u; }; struct group_dual { struct opcode mod012[8]; struct opcode mod3[8]; }; /* EFLAGS bit definitions. */ #define EFLG_ID (1<<21) #define EFLG_VIP (1<<20) #define EFLG_VIF (1<<19) #define EFLG_AC (1<<18) #define EFLG_VM (1<<17) #define EFLG_RF (1<<16) #define EFLG_IOPL (3<<12) #define EFLG_NT (1<<14) #define EFLG_OF (1<<11) #define EFLG_DF (1<<10) #define EFLG_IF (1<<9) #define EFLG_TF (1<<8) #define EFLG_SF (1<<7) #define EFLG_ZF (1<<6) #define EFLG_AF (1<<4) #define EFLG_PF (1<<2) #define EFLG_CF (1<<0) #define EFLG_RESERVED_ZEROS_MASK 0xffc0802a #define EFLG_RESERVED_ONE_MASK 2 /* * Instruction emulation: * Most instructions are emulated directly via a fragment of inline assembly * code. This allows us to save/restore EFLAGS and thus very easily pick up * any modified flags. */ #if defined(CONFIG_X86_64) #define _LO32 "k" /* force 32-bit operand */ #define _STK "%%rsp" /* stack pointer */ #elif defined(__i386__) #define _LO32 "" /* force 32-bit operand */ #define _STK "%%esp" /* stack pointer */ #endif /* * These EFLAGS bits are restored from saved value during emulation, and * any changes are written back to the saved value after emulation. */ #define EFLAGS_MASK (EFLG_OF|EFLG_SF|EFLG_ZF|EFLG_AF|EFLG_PF|EFLG_CF) /* Before executing instruction: restore necessary bits in EFLAGS. */ #define _PRE_EFLAGS(_sav, _msk, _tmp) \ /* EFLAGS = (_sav & _msk) | (EFLAGS & ~_msk); _sav &= ~_msk; */ \ "movl %"_sav",%"_LO32 _tmp"; " \ "push %"_tmp"; " \ "push %"_tmp"; " \ "movl %"_msk",%"_LO32 _tmp"; " \ "andl %"_LO32 _tmp",("_STK"); " \ "pushf; " \ "notl %"_LO32 _tmp"; " \ "andl %"_LO32 _tmp",("_STK"); " \ "andl %"_LO32 _tmp","__stringify(BITS_PER_LONG/4)"("_STK"); " \ "pop %"_tmp"; " \ "orl %"_LO32 _tmp",("_STK"); " \ "popf; " \ "pop %"_sav"; " /* After executing instruction: write-back necessary bits in EFLAGS. */ #define _POST_EFLAGS(_sav, _msk, _tmp) \ /* _sav |= EFLAGS & _msk; */ \ "pushf; " \ "pop %"_tmp"; " \ "andl %"_msk",%"_LO32 _tmp"; " \ "orl %"_LO32 _tmp",%"_sav"; " #ifdef CONFIG_X86_64 #define ON64(x) x #else #define ON64(x) #endif #define ____emulate_2op(_op, _src, _dst, _eflags, _x, _y, _suffix, _dsttype) \ do { \ __asm__ __volatile__ ( \ _PRE_EFLAGS("0", "4", "2") \ _op _suffix " %"_x"3,%1; " \ _POST_EFLAGS("0", "4", "2") \ : "=m" (_eflags), "+q" (*(_dsttype*)&(_dst).val),\ "=&r" (_tmp) \ : _y ((_src).val), "i" (EFLAGS_MASK)); \ } while (0) /* Raw emulation: instruction has two explicit operands. */ #define __emulate_2op_nobyte(_op,_src,_dst,_eflags,_wx,_wy,_lx,_ly,_qx,_qy) \ do { \ unsigned long _tmp; \ \ switch ((_dst).bytes) { \ case 2: \ ____emulate_2op(_op,_src,_dst,_eflags,_wx,_wy,"w",u16);\ break; \ case 4: \ ____emulate_2op(_op,_src,_dst,_eflags,_lx,_ly,"l",u32);\ break; \ case 8: \ ON64(____emulate_2op(_op,_src,_dst,_eflags,_qx,_qy,"q",u64)); \ break; \ } \ } while (0) #define __emulate_2op(_op,_src,_dst,_eflags,_bx,_by,_wx,_wy,_lx,_ly,_qx,_qy) \ do { \ unsigned long _tmp; \ switch ((_dst).bytes) { \ case 1: \ ____emulate_2op(_op,_src,_dst,_eflags,_bx,_by,"b",u8); \ break; \ default: \ __emulate_2op_nobyte(_op, _src, _dst, _eflags, \ _wx, _wy, _lx, _ly, _qx, _qy); \ break; \ } \ } while (0) /* Source operand is byte-sized and may be restricted to just %cl. */ #define emulate_2op_SrcB(_op, _src, _dst, _eflags) \ __emulate_2op(_op, _src, _dst, _eflags, \ "b", "c", "b", "c", "b", "c", "b", "c") /* Source operand is byte, word, long or quad sized. */ #define emulate_2op_SrcV(_op, _src, _dst, _eflags) \ __emulate_2op(_op, _src, _dst, _eflags, \ "b", "q", "w", "r", _LO32, "r", "", "r") /* Source operand is word, long or quad sized. */ #define emulate_2op_SrcV_nobyte(_op, _src, _dst, _eflags) \ __emulate_2op_nobyte(_op, _src, _dst, _eflags, \ "w", "r", _LO32, "r", "", "r") /* Instruction has three operands and one operand is stored in ECX register */ #define __emulate_2op_cl(_op, _cl, _src, _dst, _eflags, _suffix, _type) \ do { \ unsigned long _tmp; \ _type _clv = (_cl).val; \ _type _srcv = (_src).val; \ _type _dstv = (_dst).val; \ \ __asm__ __volatile__ ( \ _PRE_EFLAGS("0", "5", "2") \ _op _suffix " %4,%1 \n" \ _POST_EFLAGS("0", "5", "2") \ : "=m" (_eflags), "+r" (_dstv), "=&r" (_tmp) \ : "c" (_clv) , "r" (_srcv), "i" (EFLAGS_MASK) \ ); \ \ (_cl).val = (unsigned long) _clv; \ (_src).val = (unsigned long) _srcv; \ (_dst).val = (unsigned long) _dstv; \ } while (0) #define emulate_2op_cl(_op, _cl, _src, _dst, _eflags) \ do { \ switch ((_dst).bytes) { \ case 2: \ __emulate_2op_cl(_op, _cl, _src, _dst, _eflags, \ "w", unsigned short); \ break; \ case 4: \ __emulate_2op_cl(_op, _cl, _src, _dst, _eflags, \ "l", unsigned int); \ break; \ case 8: \ ON64(__emulate_2op_cl(_op, _cl, _src, _dst, _eflags, \ "q", unsigned long)); \ break; \ } \ } while (0) #define __emulate_1op(_op, _dst, _eflags, _suffix) \ do { \ unsigned long _tmp; \ \ __asm__ __volatile__ ( \ _PRE_EFLAGS("0", "3", "2") \ _op _suffix " %1; " \ _POST_EFLAGS("0", "3", "2") \ : "=m" (_eflags), "+m" ((_dst).val), \ "=&r" (_tmp) \ : "i" (EFLAGS_MASK)); \ } while (0) /* Instruction has only one explicit operand (no source operand). */ #define emulate_1op(_op, _dst, _eflags) \ do { \ switch ((_dst).bytes) { \ case 1: __emulate_1op(_op, _dst, _eflags, "b"); break; \ case 2: __emulate_1op(_op, _dst, _eflags, "w"); break; \ case 4: __emulate_1op(_op, _dst, _eflags, "l"); break; \ case 8: ON64(__emulate_1op(_op, _dst, _eflags, "q")); break; \ } \ } while (0) #define __emulate_1op_rax_rdx(_op, _src, _rax, _rdx, _eflags, _suffix) \ do { \ unsigned long _tmp; \ \ __asm__ __volatile__ ( \ _PRE_EFLAGS("0", "4", "1") \ _op _suffix " %5; " \ _POST_EFLAGS("0", "4", "1") \ : "=m" (_eflags), "=&r" (_tmp), \ "+a" (_rax), "+d" (_rdx) \ : "i" (EFLAGS_MASK), "m" ((_src).val), \ "a" (_rax), "d" (_rdx)); \ } while (0) /* instruction has only one source operand, destination is implicit (e.g. mul, div, imul, idiv) */ #define emulate_1op_rax_rdx(_op, _src, _rax, _rdx, _eflags) \ do { \ switch((_src).bytes) { \ case 1: __emulate_1op_rax_rdx(_op, _src, _rax, _rdx, _eflags, "b"); break; \ case 2: __emulate_1op_rax_rdx(_op, _src, _rax, _rdx, _eflags, "w"); break; \ case 4: __emulate_1op_rax_rdx(_op, _src, _rax, _rdx, _eflags, "l"); break; \ case 8: ON64(__emulate_1op_rax_rdx(_op, _src, _rax, _rdx, _eflags, "q")); break; \ } \ } while (0) /* Fetch next part of the instruction being emulated. */ #define insn_fetch(_type, _size, _eip) \ ({ unsigned long _x; \ rc = do_insn_fetch(ctxt, ops, (_eip), &_x, (_size)); \ if (rc != X86EMUL_CONTINUE) \ goto done; \ (_eip) += (_size); \ (_type)_x; \ }) #define insn_fetch_arr(_arr, _size, _eip) \ ({ rc = do_insn_fetch(ctxt, ops, (_eip), _arr, (_size)); \ if (rc != X86EMUL_CONTINUE) \ goto done; \ (_eip) += (_size); \ }) static inline unsigned long ad_mask(struct decode_cache *c) { return (1UL << (c->ad_bytes << 3)) - 1; } /* Access/update address held in a register, based on addressing mode. */ static inline unsigned long address_mask(struct decode_cache *c, unsigned long reg) { if (c->ad_bytes == sizeof(unsigned long)) return reg; else return reg & ad_mask(c); } static inline unsigned long register_address(struct decode_cache *c, unsigned long base, unsigned long reg) { return base + address_mask(c, reg); } static inline void register_address_increment(struct decode_cache *c, unsigned long *reg, int inc) { if (c->ad_bytes == sizeof(unsigned long)) *reg += inc; else *reg = (*reg & ~ad_mask(c)) | ((*reg + inc) & ad_mask(c)); } static inline void jmp_rel(struct decode_cache *c, int rel) { register_address_increment(c, &c->eip, rel); } static void set_seg_override(struct decode_cache *c, int seg) { c->has_seg_override = true; c->seg_override = seg; } static unsigned long seg_base(struct x86_emulate_ctxt *ctxt, struct x86_emulate_ops *ops, int seg) { if (ctxt->mode == X86EMUL_MODE_PROT64 && seg < VCPU_SREG_FS) return 0; return ops->get_cached_segment_base(seg, ctxt->vcpu); } static unsigned long seg_override_base(struct x86_emulate_ctxt *ctxt, struct x86_emulate_ops *ops, struct decode_cache *c) { if (!c->has_seg_override) return 0; return seg_base(ctxt, ops, c->seg_override); } static unsigned long es_base(struct x86_emulate_ctxt *ctxt, struct x86_emulate_ops *ops) { return seg_base(ctxt, ops, VCPU_SREG_ES); } static unsigned long ss_base(struct x86_emulate_ctxt *ctxt, struct x86_emulate_ops *ops) { return seg_base(ctxt, ops, VCPU_SREG_SS); } static void emulate_exception(struct x86_emulate_ctxt *ctxt, int vec, u32 error, bool valid) { ctxt->exception = vec; ctxt->error_code = error; ctxt->error_code_valid = valid; ctxt->restart = false; } static void emulate_gp(struct x86_emulate_ctxt *ctxt, int err) { emulate_exception(ctxt, GP_VECTOR, err, true); } static void emulate_pf(struct x86_emulate_ctxt *ctxt, unsigned long addr, int err) { ctxt->cr2 = addr; emulate_exception(ctxt, PF_VECTOR, err, true); } static void emulate_ud(struct x86_emulate_ctxt *ctxt) { emulate_exception(ctxt, UD_VECTOR, 0, false); } static void emulate_ts(struct x86_emulate_ctxt *ctxt, int err) { emulate_exception(ctxt, TS_VECTOR, err, true); } static int do_fetch_insn_byte(struct x86_emulate_ctxt *ctxt, struct x86_emulate_ops *ops, unsigned long eip, u8 *dest) { struct fetch_cache *fc = &ctxt->decode.fetch; int rc; int size, cur_size; if (eip == fc->end) { cur_size = fc->end - fc->start; size = min(15UL - cur_size, PAGE_SIZE - offset_in_page(eip)); rc = ops->fetch(ctxt->cs_base + eip, fc->data + cur_size, size, ctxt->vcpu, NULL); if (rc != X86EMUL_CONTINUE) return rc; fc->end += size; } *dest = fc->data[eip - fc->start]; return X86EMUL_CONTINUE; } static int do_insn_fetch(struct x86_emulate_ctxt *ctxt, struct x86_emulate_ops *ops, unsigned long eip, void *dest, unsigned size) { int rc; /* x86 instructions are limited to 15 bytes. */ if (eip + size - ctxt->eip > 15) return X86EMUL_UNHANDLEABLE; while (size--) { rc = do_fetch_insn_byte(ctxt, ops, eip++, dest++); if (rc != X86EMUL_CONTINUE) return rc; } return X86EMUL_CONTINUE; } /* * Given the 'reg' portion of a ModRM byte, and a register block, return a * pointer into the block that addresses the relevant register. * @highbyte_regs specifies whether to decode AH,CH,DH,BH. */ static void *decode_register(u8 modrm_reg, unsigned long *regs, int highbyte_regs) { void *p; p = ®s[modrm_reg]; if (highbyte_regs && modrm_reg >= 4 && modrm_reg < 8) p = (unsigned char *)®s[modrm_reg & 3] + 1; return p; } static int read_descriptor(struct x86_emulate_ctxt *ctxt, struct x86_emulate_ops *ops, ulong addr, u16 *size, unsigned long *address, int op_bytes) { int rc; if (op_bytes == 2) op_bytes = 3; *address = 0; rc = ops->read_std(addr, (unsigned long *)size, 2, ctxt->vcpu, NULL); if (rc != X86EMUL_CONTINUE) return rc; rc = ops->read_std(addr + 2, address, op_bytes, ctxt->vcpu, NULL); return rc; } static int test_cc(unsigned int condition, unsigned int flags) { int rc = 0; switch ((condition & 15) >> 1) { case 0: /* o */ rc |= (flags & EFLG_OF); break; case 1: /* b/c/nae */ rc |= (flags & EFLG_CF); break; case 2: /* z/e */ rc |= (flags & EFLG_ZF); break; case 3: /* be/na */ rc |= (flags & (EFLG_CF|EFLG_ZF)); break; case 4: /* s */ rc |= (flags & EFLG_SF); break; case 5: /* p/pe */ rc |= (flags & EFLG_PF); break; case 7: /* le/ng */ rc |= (flags & EFLG_ZF); /* fall through */ case 6: /* l/nge */ rc |= (!(flags & EFLG_SF) != !(flags & EFLG_OF)); break; } /* Odd condition identifiers (lsb == 1) have inverted sense. */ return (!!rc ^ (condition & 1)); } static void fetch_register_operand(struct operand *op) { switch (op->bytes) { case 1: op->val = *(u8 *)op->addr.reg; break; case 2: op->val = *(u16 *)op->addr.reg; break; case 4: op->val = *(u32 *)op->addr.reg; break; case 8: op->val = *(u64 *)op->addr.reg; break; } } static void decode_register_operand(struct operand *op, struct decode_cache *c, int inhibit_bytereg) { unsigned reg = c->modrm_reg; int highbyte_regs = c->rex_prefix == 0; if (!(c->d & ModRM)) reg = (c->b & 7) | ((c->rex_prefix & 1) << 3); op->type = OP_REG; if ((c->d & ByteOp) && !inhibit_bytereg) { op->addr.reg = decode_register(reg, c->regs, highbyte_regs); op->bytes = 1; } else { op->addr.reg = decode_register(reg, c->regs, 0); op->bytes = c->op_bytes; } fetch_register_operand(op); op->orig_val = op->val; } static int decode_modrm(struct x86_emulate_ctxt *ctxt, struct x86_emulate_ops *ops, struct operand *op) { struct decode_cache *c = &ctxt->decode; u8 sib; int index_reg = 0, base_reg = 0, scale; int rc = X86EMUL_CONTINUE; ulong modrm_ea = 0; if (c->rex_prefix) { c->modrm_reg = (c->rex_prefix & 4) << 1; /* REX.R */ index_reg = (c->rex_prefix & 2) << 2; /* REX.X */ c->modrm_rm = base_reg = (c->rex_prefix & 1) << 3; /* REG.B */ } c->modrm = insn_fetch(u8, 1, c->eip); c->modrm_mod |= (c->modrm & 0xc0) >> 6; c->modrm_reg |= (c->modrm & 0x38) >> 3; c->modrm_rm |= (c->modrm & 0x07); c->modrm_seg = VCPU_SREG_DS; if (c->modrm_mod == 3) { op->type = OP_REG; op->bytes = (c->d & ByteOp) ? 1 : c->op_bytes; op->addr.reg = decode_register(c->modrm_rm, c->regs, c->d & ByteOp); fetch_register_operand(op); return rc; } op->type = OP_MEM; if (c->ad_bytes == 2) { unsigned bx = c->regs[VCPU_REGS_RBX]; unsigned bp = c->regs[VCPU_REGS_RBP]; unsigned si = c->regs[VCPU_REGS_RSI]; unsigned di = c->regs[VCPU_REGS_RDI]; /* 16-bit ModR/M decode. */ switch (c->modrm_mod) { case 0: if (c->modrm_rm == 6) modrm_ea += insn_fetch(u16, 2, c->eip); break; case 1: modrm_ea += insn_fetch(s8, 1, c->eip); break; case 2: modrm_ea += insn_fetch(u16, 2, c->eip); break; } switch (c->modrm_rm) { case 0: modrm_ea += bx + si; break; case 1: modrm_ea += bx + di; break; case 2: modrm_ea += bp + si; break; case 3: modrm_ea += bp + di; break; case 4: modrm_ea += si; break; case 5: modrm_ea += di; break; case 6: if (c->modrm_mod != 0) modrm_ea += bp; break; case 7: modrm_ea += bx; break; } if (c->modrm_rm == 2 || c->modrm_rm == 3 || (c->modrm_rm == 6 && c->modrm_mod != 0)) c->modrm_seg = VCPU_SREG_SS; modrm_ea = (u16)modrm_ea; } else { /* 32/64-bit ModR/M decode. */ if ((c->modrm_rm & 7) == 4) { sib = insn_fetch(u8, 1, c->eip); index_reg |= (sib >> 3) & 7; base_reg |= sib & 7; scale = sib >> 6; if ((base_reg & 7) == 5 && c->modrm_mod == 0) modrm_ea += insn_fetch(s32, 4, c->eip); else modrm_ea += c->regs[base_reg]; if (index_reg != 4) modrm_ea += c->regs[index_reg] << scale; } else if ((c->modrm_rm & 7) == 5 && c->modrm_mod == 0) { if (ctxt->mode == X86EMUL_MODE_PROT64) c->rip_relative = 1; } else modrm_ea += c->regs[c->modrm_rm]; switch (c->modrm_mod) { case 0: if (c->modrm_rm == 5) modrm_ea += insn_fetch(s32, 4, c->eip); break; case 1: modrm_ea += insn_fetch(s8, 1, c->eip); break; case 2: modrm_ea += insn_fetch(s32, 4, c->eip); break; } } op->addr.mem = modrm_ea; done: return rc; } static int decode_abs(struct x86_emulate_ctxt *ctxt, struct x86_emulate_ops *ops, struct operand *op) { struct decode_cache *c = &ctxt->decode; int rc = X86EMUL_CONTINUE; op->type = OP_MEM; switch (c->ad_bytes) { case 2: op->addr.mem = insn_fetch(u16, 2, c->eip); break; case 4: op->addr.mem = insn_fetch(u32, 4, c->eip); break; case 8: op->addr.mem = insn_fetch(u64, 8, c->eip); break; } done: return rc; } static void fetch_bit_operand(struct decode_cache *c) { long sv, mask; if (c->dst.type == OP_MEM && c->src.type == OP_REG) { mask = ~(c->dst.bytes * 8 - 1); if (c->src.bytes == 2) sv = (s16)c->src.val & (s16)mask; else if (c->src.bytes == 4) sv = (s32)c->src.val & (s32)mask; c->dst.addr.mem += (sv >> 3); } /* only subword offset */ c->src.val &= (c->dst.bytes << 3) - 1; } static int read_emulated(struct x86_emulate_ctxt *ctxt, struct x86_emulate_ops *ops, unsigned long addr, void *dest, unsigned size) { int rc; struct read_cache *mc = &ctxt->decode.mem_read; u32 err; while (size) { int n = min(size, 8u); size -= n; if (mc->pos < mc->end) goto read_cached; rc = ops->read_emulated(addr, mc->data + mc->end, n, &err, ctxt->vcpu); if (rc == X86EMUL_PROPAGATE_FAULT) emulate_pf(ctxt, addr, err); if (rc != X86EMUL_CONTINUE) return rc; mc->end += n; read_cached: memcpy(dest, mc->data + mc->pos, n); mc->pos += n; dest += n; addr += n; } return X86EMUL_CONTINUE; } static int pio_in_emulated(struct x86_emulate_ctxt *ctxt, struct x86_emulate_ops *ops, unsigned int size, unsigned short port, void *dest) { struct read_cache *rc = &ctxt->decode.io_read; if (rc->pos == rc->end) { /* refill pio read ahead */ struct decode_cache *c = &ctxt->decode; unsigned int in_page, n; unsigned int count = c->rep_prefix ? address_mask(c, c->regs[VCPU_REGS_RCX]) : 1; in_page = (ctxt->eflags & EFLG_DF) ? offset_in_page(c->regs[VCPU_REGS_RDI]) : PAGE_SIZE - offset_in_page(c->regs[VCPU_REGS_RDI]); n = min(min(in_page, (unsigned int)sizeof(rc->data)) / size, count); if (n == 0) n = 1; rc->pos = rc->end = 0; if (!ops->pio_in_emulated(size, port, rc->data, n, ctxt->vcpu)) return 0; rc->end = n * size; } memcpy(dest, rc->data + rc->pos, size); rc->pos += size; return 1; } static u32 desc_limit_scaled(struct desc_struct *desc) { u32 limit = get_desc_limit(desc); return desc->g ? (limit << 12) | 0xfff : limit; } static void get_descriptor_table_ptr(struct x86_emulate_ctxt *ctxt, struct x86_emulate_ops *ops, u16 selector, struct desc_ptr *dt) { if (selector & 1 << 2) { struct desc_struct desc; memset (dt, 0, sizeof *dt); if (!ops->get_cached_descriptor(&desc, VCPU_SREG_LDTR, ctxt->vcpu)) return; dt->size = desc_limit_scaled(&desc); /* what if limit > 65535? */ dt->address = get_desc_base(&desc); } else ops->get_gdt(dt, ctxt->vcpu); } /* allowed just for 8 bytes segments */ static int read_segment_descriptor(struct x86_emulate_ctxt *ctxt, struct x86_emulate_ops *ops, u16 selector, struct desc_struct *desc) { struct desc_ptr dt; u16 index = selector >> 3; int ret; u32 err; ulong addr; get_descriptor_table_ptr(ctxt, ops, selector, &dt); if (dt.size < index * 8 + 7) { emulate_gp(ctxt, selector & 0xfffc); return X86EMUL_PROPAGATE_FAULT; } addr = dt.address + index * 8; ret = ops->read_std(addr, desc, sizeof *desc, ctxt->vcpu, &err); if (ret == X86EMUL_PROPAGATE_FAULT) emulate_pf(ctxt, addr, err); return ret; } /* allowed just for 8 bytes segments */ static int write_segment_descriptor(struct x86_emulate_ctxt *ctxt, struct x86_emulate_ops *ops, u16 selector, struct desc_struct *desc) { struct desc_ptr dt; u16 index = selector >> 3; u32 err; ulong addr; int ret; get_descriptor_table_ptr(ctxt, ops, selector, &dt); if (dt.size < index * 8 + 7) { emulate_gp(ctxt, selector & 0xfffc); return X86EMUL_PROPAGATE_FAULT; } addr = dt.address + index * 8; ret = ops->write_std(addr, desc, sizeof *desc, ctxt->vcpu, &err); if (ret == X86EMUL_PROPAGATE_FAULT) emulate_pf(ctxt, addr, err); return ret; } static int load_segment_descriptor(struct x86_emulate_ctxt *ctxt, struct x86_emulate_ops *ops, u16 selector, int seg) { struct desc_struct seg_desc; u8 dpl, rpl, cpl; unsigned err_vec = GP_VECTOR; u32 err_code = 0; bool null_selector = !(selector & ~0x3); /* 0000-0003 are null */ int ret; memset(&seg_desc, 0, sizeof seg_desc); if ((seg <= VCPU_SREG_GS && ctxt->mode == X86EMUL_MODE_VM86) || ctxt->mode == X86EMUL_MODE_REAL) { /* set real mode segment descriptor */ set_desc_base(&seg_desc, selector << 4); set_desc_limit(&seg_desc, 0xffff); seg_desc.type = 3; seg_desc.p = 1; seg_desc.s = 1; goto load; } /* NULL selector is not valid for TR, CS and SS */ if ((seg == VCPU_SREG_CS || seg == VCPU_SREG_SS || seg == VCPU_SREG_TR) && null_selector) goto exception; /* TR should be in GDT only */ if (seg == VCPU_SREG_TR && (selector & (1 << 2))) goto exception; if (null_selector) /* for NULL selector skip all following checks */ goto load; ret = read_segment_descriptor(ctxt, ops, selector, &seg_desc); if (ret != X86EMUL_CONTINUE) return ret; err_code = selector & 0xfffc; err_vec = GP_VECTOR; /* can't load system descriptor into segment selecor */ if (seg <= VCPU_SREG_GS && !seg_desc.s) goto exception; if (!seg_desc.p) { err_vec = (seg == VCPU_SREG_SS) ? SS_VECTOR : NP_VECTOR; goto exception; } rpl = selector & 3; dpl = seg_desc.dpl; cpl = ops->cpl(ctxt->vcpu); switch (seg) { case VCPU_SREG_SS: /* * segment is not a writable data segment or segment * selector's RPL != CPL or segment selector's RPL != CPL */ if (rpl != cpl || (seg_desc.type & 0xa) != 0x2 || dpl != cpl) goto exception; break; case VCPU_SREG_CS: if (!(seg_desc.type & 8)) goto exception; if (seg_desc.type & 4) { /* conforming */ if (dpl > cpl) goto exception; } else { /* nonconforming */ if (rpl > cpl || dpl != cpl) goto exception; } /* CS(RPL) <- CPL */ selector = (selector & 0xfffc) | cpl; break; case VCPU_SREG_TR: if (seg_desc.s || (seg_desc.type != 1 && seg_desc.type != 9)) goto exception; break; case VCPU_SREG_LDTR: if (seg_desc.s || seg_desc.type != 2) goto exception; break; default: /* DS, ES, FS, or GS */ /* * segment is not a data or readable code segment or * ((segment is a data or nonconforming code segment) * and (both RPL and CPL > DPL)) */ if ((seg_desc.type & 0xa) == 0x8 || (((seg_desc.type & 0xc) != 0xc) && (rpl > dpl && cpl > dpl))) goto exception; break; } if (seg_desc.s) { /* mark segment as accessed */ seg_desc.type |= 1; ret = write_segment_descriptor(ctxt, ops, selector, &seg_desc); if (ret != X86EMUL_CONTINUE) return ret; } load: ops->set_segment_selector(selector, seg, ctxt->vcpu); ops->set_cached_descriptor(&seg_desc, seg, ctxt->vcpu); return X86EMUL_CONTINUE; exception: emulate_exception(ctxt, err_vec, err_code, true); return X86EMUL_PROPAGATE_FAULT; } static void write_register_operand(struct operand *op) { /* The 4-byte case *is* correct: in 64-bit mode we zero-extend. */ switch (op->bytes) { case 1: *(u8 *)op->addr.reg = (u8)op->val; break; case 2: *(u16 *)op->addr.reg = (u16)op->val; break; case 4: *op->addr.reg = (u32)op->val; break; /* 64b: zero-extend */ case 8: *op->addr.reg = op->val; break; } } static inline int writeback(struct x86_emulate_ctxt *ctxt, struct x86_emulate_ops *ops) { int rc; struct decode_cache *c = &ctxt->decode; u32 err; switch (c->dst.type) { case OP_REG: write_register_operand(&c->dst); break; case OP_MEM: if (c->lock_prefix) rc = ops->cmpxchg_emulated( c->dst.addr.mem, &c->dst.orig_val, &c->dst.val, c->dst.bytes, &err, ctxt->vcpu); else rc = ops->write_emulated( c->dst.addr.mem, &c->dst.val, c->dst.bytes, &err, ctxt->vcpu); if (rc == X86EMUL_PROPAGATE_FAULT) emulate_pf(ctxt, c->dst.addr.mem, err); if (rc != X86EMUL_CONTINUE) return rc; break; case OP_NONE: /* no writeback */ break; default: break; } return X86EMUL_CONTINUE; } static inline void emulate_push(struct x86_emulate_ctxt *ctxt, struct x86_emulate_ops *ops) { struct decode_cache *c = &ctxt->decode; c->dst.type = OP_MEM; c->dst.bytes = c->op_bytes; c->dst.val = c->src.val; register_address_increment(c, &c->regs[VCPU_REGS_RSP], -c->op_bytes); c->dst.addr.mem = register_address(c, ss_base(ctxt, ops), c->regs[VCPU_REGS_RSP]); } static int emulate_pop(struct x86_emulate_ctxt *ctxt, struct x86_emulate_ops *ops, void *dest, int len) { struct decode_cache *c = &ctxt->decode; int rc; rc = read_emulated(ctxt, ops, register_address(c, ss_base(ctxt, ops), c->regs[VCPU_REGS_RSP]), dest, len); if (rc != X86EMUL_CONTINUE) return rc; register_address_increment(c, &c->regs[VCPU_REGS_RSP], len); return rc; } static int emulate_popf(struct x86_emulate_ctxt *ctxt, struct x86_emulate_ops *ops, void *dest, int len) { int rc; unsigned long val, change_mask; int iopl = (ctxt->eflags & X86_EFLAGS_IOPL) >> IOPL_SHIFT; int cpl = ops->cpl(ctxt->vcpu); rc = emulate_pop(ctxt, ops, &val, len); if (rc != X86EMUL_CONTINUE) return rc; change_mask = EFLG_CF | EFLG_PF | EFLG_AF | EFLG_ZF | EFLG_SF | EFLG_OF | EFLG_TF | EFLG_DF | EFLG_NT | EFLG_RF | EFLG_AC | EFLG_ID; switch(ctxt->mode) { case X86EMUL_MODE_PROT64: case X86EMUL_MODE_PROT32: case X86EMUL_MODE_PROT16: if (cpl == 0) change_mask |= EFLG_IOPL; if (cpl <= iopl) change_mask |= EFLG_IF; break; case X86EMUL_MODE_VM86: if (iopl < 3) { emulate_gp(ctxt, 0); return X86EMUL_PROPAGATE_FAULT; } change_mask |= EFLG_IF; break; default: /* real mode */ change_mask |= (EFLG_IOPL | EFLG_IF); break; } *(unsigned long *)dest = (ctxt->eflags & ~change_mask) | (val & change_mask); return rc; } static void emulate_push_sreg(struct x86_emulate_ctxt *ctxt, struct x86_emulate_ops *ops, int seg) { struct decode_cache *c = &ctxt->decode; c->src.val = ops->get_segment_selector(seg, ctxt->vcpu); emulate_push(ctxt, ops); } static int emulate_pop_sreg(struct x86_emulate_ctxt *ctxt, struct x86_emulate_ops *ops, int seg) { struct decode_cache *c = &ctxt->decode; unsigned long selector; int rc; rc = emulate_pop(ctxt, ops, &selector, c->op_bytes); if (rc != X86EMUL_CONTINUE) return rc; rc = load_segment_descriptor(ctxt, ops, (u16)selector, seg); return rc; } static int emulate_pusha(struct x86_emulate_ctxt *ctxt, struct x86_emulate_ops *ops) { struct decode_cache *c = &ctxt->decode; unsigned long old_esp = c->regs[VCPU_REGS_RSP]; int rc = X86EMUL_CONTINUE; int reg = VCPU_REGS_RAX; while (reg <= VCPU_REGS_RDI) { (reg == VCPU_REGS_RSP) ? (c->src.val = old_esp) : (c->src.val = c->regs[reg]); emulate_push(ctxt, ops); rc = writeback(ctxt, ops); if (rc != X86EMUL_CONTINUE) return rc; ++reg; } /* Disable writeback. */ c->dst.type = OP_NONE; return rc; } static int emulate_popa(struct x86_emulate_ctxt *ctxt, struct x86_emulate_ops *ops) { struct decode_cache *c = &ctxt->decode; int rc = X86EMUL_CONTINUE; int reg = VCPU_REGS_RDI; while (reg >= VCPU_REGS_RAX) { if (reg == VCPU_REGS_RSP) { register_address_increment(c, &c->regs[VCPU_REGS_RSP], c->op_bytes); --reg; } rc = emulate_pop(ctxt, ops, &c->regs[reg], c->op_bytes); if (rc != X86EMUL_CONTINUE) break; --reg; } return rc; } int emulate_int_real(struct x86_emulate_ctxt *ctxt, struct x86_emulate_ops *ops, int irq) { struct decode_cache *c = &ctxt->decode; int rc; struct desc_ptr dt; gva_t cs_addr; gva_t eip_addr; u16 cs, eip; u32 err; /* TODO: Add limit checks */ c->src.val = ctxt->eflags; emulate_push(ctxt, ops); rc = writeback(ctxt, ops); if (rc != X86EMUL_CONTINUE) return rc; ctxt->eflags &= ~(EFLG_IF | EFLG_TF | EFLG_AC); c->src.val = ops->get_segment_selector(VCPU_SREG_CS, ctxt->vcpu); emulate_push(ctxt, ops); rc = writeback(ctxt, ops); if (rc != X86EMUL_CONTINUE) return rc; c->src.val = c->eip; emulate_push(ctxt, ops); rc = writeback(ctxt, ops); if (rc != X86EMUL_CONTINUE) return rc; c->dst.type = OP_NONE; ops->get_idt(&dt, ctxt->vcpu); eip_addr = dt.address + (irq << 2); cs_addr = dt.address + (irq << 2) + 2; rc = ops->read_std(cs_addr, &cs, 2, ctxt->vcpu, &err); if (rc != X86EMUL_CONTINUE) return rc; rc = ops->read_std(eip_addr, &eip, 2, ctxt->vcpu, &err); if (rc != X86EMUL_CONTINUE) return rc; rc = load_segment_descriptor(ctxt, ops, cs, VCPU_SREG_CS); if (rc != X86EMUL_CONTINUE) return rc; c->eip = eip; return rc; } static int emulate_int(struct x86_emulate_ctxt *ctxt, struct x86_emulate_ops *ops, int irq) { switch(ctxt->mode) { case X86EMUL_MODE_REAL: return emulate_int_real(ctxt, ops, irq); case X86EMUL_MODE_VM86: case X86EMUL_MODE_PROT16: case X86EMUL_MODE_PROT32: case X86EMUL_MODE_PROT64: default: /* Protected mode interrupts unimplemented yet */ return X86EMUL_UNHANDLEABLE; } } static int emulate_iret_real(struct x86_emulate_ctxt *ctxt, struct x86_emulate_ops *ops) { struct decode_cache *c = &ctxt->decode; int rc = X86EMUL_CONTINUE; unsigned long temp_eip = 0; unsigned long temp_eflags = 0; unsigned long cs = 0; unsigned long mask = EFLG_CF | EFLG_PF | EFLG_AF | EFLG_ZF | EFLG_SF | EFLG_TF | EFLG_IF | EFLG_DF | EFLG_OF | EFLG_IOPL | EFLG_NT | EFLG_RF | EFLG_AC | EFLG_ID | (1 << 1); /* Last one is the reserved bit */ unsigned long vm86_mask = EFLG_VM | EFLG_VIF | EFLG_VIP; /* TODO: Add stack limit check */ rc = emulate_pop(ctxt, ops, &temp_eip, c->op_bytes); if (rc != X86EMUL_CONTINUE) return rc; if (temp_eip & ~0xffff) { emulate_gp(ctxt, 0); return X86EMUL_PROPAGATE_FAULT; } rc = emulate_pop(ctxt, ops, &cs, c->op_bytes); if (rc != X86EMUL_CONTINUE) return rc; rc = emulate_pop(ctxt, ops, &temp_eflags, c->op_bytes); if (rc != X86EMUL_CONTINUE) return rc; rc = load_segment_descriptor(ctxt, ops, (u16)cs, VCPU_SREG_CS); if (rc != X86EMUL_CONTINUE) return rc; c->eip = temp_eip; if (c->op_bytes == 4) ctxt->eflags = ((temp_eflags & mask) | (ctxt->eflags & vm86_mask)); else if (c->op_bytes == 2) { ctxt->eflags &= ~0xffff; ctxt->eflags |= temp_eflags; } ctxt->eflags &= ~EFLG_RESERVED_ZEROS_MASK; /* Clear reserved zeros */ ctxt->eflags |= EFLG_RESERVED_ONE_MASK; return rc; } static inline int emulate_iret(struct x86_emulate_ctxt *ctxt, struct x86_emulate_ops* ops) { switch(ctxt->mode) { case X86EMUL_MODE_REAL: return emulate_iret_real(ctxt, ops); case X86EMUL_MODE_VM86: case X86EMUL_MODE_PROT16: case X86EMUL_MODE_PROT32: case X86EMUL_MODE_PROT64: default: /* iret from protected mode unimplemented yet */ return X86EMUL_UNHANDLEABLE; } } static inline int emulate_grp1a(struct x86_emulate_ctxt *ctxt, struct x86_emulate_ops *ops) { struct decode_cache *c = &ctxt->decode; return emulate_pop(ctxt, ops, &c->dst.val, c->dst.bytes); } static inline void emulate_grp2(struct x86_emulate_ctxt *ctxt) { struct decode_cache *c = &ctxt->decode; switch (c->modrm_reg) { case 0: /* rol */ emulate_2op_SrcB("rol", c->src, c->dst, ctxt->eflags); break; case 1: /* ror */ emulate_2op_SrcB("ror", c->src, c->dst, ctxt->eflags); break; case 2: /* rcl */ emulate_2op_SrcB("rcl", c->src, c->dst, ctxt->eflags); break; case 3: /* rcr */ emulate_2op_SrcB("rcr", c->src, c->dst, ctxt->eflags); break; case 4: /* sal/shl */ case 6: /* sal/shl */ emulate_2op_SrcB("sal", c->src, c->dst, ctxt->eflags); break; case 5: /* shr */ emulate_2op_SrcB("shr", c->src, c->dst, ctxt->eflags); break; case 7: /* sar */ emulate_2op_SrcB("sar", c->src, c->dst, ctxt->eflags); break; } } static inline int emulate_grp3(struct x86_emulate_ctxt *ctxt, struct x86_emulate_ops *ops) { struct decode_cache *c = &ctxt->decode; unsigned long *rax = &c->regs[VCPU_REGS_RAX]; unsigned long *rdx = &c->regs[VCPU_REGS_RDX]; switch (c->modrm_reg) { case 0 ... 1: /* test */ emulate_2op_SrcV("test", c->src, c->dst, ctxt->eflags); break; case 2: /* not */ c->dst.val = ~c->dst.val; break; case 3: /* neg */ emulate_1op("neg", c->dst, ctxt->eflags); break; case 4: /* mul */ emulate_1op_rax_rdx("mul", c->src, *rax, *rdx, ctxt->eflags); break; case 5: /* imul */ emulate_1op_rax_rdx("imul", c->src, *rax, *rdx, ctxt->eflags); break; case 6: /* div */ emulate_1op_rax_rdx("div", c->src, *rax, *rdx, ctxt->eflags); break; case 7: /* idiv */ emulate_1op_rax_rdx("idiv", c->src, *rax, *rdx, ctxt->eflags); break; default: return X86EMUL_UNHANDLEABLE; } return X86EMUL_CONTINUE; } static inline int emulate_grp45(struct x86_emulate_ctxt *ctxt, struct x86_emulate_ops *ops) { struct decode_cache *c = &ctxt->decode; switch (c->modrm_reg) { case 0: /* inc */ emulate_1op("inc", c->dst, ctxt->eflags); break; case 1: /* dec */ emulate_1op("dec", c->dst, ctxt->eflags); break; case 2: /* call near abs */ { long int old_eip; old_eip = c->eip; c->eip = c->src.val; c->src.val = old_eip; emulate_push(ctxt, ops); break; } case 4: /* jmp abs */ c->eip = c->src.val; break; case 6: /* push */ emulate_push(ctxt, ops); break; } return X86EMUL_CONTINUE; } static inline int emulate_grp9(struct x86_emulate_ctxt *ctxt, struct x86_emulate_ops *ops) { struct decode_cache *c = &ctxt->decode; u64 old = c->dst.orig_val64; if (((u32) (old >> 0) != (u32) c->regs[VCPU_REGS_RAX]) || ((u32) (old >> 32) != (u32) c->regs[VCPU_REGS_RDX])) { c->regs[VCPU_REGS_RAX] = (u32) (old >> 0); c->regs[VCPU_REGS_RDX] = (u32) (old >> 32); ctxt->eflags &= ~EFLG_ZF; } else { c->dst.val64 = ((u64)c->regs[VCPU_REGS_RCX] << 32) | (u32) c->regs[VCPU_REGS_RBX]; ctxt->eflags |= EFLG_ZF; } return X86EMUL_CONTINUE; } static int emulate_ret_far(struct x86_emulate_ctxt *ctxt, struct x86_emulate_ops *ops) { struct decode_cache *c = &ctxt->decode; int rc; unsigned long cs; rc = emulate_pop(ctxt, ops, &c->eip, c->op_bytes); if (rc != X86EMUL_CONTINUE) return rc; if (c->op_bytes == 4) c->eip = (u32)c->eip; rc = emulate_pop(ctxt, ops, &cs, c->op_bytes); if (rc != X86EMUL_CONTINUE) return rc; rc = load_segment_descriptor(ctxt, ops, (u16)cs, VCPU_SREG_CS); return rc; } static int emulate_load_segment(struct x86_emulate_ctxt *ctxt, struct x86_emulate_ops *ops, int seg) { struct decode_cache *c = &ctxt->decode; unsigned short sel; int rc; memcpy(&sel, c->src.valptr + c->op_bytes, 2); rc = load_segment_descriptor(ctxt, ops, sel, seg); if (rc != X86EMUL_CONTINUE) return rc; c->dst.val = c->src.val; return rc; } static inline void setup_syscalls_segments(struct x86_emulate_ctxt *ctxt, struct x86_emulate_ops *ops, struct desc_struct *cs, struct desc_struct *ss) { memset(cs, 0, sizeof(struct desc_struct)); ops->get_cached_descriptor(cs, VCPU_SREG_CS, ctxt->vcpu); memset(ss, 0, sizeof(struct desc_struct)); cs->l = 0; /* will be adjusted later */ set_desc_base(cs, 0); /* flat segment */ cs->g = 1; /* 4kb granularity */ set_desc_limit(cs, 0xfffff); /* 4GB limit */ cs->type = 0x0b; /* Read, Execute, Accessed */ cs->s = 1; cs->dpl = 0; /* will be adjusted later */ cs->p = 1; cs->d = 1; set_desc_base(ss, 0); /* flat segment */ set_desc_limit(ss, 0xfffff); /* 4GB limit */ ss->g = 1; /* 4kb granularity */ ss->s = 1; ss->type = 0x03; /* Read/Write, Accessed */ ss->d = 1; /* 32bit stack segment */ ss->dpl = 0; ss->p = 1; } static int emulate_syscall(struct x86_emulate_ctxt *ctxt, struct x86_emulate_ops *ops) { struct decode_cache *c = &ctxt->decode; struct desc_struct cs, ss; u64 msr_data; u16 cs_sel, ss_sel; /* syscall is not available in real mode */ if (ctxt->mode == X86EMUL_MODE_REAL || ctxt->mode == X86EMUL_MODE_VM86) { emulate_ud(ctxt); return X86EMUL_PROPAGATE_FAULT; } setup_syscalls_segments(ctxt, ops, &cs, &ss); ops->get_msr(ctxt->vcpu, MSR_STAR, &msr_data); msr_data >>= 32; cs_sel = (u16)(msr_data & 0xfffc); ss_sel = (u16)(msr_data + 8); if (is_long_mode(ctxt->vcpu)) { cs.d = 0; cs.l = 1; } ops->set_cached_descriptor(&cs, VCPU_SREG_CS, ctxt->vcpu); ops->set_segment_selector(cs_sel, VCPU_SREG_CS, ctxt->vcpu); ops->set_cached_descriptor(&ss, VCPU_SREG_SS, ctxt->vcpu); ops->set_segment_selector(ss_sel, VCPU_SREG_SS, ctxt->vcpu); c->regs[VCPU_REGS_RCX] = c->eip; if (is_long_mode(ctxt->vcpu)) { #ifdef CONFIG_X86_64 c->regs[VCPU_REGS_R11] = ctxt->eflags & ~EFLG_RF; ops->get_msr(ctxt->vcpu, ctxt->mode == X86EMUL_MODE_PROT64 ? MSR_LSTAR : MSR_CSTAR, &msr_data); c->eip = msr_data; ops->get_msr(ctxt->vcpu, MSR_SYSCALL_MASK, &msr_data); ctxt->eflags &= ~(msr_data | EFLG_RF); #endif } else { /* legacy mode */ ops->get_msr(ctxt->vcpu, MSR_STAR, &msr_data); c->eip = (u32)msr_data; ctxt->eflags &= ~(EFLG_VM | EFLG_IF | EFLG_RF); } return X86EMUL_CONTINUE; } static int emulate_sysenter(struct x86_emulate_ctxt *ctxt, struct x86_emulate_ops *ops) { struct decode_cache *c = &ctxt->decode; struct desc_struct cs, ss; u64 msr_data; u16 cs_sel, ss_sel; /* inject #GP if in real mode */ if (ctxt->mode == X86EMUL_MODE_REAL) { emulate_gp(ctxt, 0); return X86EMUL_PROPAGATE_FAULT; } /* XXX sysenter/sysexit have not been tested in 64bit mode. * Therefore, we inject an #UD. */ if (ctxt->mode == X86EMUL_MODE_PROT64) { emulate_ud(ctxt); return X86EMUL_PROPAGATE_FAULT; } setup_syscalls_segments(ctxt, ops, &cs, &ss); ops->get_msr(ctxt->vcpu, MSR_IA32_SYSENTER_CS, &msr_data); switch (ctxt->mode) { case X86EMUL_MODE_PROT32: if ((msr_data & 0xfffc) == 0x0) { emulate_gp(ctxt, 0); return X86EMUL_PROPAGATE_FAULT; } break; case X86EMUL_MODE_PROT64: if (msr_data == 0x0) { emulate_gp(ctxt, 0); return X86EMUL_PROPAGATE_FAULT; } break; } ctxt->eflags &= ~(EFLG_VM | EFLG_IF | EFLG_RF); cs_sel = (u16)msr_data; cs_sel &= ~SELECTOR_RPL_MASK; ss_sel = cs_sel + 8; ss_sel &= ~SELECTOR_RPL_MASK; if (ctxt->mode == X86EMUL_MODE_PROT64 || is_long_mode(ctxt->vcpu)) { cs.d = 0; cs.l = 1; } ops->set_cached_descriptor(&cs, VCPU_SREG_CS, ctxt->vcpu); ops->set_segment_selector(cs_sel, VCPU_SREG_CS, ctxt->vcpu); ops->set_cached_descriptor(&ss, VCPU_SREG_SS, ctxt->vcpu); ops->set_segment_selector(ss_sel, VCPU_SREG_SS, ctxt->vcpu); ops->get_msr(ctxt->vcpu, MSR_IA32_SYSENTER_EIP, &msr_data); c->eip = msr_data; ops->get_msr(ctxt->vcpu, MSR_IA32_SYSENTER_ESP, &msr_data); c->regs[VCPU_REGS_RSP] = msr_data; return X86EMUL_CONTINUE; } static int emulate_sysexit(struct x86_emulate_ctxt *ctxt, struct x86_emulate_ops *ops) { struct decode_cache *c = &ctxt->decode; struct desc_struct cs, ss; u64 msr_data; int usermode; u16 cs_sel, ss_sel; /* inject #GP if in real mode or Virtual 8086 mode */ if (ctxt->mode == X86EMUL_MODE_REAL || ctxt->mode == X86EMUL_MODE_VM86) { emulate_gp(ctxt, 0); return X86EMUL_PROPAGATE_FAULT; } setup_syscalls_segments(ctxt, ops, &cs, &ss); if ((c->rex_prefix & 0x8) != 0x0) usermode = X86EMUL_MODE_PROT64; else usermode = X86EMUL_MODE_PROT32; cs.dpl = 3; ss.dpl = 3; ops->get_msr(ctxt->vcpu, MSR_IA32_SYSENTER_CS, &msr_data); switch (usermode) { case X86EMUL_MODE_PROT32: cs_sel = (u16)(msr_data + 16); if ((msr_data & 0xfffc) == 0x0) { emulate_gp(ctxt, 0); return X86EMUL_PROPAGATE_FAULT; } ss_sel = (u16)(msr_data + 24); break; case X86EMUL_MODE_PROT64: cs_sel = (u16)(msr_data + 32); if (msr_data == 0x0) { emulate_gp(ctxt, 0); return X86EMUL_PROPAGATE_FAULT; } ss_sel = cs_sel + 8; cs.d = 0; cs.l = 1; break; } cs_sel |= SELECTOR_RPL_MASK; ss_sel |= SELECTOR_RPL_MASK; ops->set_cached_descriptor(&cs, VCPU_SREG_CS, ctxt->vcpu); ops->set_segment_selector(cs_sel, VCPU_SREG_CS, ctxt->vcpu); ops->set_cached_descriptor(&ss, VCPU_SREG_SS, ctxt->vcpu); ops->set_segment_selector(ss_sel, VCPU_SREG_SS, ctxt->vcpu); c->eip = c->regs[VCPU_REGS_RDX]; c->regs[VCPU_REGS_RSP] = c->regs[VCPU_REGS_RCX]; return X86EMUL_CONTINUE; } static bool emulator_bad_iopl(struct x86_emulate_ctxt *ctxt, struct x86_emulate_ops *ops) { int iopl; if (ctxt->mode == X86EMUL_MODE_REAL) return false; if (ctxt->mode == X86EMUL_MODE_VM86) return true; iopl = (ctxt->eflags & X86_EFLAGS_IOPL) >> IOPL_SHIFT; return ops->cpl(ctxt->vcpu) > iopl; } static bool emulator_io_port_access_allowed(struct x86_emulate_ctxt *ctxt, struct x86_emulate_ops *ops, u16 port, u16 len) { struct desc_struct tr_seg; int r; u16 io_bitmap_ptr; u8 perm, bit_idx = port & 0x7; unsigned mask = (1 << len) - 1; ops->get_cached_descriptor(&tr_seg, VCPU_SREG_TR, ctxt->vcpu); if (!tr_seg.p) return false; if (desc_limit_scaled(&tr_seg) < 103) return false; r = ops->read_std(get_desc_base(&tr_seg) + 102, &io_bitmap_ptr, 2, ctxt->vcpu, NULL); if (r != X86EMUL_CONTINUE) return false; if (io_bitmap_ptr + port/8 > desc_limit_scaled(&tr_seg)) return false; r = ops->read_std(get_desc_base(&tr_seg) + io_bitmap_ptr + port/8, &perm, 1, ctxt->vcpu, NULL); if (r != X86EMUL_CONTINUE) return false; if ((perm >> bit_idx) & mask) return false; return true; } static bool emulator_io_permited(struct x86_emulate_ctxt *ctxt, struct x86_emulate_ops *ops, u16 port, u16 len) { if (ctxt->perm_ok) return true; if (emulator_bad_iopl(ctxt, ops)) if (!emulator_io_port_access_allowed(ctxt, ops, port, len)) return false; ctxt->perm_ok = true; return true; } static void save_state_to_tss16(struct x86_emulate_ctxt *ctxt, struct x86_emulate_ops *ops, struct tss_segment_16 *tss) { struct decode_cache *c = &ctxt->decode; tss->ip = c->eip; tss->flag = ctxt->eflags; tss->ax = c->regs[VCPU_REGS_RAX]; tss->cx = c->regs[VCPU_REGS_RCX]; tss->dx = c->regs[VCPU_REGS_RDX]; tss->bx = c->regs[VCPU_REGS_RBX]; tss->sp = c->regs[VCPU_REGS_RSP]; tss->bp = c->regs[VCPU_REGS_RBP]; tss->si = c->regs[VCPU_REGS_RSI]; tss->di = c->regs[VCPU_REGS_RDI]; tss->es = ops->get_segment_selector(VCPU_SREG_ES, ctxt->vcpu); tss->cs = ops->get_segment_selector(VCPU_SREG_CS, ctxt->vcpu); tss->ss = ops->get_segment_selector(VCPU_SREG_SS, ctxt->vcpu); tss->ds = ops->get_segment_selector(VCPU_SREG_DS, ctxt->vcpu); tss->ldt = ops->get_segment_selector(VCPU_SREG_LDTR, ctxt->vcpu); } static int load_state_from_tss16(struct x86_emulate_ctxt *ctxt, struct x86_emulate_ops *ops, struct tss_segment_16 *tss) { struct decode_cache *c = &ctxt->decode; int ret; c->eip = tss->ip; ctxt->eflags = tss->flag | 2; c->regs[VCPU_REGS_RAX] = tss->ax; c->regs[VCPU_REGS_RCX] = tss->cx; c->regs[VCPU_REGS_RDX] = tss->dx; c->regs[VCPU_REGS_RBX] = tss->bx; c->regs[VCPU_REGS_RSP] = tss->sp; c->regs[VCPU_REGS_RBP] = tss->bp; c->regs[VCPU_REGS_RSI] = tss->si; c->regs[VCPU_REGS_RDI] = tss->di; /* * SDM says that segment selectors are loaded before segment * descriptors */ ops->set_segment_selector(tss->ldt, VCPU_SREG_LDTR, ctxt->vcpu); ops->set_segment_selector(tss->es, VCPU_SREG_ES, ctxt->vcpu); ops->set_segment_selector(tss->cs, VCPU_SREG_CS, ctxt->vcpu); ops->set_segment_selector(tss->ss, VCPU_SREG_SS, ctxt->vcpu); ops->set_segment_selector(tss->ds, VCPU_SREG_DS, ctxt->vcpu); /* * Now load segment descriptors. If fault happenes at this stage * it is handled in a context of new task */ ret = load_segment_descriptor(ctxt, ops, tss->ldt, VCPU_SREG_LDTR); if (ret != X86EMUL_CONTINUE) return ret; ret = load_segment_descriptor(ctxt, ops, tss->es, VCPU_SREG_ES); if (ret != X86EMUL_CONTINUE) return ret; ret = load_segment_descriptor(ctxt, ops, tss->cs, VCPU_SREG_CS); if (ret != X86EMUL_CONTINUE) return ret; ret = load_segment_descriptor(ctxt, ops, tss->ss, VCPU_SREG_SS); if (ret != X86EMUL_CONTINUE) return ret; ret = load_segment_descriptor(ctxt, ops, tss->ds, VCPU_SREG_DS); if (ret != X86EMUL_CONTINUE) return ret; return X86EMUL_CONTINUE; } static int task_switch_16(struct x86_emulate_ctxt *ctxt, struct x86_emulate_ops *ops, u16 tss_selector, u16 old_tss_sel, ulong old_tss_base, struct desc_struct *new_desc) { struct tss_segment_16 tss_seg; int ret; u32 err, new_tss_base = get_desc_base(new_desc); ret = ops->read_std(old_tss_base, &tss_seg, sizeof tss_seg, ctxt->vcpu, &err); if (ret == X86EMUL_PROPAGATE_FAULT) { /* FIXME: need to provide precise fault address */ emulate_pf(ctxt, old_tss_base, err); return ret; } save_state_to_tss16(ctxt, ops, &tss_seg); ret = ops->write_std(old_tss_base, &tss_seg, sizeof tss_seg, ctxt->vcpu, &err); if (ret == X86EMUL_PROPAGATE_FAULT) { /* FIXME: need to provide precise fault address */ emulate_pf(ctxt, old_tss_base, err); return ret; } ret = ops->read_std(new_tss_base, &tss_seg, sizeof tss_seg, ctxt->vcpu, &err); if (ret == X86EMUL_PROPAGATE_FAULT) { /* FIXME: need to provide precise fault address */ emulate_pf(ctxt, new_tss_base, err); return ret; } if (old_tss_sel != 0xffff) { tss_seg.prev_task_link = old_tss_sel; ret = ops->write_std(new_tss_base, &tss_seg.prev_task_link, sizeof tss_seg.prev_task_link, ctxt->vcpu, &err); if (ret == X86EMUL_PROPAGATE_FAULT) { /* FIXME: need to provide precise fault address */ emulate_pf(ctxt, new_tss_base, err); return ret; } } return load_state_from_tss16(ctxt, ops, &tss_seg); } static void save_state_to_tss32(struct x86_emulate_ctxt *ctxt, struct x86_emulate_ops *ops, struct tss_segment_32 *tss) { struct decode_cache *c = &ctxt->decode; tss->cr3 = ops->get_cr(3, ctxt->vcpu); tss->eip = c->eip; tss->eflags = ctxt->eflags; tss->eax = c->regs[VCPU_REGS_RAX]; tss->ecx = c->regs[VCPU_REGS_RCX]; tss->edx = c->regs[VCPU_REGS_RDX]; tss->ebx = c->regs[VCPU_REGS_RBX]; tss->esp = c->regs[VCPU_REGS_RSP]; tss->ebp = c->regs[VCPU_REGS_RBP]; tss->esi = c->regs[VCPU_REGS_RSI]; tss->edi = c->regs[VCPU_REGS_RDI]; tss->es = ops->get_segment_selector(VCPU_SREG_ES, ctxt->vcpu); tss->cs = ops->get_segment_selector(VCPU_SREG_CS, ctxt->vcpu); tss->ss = ops->get_segment_selector(VCPU_SREG_SS, ctxt->vcpu); tss->ds = ops->get_segment_selector(VCPU_SREG_DS, ctxt->vcpu); tss->fs = ops->get_segment_selector(VCPU_SREG_FS, ctxt->vcpu); tss->gs = ops->get_segment_selector(VCPU_SREG_GS, ctxt->vcpu); tss->ldt_selector = ops->get_segment_selector(VCPU_SREG_LDTR, ctxt->vcpu); } static int load_state_from_tss32(struct x86_emulate_ctxt *ctxt, struct x86_emulate_ops *ops, struct tss_segment_32 *tss) { struct decode_cache *c = &ctxt->decode; int ret; if (ops->set_cr(3, tss->cr3, ctxt->vcpu)) { emulate_gp(ctxt, 0); return X86EMUL_PROPAGATE_FAULT; } c->eip = tss->eip; ctxt->eflags = tss->eflags | 2; c->regs[VCPU_REGS_RAX] = tss->eax; c->regs[VCPU_REGS_RCX] = tss->ecx; c->regs[VCPU_REGS_RDX] = tss->edx; c->regs[VCPU_REGS_RBX] = tss->ebx; c->regs[VCPU_REGS_RSP] = tss->esp; c->regs[VCPU_REGS_RBP] = tss->ebp; c->regs[VCPU_REGS_RSI] = tss->esi; c->regs[VCPU_REGS_RDI] = tss->edi; /* * SDM says that segment selectors are loaded before segment * descriptors */ ops->set_segment_selector(tss->ldt_selector, VCPU_SREG_LDTR, ctxt->vcpu); ops->set_segment_selector(tss->es, VCPU_SREG_ES, ctxt->vcpu); ops->set_segment_selector(tss->cs, VCPU_SREG_CS, ctxt->vcpu); ops->set_segment_selector(tss->ss, VCPU_SREG_SS, ctxt->vcpu); ops->set_segment_selector(tss->ds, VCPU_SREG_DS, ctxt->vcpu); ops->set_segment_selector(tss->fs, VCPU_SREG_FS, ctxt->vcpu); ops->set_segment_selector(tss->gs, VCPU_SREG_GS, ctxt->vcpu); /* * Now load segment descriptors. If fault happenes at this stage * it is handled in a context of new task */ ret = load_segment_descriptor(ctxt, ops, tss->ldt_selector, VCPU_SREG_LDTR); if (ret != X86EMUL_CONTINUE) return ret; ret = load_segment_descriptor(ctxt, ops, tss->es, VCPU_SREG_ES); if (ret != X86EMUL_CONTINUE) return ret; ret = load_segment_descriptor(ctxt, ops, tss->cs, VCPU_SREG_CS); if (ret != X86EMUL_CONTINUE) return ret; ret = load_segment_descriptor(ctxt, ops, tss->ss, VCPU_SREG_SS); if (ret != X86EMUL_CONTINUE) return ret; ret = load_segment_descriptor(ctxt, ops, tss->ds, VCPU_SREG_DS); if (ret != X86EMUL_CONTINUE) return ret; ret = load_segment_descriptor(ctxt, ops, tss->fs, VCPU_SREG_FS); if (ret != X86EMUL_CONTINUE) return ret; ret = load_segment_descriptor(ctxt, ops, tss->gs, VCPU_SREG_GS); if (ret != X86EMUL_CONTINUE) return ret; return X86EMUL_CONTINUE; } static int task_switch_32(struct x86_emulate_ctxt *ctxt, struct x86_emulate_ops *ops, u16 tss_selector, u16 old_tss_sel, ulong old_tss_base, struct desc_struct *new_desc) { struct tss_segment_32 tss_seg; int ret; u32 err, new_tss_base = get_desc_base(new_desc); ret = ops->read_std(old_tss_base, &tss_seg, sizeof tss_seg, ctxt->vcpu, &err); if (ret == X86EMUL_PROPAGATE_FAULT) { /* FIXME: need to provide precise fault address */ emulate_pf(ctxt, old_tss_base, err); return ret; } save_state_to_tss32(ctxt, ops, &tss_seg); ret = ops->write_std(old_tss_base, &tss_seg, sizeof tss_seg, ctxt->vcpu, &err); if (ret == X86EMUL_PROPAGATE_FAULT) { /* FIXME: need to provide precise fault address */ emulate_pf(ctxt, old_tss_base, err); return ret; } ret = ops->read_std(new_tss_base, &tss_seg, sizeof tss_seg, ctxt->vcpu, &err); if (ret == X86EMUL_PROPAGATE_FAULT) { /* FIXME: need to provide precise fault address */ emulate_pf(ctxt, new_tss_base, err); return ret; } if (old_tss_sel != 0xffff) { tss_seg.prev_task_link = old_tss_sel; ret = ops->write_std(new_tss_base, &tss_seg.prev_task_link, sizeof tss_seg.prev_task_link, ctxt->vcpu, &err); if (ret == X86EMUL_PROPAGATE_FAULT) { /* FIXME: need to provide precise fault address */ emulate_pf(ctxt, new_tss_base, err); return ret; } } return load_state_from_tss32(ctxt, ops, &tss_seg); } static int emulator_do_task_switch(struct x86_emulate_ctxt *ctxt, struct x86_emulate_ops *ops, u16 tss_selector, int reason, bool has_error_code, u32 error_code) { struct desc_struct curr_tss_desc, next_tss_desc; int ret; u16 old_tss_sel = ops->get_segment_selector(VCPU_SREG_TR, ctxt->vcpu); ulong old_tss_base = ops->get_cached_segment_base(VCPU_SREG_TR, ctxt->vcpu); u32 desc_limit; /* FIXME: old_tss_base == ~0 ? */ ret = read_segment_descriptor(ctxt, ops, tss_selector, &next_tss_desc); if (ret != X86EMUL_CONTINUE) return ret; ret = read_segment_descriptor(ctxt, ops, old_tss_sel, &curr_tss_desc); if (ret != X86EMUL_CONTINUE) return ret; /* FIXME: check that next_tss_desc is tss */ if (reason != TASK_SWITCH_IRET) { if ((tss_selector & 3) > next_tss_desc.dpl || ops->cpl(ctxt->vcpu) > next_tss_desc.dpl) { emulate_gp(ctxt, 0); return X86EMUL_PROPAGATE_FAULT; } } desc_limit = desc_limit_scaled(&next_tss_desc); if (!next_tss_desc.p || ((desc_limit < 0x67 && (next_tss_desc.type & 8)) || desc_limit < 0x2b)) { emulate_ts(ctxt, tss_selector & 0xfffc); return X86EMUL_PROPAGATE_FAULT; } if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) { curr_tss_desc.type &= ~(1 << 1); /* clear busy flag */ write_segment_descriptor(ctxt, ops, old_tss_sel, &curr_tss_desc); } if (reason == TASK_SWITCH_IRET) ctxt->eflags = ctxt->eflags & ~X86_EFLAGS_NT; /* set back link to prev task only if NT bit is set in eflags note that old_tss_sel is not used afetr this point */ if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE) old_tss_sel = 0xffff; if (next_tss_desc.type & 8) ret = task_switch_32(ctxt, ops, tss_selector, old_tss_sel, old_tss_base, &next_tss_desc); else ret = task_switch_16(ctxt, ops, tss_selector, old_tss_sel, old_tss_base, &next_tss_desc); if (ret != X86EMUL_CONTINUE) return ret; if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE) ctxt->eflags = ctxt->eflags | X86_EFLAGS_NT; if (reason != TASK_SWITCH_IRET) { next_tss_desc.type |= (1 << 1); /* set busy flag */ write_segment_descriptor(ctxt, ops, tss_selector, &next_tss_desc); } ops->set_cr(0, ops->get_cr(0, ctxt->vcpu) | X86_CR0_TS, ctxt->vcpu); ops->set_cached_descriptor(&next_tss_desc, VCPU_SREG_TR, ctxt->vcpu); ops->set_segment_selector(tss_selector, VCPU_SREG_TR, ctxt->vcpu); if (has_error_code) { struct decode_cache *c = &ctxt->decode; c->op_bytes = c->ad_bytes = (next_tss_desc.type & 8) ? 4 : 2; c->lock_prefix = 0; c->src.val = (unsigned long) error_code; emulate_push(ctxt, ops); } return ret; } int emulator_task_switch(struct x86_emulate_ctxt *ctxt, u16 tss_selector, int reason, bool has_error_code, u32 error_code) { struct x86_emulate_ops *ops = ctxt->ops; struct decode_cache *c = &ctxt->decode; int rc; c->eip = ctxt->eip; c->dst.type = OP_NONE; rc = emulator_do_task_switch(ctxt, ops, tss_selector, reason, has_error_code, error_code); if (rc == X86EMUL_CONTINUE) { rc = writeback(ctxt, ops); if (rc == X86EMUL_CONTINUE) ctxt->eip = c->eip; } return (rc == X86EMUL_UNHANDLEABLE) ? -1 : 0; } static void string_addr_inc(struct x86_emulate_ctxt *ctxt, unsigned long base, int reg, struct operand *op) { struct decode_cache *c = &ctxt->decode; int df = (ctxt->eflags & EFLG_DF) ? -1 : 1; register_address_increment(c, &c->regs[reg], df * op->bytes); op->addr.mem = register_address(c, base, c->regs[reg]); } static int em_push(struct x86_emulate_ctxt *ctxt) { emulate_push(ctxt, ctxt->ops); return X86EMUL_CONTINUE; } static int em_das(struct x86_emulate_ctxt *ctxt) { struct decode_cache *c = &ctxt->decode; u8 al, old_al; bool af, cf, old_cf; cf = ctxt->eflags & X86_EFLAGS_CF; al = c->dst.val; old_al = al; old_cf = cf; cf = false; af = ctxt->eflags & X86_EFLAGS_AF; if ((al & 0x0f) > 9 || af) { al -= 6; cf = old_cf | (al >= 250); af = true; } else { af = false; } if (old_al > 0x99 || old_cf) { al -= 0x60; cf = true; } c->dst.val = al; /* Set PF, ZF, SF */ c->src.type = OP_IMM; c->src.val = 0; c->src.bytes = 1; emulate_2op_SrcV("or", c->src, c->dst, ctxt->eflags); ctxt->eflags &= ~(X86_EFLAGS_AF | X86_EFLAGS_CF); if (cf) ctxt->eflags |= X86_EFLAGS_CF; if (af) ctxt->eflags |= X86_EFLAGS_AF; return X86EMUL_CONTINUE; } static int em_call_far(struct x86_emulate_ctxt *ctxt) { struct decode_cache *c = &ctxt->decode; u16 sel, old_cs; ulong old_eip; int rc; old_cs = ctxt->ops->get_segment_selector(VCPU_SREG_CS, ctxt->vcpu); old_eip = c->eip; memcpy(&sel, c->src.valptr + c->op_bytes, 2); if (load_segment_descriptor(ctxt, ctxt->ops, sel, VCPU_SREG_CS)) return X86EMUL_CONTINUE; c->eip = 0; memcpy(&c->eip, c->src.valptr, c->op_bytes); c->src.val = old_cs; emulate_push(ctxt, ctxt->ops); rc = writeback(ctxt, ctxt->ops); if (rc != X86EMUL_CONTINUE) return rc; c->src.val = old_eip; emulate_push(ctxt, ctxt->ops); rc = writeback(ctxt, ctxt->ops); if (rc != X86EMUL_CONTINUE) return rc; c->dst.type = OP_NONE; return X86EMUL_CONTINUE; } static int em_ret_near_imm(struct x86_emulate_ctxt *ctxt) { struct decode_cache *c = &ctxt->decode; int rc; c->dst.type = OP_REG; c->dst.addr.reg = &c->eip; c->dst.bytes = c->op_bytes; rc = emulate_pop(ctxt, ctxt->ops, &c->dst.val, c->op_bytes); if (rc != X86EMUL_CONTINUE) return rc; register_address_increment(c, &c->regs[VCPU_REGS_RSP], c->src.val); return X86EMUL_CONTINUE; } static int em_imul(struct x86_emulate_ctxt *ctxt) { struct decode_cache *c = &ctxt->decode; emulate_2op_SrcV_nobyte("imul", c->src, c->dst, ctxt->eflags); return X86EMUL_CONTINUE; } static int em_imul_3op(struct x86_emulate_ctxt *ctxt) { struct decode_cache *c = &ctxt->decode; c->dst.val = c->src2.val; return em_imul(ctxt); } static int em_cwd(struct x86_emulate_ctxt *ctxt) { struct decode_cache *c = &ctxt->decode; c->dst.type = OP_REG; c->dst.bytes = c->src.bytes; c->dst.addr.reg = &c->regs[VCPU_REGS_RDX]; c->dst.val = ~((c->src.val >> (c->src.bytes * 8 - 1)) - 1); return X86EMUL_CONTINUE; } static int em_rdtsc(struct x86_emulate_ctxt *ctxt) { unsigned cpl = ctxt->ops->cpl(ctxt->vcpu); struct decode_cache *c = &ctxt->decode; u64 tsc = 0; if (cpl > 0 && (ctxt->ops->get_cr(4, ctxt->vcpu) & X86_CR4_TSD)) { emulate_gp(ctxt, 0); return X86EMUL_PROPAGATE_FAULT; } ctxt->ops->get_msr(ctxt->vcpu, MSR_IA32_TSC, &tsc); c->regs[VCPU_REGS_RAX] = (u32)tsc; c->regs[VCPU_REGS_RDX] = tsc >> 32; return X86EMUL_CONTINUE; } #define D(_y) { .flags = (_y) } #define N D(0) #define G(_f, _g) { .flags = ((_f) | Group), .u.group = (_g) } #define GD(_f, _g) { .flags = ((_f) | Group | GroupDual), .u.gdual = (_g) } #define I(_f, _e) { .flags = (_f), .u.execute = (_e) } static struct opcode group1[] = { X7(D(Lock)), N }; static struct opcode group1A[] = { D(DstMem | SrcNone | ModRM | Mov | Stack), N, N, N, N, N, N, N, }; static struct opcode group3[] = { D(DstMem | SrcImm | ModRM), D(DstMem | SrcImm | ModRM), D(DstMem | SrcNone | ModRM | Lock), D(DstMem | SrcNone | ModRM | Lock), X4(D(SrcMem | ModRM)), }; static struct opcode group4[] = { D(ByteOp | DstMem | SrcNone | ModRM | Lock), D(ByteOp | DstMem | SrcNone | ModRM | Lock), N, N, N, N, N, N, }; static struct opcode group5[] = { D(DstMem | SrcNone | ModRM | Lock), D(DstMem | SrcNone | ModRM | Lock), D(SrcMem | ModRM | Stack), I(SrcMemFAddr | ModRM | ImplicitOps | Stack, em_call_far), D(SrcMem | ModRM | Stack), D(SrcMemFAddr | ModRM | ImplicitOps), D(SrcMem | ModRM | Stack), N, }; static struct group_dual group7 = { { N, N, D(ModRM | SrcMem | Priv), D(ModRM | SrcMem | Priv), D(SrcNone | ModRM | DstMem | Mov), N, D(SrcMem16 | ModRM | Mov | Priv), D(SrcMem | ModRM | ByteOp | Priv | NoAccess), }, { D(SrcNone | ModRM | Priv), N, N, D(SrcNone | ModRM | Priv), D(SrcNone | ModRM | DstMem | Mov), N, D(SrcMem16 | ModRM | Mov | Priv), N, } }; static struct opcode group8[] = { N, N, N, N, D(DstMem | SrcImmByte | ModRM), D(DstMem | SrcImmByte | ModRM | Lock), D(DstMem | SrcImmByte | ModRM | Lock), D(DstMem | SrcImmByte | ModRM | Lock), }; static struct group_dual group9 = { { N, D(DstMem64 | ModRM | Lock), N, N, N, N, N, N, }, { N, N, N, N, N, N, N, N, } }; static struct opcode opcode_table[256] = { /* 0x00 - 0x07 */ D(ByteOp | DstMem | SrcReg | ModRM | Lock), D(DstMem | SrcReg | ModRM | Lock), D(ByteOp | DstReg | SrcMem | ModRM), D(DstReg | SrcMem | ModRM), D(ByteOp | DstAcc | SrcImm), D(DstAcc | SrcImm), D(ImplicitOps | Stack | No64), D(ImplicitOps | Stack | No64), /* 0x08 - 0x0F */ D(ByteOp | DstMem | SrcReg | ModRM | Lock), D(DstMem | SrcReg | ModRM | Lock), D(ByteOp | DstReg | SrcMem | ModRM), D(DstReg | SrcMem | ModRM), D(ByteOp | DstAcc | SrcImm), D(DstAcc | SrcImm), D(ImplicitOps | Stack | No64), N, /* 0x10 - 0x17 */ D(ByteOp | DstMem | SrcReg | ModRM | Lock), D(DstMem | SrcReg | ModRM | Lock), D(ByteOp | DstReg | SrcMem | ModRM), D(DstReg | SrcMem | ModRM), D(ByteOp | DstAcc | SrcImm), D(DstAcc | SrcImm), D(ImplicitOps | Stack | No64), D(ImplicitOps | Stack | No64), /* 0x18 - 0x1F */ D(ByteOp | DstMem | SrcReg | ModRM | Lock), D(DstMem | SrcReg | ModRM | Lock), D(ByteOp | DstReg | SrcMem | ModRM), D(DstReg | SrcMem | ModRM), D(ByteOp | DstAcc | SrcImm), D(DstAcc | SrcImm), D(ImplicitOps | Stack | No64), D(ImplicitOps | Stack | No64), /* 0x20 - 0x27 */ D(ByteOp | DstMem | SrcReg | ModRM | Lock), D(DstMem | SrcReg | ModRM | Lock), D(ByteOp | DstReg | SrcMem | ModRM), D(DstReg | SrcMem | ModRM), D(ByteOp | DstAcc | SrcImmByte), D(DstAcc | SrcImm), N, N, /* 0x28 - 0x2F */ D(ByteOp | DstMem | SrcReg | ModRM | Lock), D(DstMem | SrcReg | ModRM | Lock), D(ByteOp | DstReg | SrcMem | ModRM), D(DstReg | SrcMem | ModRM), D(ByteOp | DstAcc | SrcImmByte), D(DstAcc | SrcImm), N, I(ByteOp | DstAcc | No64, em_das), /* 0x30 - 0x37 */ D(ByteOp | DstMem | SrcReg | ModRM | Lock), D(DstMem | SrcReg | ModRM | Lock), D(ByteOp | DstReg | SrcMem | ModRM), D(DstReg | SrcMem | ModRM), D(ByteOp | DstAcc | SrcImmByte), D(DstAcc | SrcImm), N, N, /* 0x38 - 0x3F */ D(ByteOp | DstMem | SrcReg | ModRM), D(DstMem | SrcReg | ModRM), D(ByteOp | DstReg | SrcMem | ModRM), D(DstReg | SrcMem | ModRM), D(ByteOp | DstAcc | SrcImm), D(DstAcc | SrcImm), N, N, /* 0x40 - 0x4F */ X16(D(DstReg)), /* 0x50 - 0x57 */ X8(I(SrcReg | Stack, em_push)), /* 0x58 - 0x5F */ X8(D(DstReg | Stack)), /* 0x60 - 0x67 */ D(ImplicitOps | Stack | No64), D(ImplicitOps | Stack | No64), N, D(DstReg | SrcMem32 | ModRM | Mov) /* movsxd (x86/64) */ , N, N, N, N, /* 0x68 - 0x6F */ I(SrcImm | Mov | Stack, em_push), I(DstReg | SrcMem | ModRM | Src2Imm, em_imul_3op), I(SrcImmByte | Mov | Stack, em_push), I(DstReg | SrcMem | ModRM | Src2ImmByte, em_imul_3op), D(DstDI | ByteOp | Mov | String), D(DstDI | Mov | String), /* insb, insw/insd */ D(SrcSI | ByteOp | ImplicitOps | String), D(SrcSI | ImplicitOps | String), /* outsb, outsw/outsd */ /* 0x70 - 0x7F */ X16(D(SrcImmByte)), /* 0x80 - 0x87 */ G(ByteOp | DstMem | SrcImm | ModRM | Group, group1), G(DstMem | SrcImm | ModRM | Group, group1), G(ByteOp | DstMem | SrcImm | ModRM | No64 | Group, group1), G(DstMem | SrcImmByte | ModRM | Group, group1), D(ByteOp | DstMem | SrcReg | ModRM), D(DstMem | SrcReg | ModRM), D(ByteOp | DstMem | SrcReg | ModRM | Lock), D(DstMem | SrcReg | ModRM | Lock), /* 0x88 - 0x8F */ D(ByteOp | DstMem | SrcReg | ModRM | Mov), D(DstMem | SrcReg | ModRM | Mov), D(ByteOp | DstReg | SrcMem | ModRM | Mov), D(DstReg | SrcMem | ModRM | Mov), D(DstMem | SrcNone | ModRM | Mov), D(ModRM | SrcMem | NoAccess | DstReg), D(ImplicitOps | SrcMem16 | ModRM), G(0, group1A), /* 0x90 - 0x97 */ X8(D(SrcAcc | DstReg)), /* 0x98 - 0x9F */ D(DstAcc | SrcNone), I(ImplicitOps | SrcAcc, em_cwd), D(SrcImmFAddr | No64), N, D(ImplicitOps | Stack), D(ImplicitOps | Stack), N, N, /* 0xA0 - 0xA7 */ D(ByteOp | DstAcc | SrcMem | Mov | MemAbs), D(DstAcc | SrcMem | Mov | MemAbs), D(ByteOp | DstMem | SrcAcc | Mov | MemAbs), D(DstMem | SrcAcc | Mov | MemAbs), D(ByteOp | SrcSI | DstDI | Mov | String), D(SrcSI | DstDI | Mov | String), D(ByteOp | SrcSI | DstDI | String), D(SrcSI | DstDI | String), /* 0xA8 - 0xAF */ D(DstAcc | SrcImmByte | ByteOp), D(DstAcc | SrcImm), D(ByteOp | SrcAcc | DstDI | Mov | String), D(SrcAcc | DstDI | Mov | String), D(ByteOp | SrcSI | DstAcc | Mov | String), D(SrcSI | DstAcc | Mov | String), D(ByteOp | SrcAcc | DstDI | String), D(SrcAcc | DstDI | String), /* 0xB0 - 0xB7 */ X8(D(ByteOp | DstReg | SrcImm | Mov)), /* 0xB8 - 0xBF */ X8(D(DstReg | SrcImm | Mov)), /* 0xC0 - 0xC7 */ D(ByteOp | DstMem | SrcImm | ModRM), D(DstMem | SrcImmByte | ModRM), I(ImplicitOps | Stack | SrcImmU16, em_ret_near_imm), D(ImplicitOps | Stack), D(DstReg | SrcMemFAddr | ModRM | No64), D(DstReg | SrcMemFAddr | ModRM | No64), D(ByteOp | DstMem | SrcImm | ModRM | Mov), D(DstMem | SrcImm | ModRM | Mov), /* 0xC8 - 0xCF */ N, N, N, D(ImplicitOps | Stack), D(ImplicitOps), D(SrcImmByte), D(ImplicitOps | No64), D(ImplicitOps), /* 0xD0 - 0xD7 */ D(ByteOp | DstMem | SrcOne | ModRM), D(DstMem | SrcOne | ModRM), D(ByteOp | DstMem | ModRM), D(DstMem | ModRM), N, N, N, N, /* 0xD8 - 0xDF */ N, N, N, N, N, N, N, N, /* 0xE0 - 0xE7 */ X4(D(SrcImmByte)), D(ByteOp | SrcImmUByte | DstAcc), D(SrcImmUByte | DstAcc), D(ByteOp | SrcAcc | DstImmUByte), D(SrcAcc | DstImmUByte), /* 0xE8 - 0xEF */ D(SrcImm | Stack), D(SrcImm | ImplicitOps), D(SrcImmFAddr | No64), D(SrcImmByte | ImplicitOps), D(SrcNone | ByteOp | DstAcc), D(SrcNone | DstAcc), D(ByteOp | SrcAcc | ImplicitOps), D(SrcAcc | ImplicitOps), /* 0xF0 - 0xF7 */ N, N, N, N, D(ImplicitOps | Priv), D(ImplicitOps), G(ByteOp, group3), G(0, group3), /* 0xF8 - 0xFF */ D(ImplicitOps), D(ImplicitOps), D(ImplicitOps), D(ImplicitOps), D(ImplicitOps), D(ImplicitOps), G(0, group4), G(0, group5), }; static struct opcode twobyte_table[256] = { /* 0x00 - 0x0F */ N, GD(0, &group7), N, N, N, D(ImplicitOps), D(ImplicitOps | Priv), N, D(ImplicitOps | Priv), D(ImplicitOps | Priv), N, N, N, D(ImplicitOps | ModRM), N, N, /* 0x10 - 0x1F */ N, N, N, N, N, N, N, N, D(ImplicitOps | ModRM), N, N, N, N, N, N, N, /* 0x20 - 0x2F */ D(ModRM | DstMem | Priv | Op3264), D(ModRM | DstMem | Priv | Op3264), D(ModRM | SrcMem | Priv | Op3264), D(ModRM | SrcMem | Priv | Op3264), N, N, N, N, N, N, N, N, N, N, N, N, /* 0x30 - 0x3F */ D(ImplicitOps | Priv), I(ImplicitOps, em_rdtsc), D(ImplicitOps | Priv), N, D(ImplicitOps), D(ImplicitOps | Priv), N, N, N, N, N, N, N, N, N, N, /* 0x40 - 0x4F */ X16(D(DstReg | SrcMem | ModRM | Mov)), /* 0x50 - 0x5F */ N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, /* 0x60 - 0x6F */ N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, /* 0x70 - 0x7F */ N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, /* 0x80 - 0x8F */ X16(D(SrcImm)), /* 0x90 - 0x9F */ X16(D(ByteOp | DstMem | SrcNone | ModRM| Mov)), /* 0xA0 - 0xA7 */ D(ImplicitOps | Stack), D(ImplicitOps | Stack), N, D(DstMem | SrcReg | ModRM | BitOp), D(DstMem | SrcReg | Src2ImmByte | ModRM), D(DstMem | SrcReg | Src2CL | ModRM), N, N, /* 0xA8 - 0xAF */ D(ImplicitOps | Stack), D(ImplicitOps | Stack), N, D(DstMem | SrcReg | ModRM | BitOp | Lock), D(DstMem | SrcReg | Src2ImmByte | ModRM), D(DstMem | SrcReg | Src2CL | ModRM), D(ModRM), I(DstReg | SrcMem | ModRM, em_imul), /* 0xB0 - 0xB7 */ D(ByteOp | DstMem | SrcReg | ModRM | Lock), D(DstMem | SrcReg | ModRM | Lock), D(DstReg | SrcMemFAddr | ModRM), D(DstMem | SrcReg | ModRM | BitOp | Lock), D(DstReg | SrcMemFAddr | ModRM), D(DstReg | SrcMemFAddr | ModRM), D(ByteOp | DstReg | SrcMem | ModRM | Mov), D(DstReg | SrcMem16 | ModRM | Mov), /* 0xB8 - 0xBF */ N, N, G(BitOp, group8), D(DstMem | SrcReg | ModRM | BitOp | Lock), D(DstReg | SrcMem | ModRM), D(DstReg | SrcMem | ModRM), D(ByteOp | DstReg | SrcMem | ModRM | Mov), D(DstReg | SrcMem16 | ModRM | Mov), /* 0xC0 - 0xCF */ D(ByteOp | DstMem | SrcReg | ModRM | Lock), D(DstMem | SrcReg | ModRM | Lock), N, D(DstMem | SrcReg | ModRM | Mov), N, N, N, GD(0, &group9), N, N, N, N, N, N, N, N, /* 0xD0 - 0xDF */ N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, /* 0xE0 - 0xEF */ N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, /* 0xF0 - 0xFF */ N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N }; #undef D #undef N #undef G #undef GD #undef I static unsigned imm_size(struct decode_cache *c) { unsigned size; size = (c->d & ByteOp) ? 1 : c->op_bytes; if (size == 8) size = 4; return size; } static int decode_imm(struct x86_emulate_ctxt *ctxt, struct operand *op, unsigned size, bool sign_extension) { struct decode_cache *c = &ctxt->decode; struct x86_emulate_ops *ops = ctxt->ops; int rc = X86EMUL_CONTINUE; op->type = OP_IMM; op->bytes = size; op->addr.mem = c->eip; /* NB. Immediates are sign-extended as necessary. */ switch (op->bytes) { case 1: op->val = insn_fetch(s8, 1, c->eip); break; case 2: op->val = insn_fetch(s16, 2, c->eip); break; case 4: op->val = insn_fetch(s32, 4, c->eip); break; } if (!sign_extension) { switch (op->bytes) { case 1: op->val &= 0xff; break; case 2: op->val &= 0xffff; break; case 4: op->val &= 0xffffffff; break; } } done: return rc; } int x86_decode_insn(struct x86_emulate_ctxt *ctxt) { struct x86_emulate_ops *ops = ctxt->ops; struct decode_cache *c = &ctxt->decode; int rc = X86EMUL_CONTINUE; int mode = ctxt->mode; int def_op_bytes, def_ad_bytes, dual, goffset; struct opcode opcode, *g_mod012, *g_mod3; struct operand memop = { .type = OP_NONE }; /* we cannot decode insn before we complete previous rep insn */ WARN_ON(ctxt->restart); c->eip = ctxt->eip; c->fetch.start = c->fetch.end = c->eip; ctxt->cs_base = seg_base(ctxt, ops, VCPU_SREG_CS); switch (mode) { case X86EMUL_MODE_REAL: case X86EMUL_MODE_VM86: case X86EMUL_MODE_PROT16: def_op_bytes = def_ad_bytes = 2; break; case X86EMUL_MODE_PROT32: def_op_bytes = def_ad_bytes = 4; break; #ifdef CONFIG_X86_64 case X86EMUL_MODE_PROT64: def_op_bytes = 4; def_ad_bytes = 8; break; #endif default: return -1; } c->op_bytes = def_op_bytes; c->ad_bytes = def_ad_bytes; /* Legacy prefixes. */ for (;;) { switch (c->b = insn_fetch(u8, 1, c->eip)) { case 0x66: /* operand-size override */ /* switch between 2/4 bytes */ c->op_bytes = def_op_bytes ^ 6; break; case 0x67: /* address-size override */ if (mode == X86EMUL_MODE_PROT64) /* switch between 4/8 bytes */ c->ad_bytes = def_ad_bytes ^ 12; else /* switch between 2/4 bytes */ c->ad_bytes = def_ad_bytes ^ 6; break; case 0x26: /* ES override */ case 0x2e: /* CS override */ case 0x36: /* SS override */ case 0x3e: /* DS override */ set_seg_override(c, (c->b >> 3) & 3); break; case 0x64: /* FS override */ case 0x65: /* GS override */ set_seg_override(c, c->b & 7); break; case 0x40 ... 0x4f: /* REX */ if (mode != X86EMUL_MODE_PROT64) goto done_prefixes; c->rex_prefix = c->b; continue; case 0xf0: /* LOCK */ c->lock_prefix = 1; break; case 0xf2: /* REPNE/REPNZ */ c->rep_prefix = REPNE_PREFIX; break; case 0xf3: /* REP/REPE/REPZ */ c->rep_prefix = REPE_PREFIX; break; default: goto done_prefixes; } /* Any legacy prefix after a REX prefix nullifies its effect. */ c->rex_prefix = 0; } done_prefixes: /* REX prefix. */ if (c->rex_prefix & 8) c->op_bytes = 8; /* REX.W */ /* Opcode byte(s). */ opcode = opcode_table[c->b]; /* Two-byte opcode? */ if (c->b == 0x0f) { c->twobyte = 1; c->b = insn_fetch(u8, 1, c->eip); opcode = twobyte_table[c->b]; } c->d = opcode.flags; if (c->d & Group) { dual = c->d & GroupDual; c->modrm = insn_fetch(u8, 1, c->eip); --c->eip; if (c->d & GroupDual) { g_mod012 = opcode.u.gdual->mod012; g_mod3 = opcode.u.gdual->mod3; } else g_mod012 = g_mod3 = opcode.u.group; c->d &= ~(Group | GroupDual); goffset = (c->modrm >> 3) & 7; if ((c->modrm >> 6) == 3) opcode = g_mod3[goffset]; else opcode = g_mod012[goffset]; c->d |= opcode.flags; } c->execute = opcode.u.execute; /* Unrecognised? */ if (c->d == 0 || (c->d & Undefined)) { DPRINTF("Cannot emulate %02x\n", c->b); return -1; } if (mode == X86EMUL_MODE_PROT64 && (c->d & Stack)) c->op_bytes = 8; if (c->d & Op3264) { if (mode == X86EMUL_MODE_PROT64) c->op_bytes = 8; else c->op_bytes = 4; } /* ModRM and SIB bytes. */ if (c->d & ModRM) { rc = decode_modrm(ctxt, ops, &memop); if (!c->has_seg_override) set_seg_override(c, c->modrm_seg); } else if (c->d & MemAbs) rc = decode_abs(ctxt, ops, &memop); if (rc != X86EMUL_CONTINUE) goto done; if (!c->has_seg_override) set_seg_override(c, VCPU_SREG_DS); if (memop.type == OP_MEM && !(!c->twobyte && c->b == 0x8d)) memop.addr.mem += seg_override_base(ctxt, ops, c); if (memop.type == OP_MEM && c->ad_bytes != 8) memop.addr.mem = (u32)memop.addr.mem; if (memop.type == OP_MEM && c->rip_relative) memop.addr.mem += c->eip; /* * Decode and fetch the source operand: register, memory * or immediate. */ switch (c->d & SrcMask) { case SrcNone: break; case SrcReg: decode_register_operand(&c->src, c, 0); break; case SrcMem16: memop.bytes = 2; goto srcmem_common; case SrcMem32: memop.bytes = 4; goto srcmem_common; case SrcMem: memop.bytes = (c->d & ByteOp) ? 1 : c->op_bytes; srcmem_common: c->src = memop; break; case SrcImmU16: rc = decode_imm(ctxt, &c->src, 2, false); break; case SrcImm: rc = decode_imm(ctxt, &c->src, imm_size(c), true); break; case SrcImmU: rc = decode_imm(ctxt, &c->src, imm_size(c), false); break; case SrcImmByte: rc = decode_imm(ctxt, &c->src, 1, true); break; case SrcImmUByte: rc = decode_imm(ctxt, &c->src, 1, false); break; case SrcAcc: c->src.type = OP_REG; c->src.bytes = (c->d & ByteOp) ? 1 : c->op_bytes; c->src.addr.reg = &c->regs[VCPU_REGS_RAX]; fetch_register_operand(&c->src); break; case SrcOne: c->src.bytes = 1; c->src.val = 1; break; case SrcSI: c->src.type = OP_MEM; c->src.bytes = (c->d & ByteOp) ? 1 : c->op_bytes; c->src.addr.mem = register_address(c, seg_override_base(ctxt, ops, c), c->regs[VCPU_REGS_RSI]); c->src.val = 0; break; case SrcImmFAddr: c->src.type = OP_IMM; c->src.addr.mem = c->eip; c->src.bytes = c->op_bytes + 2; insn_fetch_arr(c->src.valptr, c->src.bytes, c->eip); break; case SrcMemFAddr: memop.bytes = c->op_bytes + 2; goto srcmem_common; break; } if (rc != X86EMUL_CONTINUE) goto done; /* * Decode and fetch the second source operand: register, memory * or immediate. */ switch (c->d & Src2Mask) { case Src2None: break; case Src2CL: c->src2.bytes = 1; c->src2.val = c->regs[VCPU_REGS_RCX] & 0x8; break; case Src2ImmByte: rc = decode_imm(ctxt, &c->src2, 1, true); break; case Src2One: c->src2.bytes = 1; c->src2.val = 1; break; case Src2Imm: rc = decode_imm(ctxt, &c->src2, imm_size(c), true); break; } if (rc != X86EMUL_CONTINUE) goto done; /* Decode and fetch the destination operand: register or memory. */ switch (c->d & DstMask) { case DstReg: decode_register_operand(&c->dst, c, c->twobyte && (c->b == 0xb6 || c->b == 0xb7)); break; case DstImmUByte: c->dst.type = OP_IMM; c->dst.addr.mem = c->eip; c->dst.bytes = 1; c->dst.val = insn_fetch(u8, 1, c->eip); break; case DstMem: case DstMem64: c->dst = memop; if ((c->d & DstMask) == DstMem64) c->dst.bytes = 8; else c->dst.bytes = (c->d & ByteOp) ? 1 : c->op_bytes; if (c->d & BitOp) fetch_bit_operand(c); c->dst.orig_val = c->dst.val; break; case DstAcc: c->dst.type = OP_REG; c->dst.bytes = (c->d & ByteOp) ? 1 : c->op_bytes; c->dst.addr.reg = &c->regs[VCPU_REGS_RAX]; fetch_register_operand(&c->dst); c->dst.orig_val = c->dst.val; break; case DstDI: c->dst.type = OP_MEM; c->dst.bytes = (c->d & ByteOp) ? 1 : c->op_bytes; c->dst.addr.mem = register_address(c, es_base(ctxt, ops), c->regs[VCPU_REGS_RDI]); c->dst.val = 0; break; case ImplicitOps: /* Special instructions do their own operand decoding. */ default: c->dst.type = OP_NONE; /* Disable writeback. */ return 0; } done: return (rc == X86EMUL_UNHANDLEABLE) ? -1 : 0; } int x86_emulate_insn(struct x86_emulate_ctxt *ctxt) { struct x86_emulate_ops *ops = ctxt->ops; u64 msr_data; struct decode_cache *c = &ctxt->decode; int rc = X86EMUL_CONTINUE; int saved_dst_type = c->dst.type; int irq; /* Used for int 3, int, and into */ ctxt->decode.mem_read.pos = 0; if (ctxt->mode == X86EMUL_MODE_PROT64 && (c->d & No64)) { emulate_ud(ctxt); goto done; } /* LOCK prefix is allowed only with some instructions */ if (c->lock_prefix && (!(c->d & Lock) || c->dst.type != OP_MEM)) { emulate_ud(ctxt); goto done; } /* Privileged instruction can be executed only in CPL=0 */ if ((c->d & Priv) && ops->cpl(ctxt->vcpu)) { emulate_gp(ctxt, 0); goto done; } if (c->rep_prefix && (c->d & String)) { ctxt->restart = true; /* All REP prefixes have the same first termination condition */ if (address_mask(c, c->regs[VCPU_REGS_RCX]) == 0) { ctxt->restart = false; ctxt->eip = c->eip; goto done; } } if ((c->src.type == OP_MEM) && !(c->d & NoAccess)) { rc = read_emulated(ctxt, ops, c->src.addr.mem, c->src.valptr, c->src.bytes); if (rc != X86EMUL_CONTINUE) goto done; c->src.orig_val64 = c->src.val64; } if (c->src2.type == OP_MEM) { rc = read_emulated(ctxt, ops, c->src2.addr.mem, &c->src2.val, c->src2.bytes); if (rc != X86EMUL_CONTINUE) goto done; } if ((c->d & DstMask) == ImplicitOps) goto special_insn; if ((c->dst.type == OP_MEM) && !(c->d & Mov)) { /* optimisation - avoid slow emulated read if Mov */ rc = read_emulated(ctxt, ops, c->dst.addr.mem, &c->dst.val, c->dst.bytes); if (rc != X86EMUL_CONTINUE) goto done; } c->dst.orig_val = c->dst.val; special_insn: if (c->execute) { rc = c->execute(ctxt); if (rc != X86EMUL_CONTINUE) goto done; goto writeback; } if (c->twobyte) goto twobyte_insn; switch (c->b) { case 0x00 ... 0x05: add: /* add */ emulate_2op_SrcV("add", c->src, c->dst, ctxt->eflags); break; case 0x06: /* push es */ emulate_push_sreg(ctxt, ops, VCPU_SREG_ES); break; case 0x07: /* pop es */ rc = emulate_pop_sreg(ctxt, ops, VCPU_SREG_ES); if (rc != X86EMUL_CONTINUE) goto done; break; case 0x08 ... 0x0d: or: /* or */ emulate_2op_SrcV("or", c->src, c->dst, ctxt->eflags); break; case 0x0e: /* push cs */ emulate_push_sreg(ctxt, ops, VCPU_SREG_CS); break; case 0x10 ... 0x15: adc: /* adc */ emulate_2op_SrcV("adc", c->src, c->dst, ctxt->eflags); break; case 0x16: /* push ss */ emulate_push_sreg(ctxt, ops, VCPU_SREG_SS); break; case 0x17: /* pop ss */ rc = emulate_pop_sreg(ctxt, ops, VCPU_SREG_SS); if (rc != X86EMUL_CONTINUE) goto done; break; case 0x18 ... 0x1d: sbb: /* sbb */ emulate_2op_SrcV("sbb", c->src, c->dst, ctxt->eflags); break; case 0x1e: /* push ds */ emulate_push_sreg(ctxt, ops, VCPU_SREG_DS); break; case 0x1f: /* pop ds */ rc = emulate_pop_sreg(ctxt, ops, VCPU_SREG_DS); if (rc != X86EMUL_CONTINUE) goto done; break; case 0x20 ... 0x25: and: /* and */ emulate_2op_SrcV("and", c->src, c->dst, ctxt->eflags); break; case 0x28 ... 0x2d: sub: /* sub */ emulate_2op_SrcV("sub", c->src, c->dst, ctxt->eflags); break; case 0x30 ... 0x35: xor: /* xor */ emulate_2op_SrcV("xor", c->src, c->dst, ctxt->eflags); break; case 0x38 ... 0x3d: cmp: /* cmp */ emulate_2op_SrcV("cmp", c->src, c->dst, ctxt->eflags); break; case 0x40 ... 0x47: /* inc r16/r32 */ emulate_1op("inc", c->dst, ctxt->eflags); break; case 0x48 ... 0x4f: /* dec r16/r32 */ emulate_1op("dec", c->dst, ctxt->eflags); break; case 0x58 ... 0x5f: /* pop reg */ pop_instruction: rc = emulate_pop(ctxt, ops, &c->dst.val, c->op_bytes); if (rc != X86EMUL_CONTINUE) goto done; break; case 0x60: /* pusha */ rc = emulate_pusha(ctxt, ops); if (rc != X86EMUL_CONTINUE) goto done; break; case 0x61: /* popa */ rc = emulate_popa(ctxt, ops); if (rc != X86EMUL_CONTINUE) goto done; break; case 0x63: /* movsxd */ if (ctxt->mode != X86EMUL_MODE_PROT64) goto cannot_emulate; c->dst.val = (s32) c->src.val; break; case 0x6c: /* insb */ case 0x6d: /* insw/insd */ c->src.val = c->regs[VCPU_REGS_RDX]; goto do_io_in; case 0x6e: /* outsb */ case 0x6f: /* outsw/outsd */ c->dst.val = c->regs[VCPU_REGS_RDX]; goto do_io_out; break; case 0x70 ... 0x7f: /* jcc (short) */ if (test_cc(c->b, ctxt->eflags)) jmp_rel(c, c->src.val); break; case 0x80 ... 0x83: /* Grp1 */ switch (c->modrm_reg) { case 0: goto add; case 1: goto or; case 2: goto adc; case 3: goto sbb; case 4: goto and; case 5: goto sub; case 6: goto xor; case 7: goto cmp; } break; case 0x84 ... 0x85: test: emulate_2op_SrcV("test", c->src, c->dst, ctxt->eflags); break; case 0x86 ... 0x87: /* xchg */ xchg: /* Write back the register source. */ c->src.val = c->dst.val; write_register_operand(&c->src); /* * Write back the memory destination with implicit LOCK * prefix. */ c->dst.val = c->src.orig_val; c->lock_prefix = 1; break; case 0x88 ... 0x8b: /* mov */ goto mov; case 0x8c: /* mov r/m, sreg */ if (c->modrm_reg > VCPU_SREG_GS) { emulate_ud(ctxt); goto done; } c->dst.val = ops->get_segment_selector(c->modrm_reg, ctxt->vcpu); break; case 0x8d: /* lea r16/r32, m */ c->dst.val = c->src.addr.mem; break; case 0x8e: { /* mov seg, r/m16 */ uint16_t sel; sel = c->src.val; if (c->modrm_reg == VCPU_SREG_CS || c->modrm_reg > VCPU_SREG_GS) { emulate_ud(ctxt); goto done; } if (c->modrm_reg == VCPU_SREG_SS) ctxt->interruptibility = KVM_X86_SHADOW_INT_MOV_SS; rc = load_segment_descriptor(ctxt, ops, sel, c->modrm_reg); c->dst.type = OP_NONE; /* Disable writeback. */ break; } case 0x8f: /* pop (sole member of Grp1a) */ rc = emulate_grp1a(ctxt, ops); if (rc != X86EMUL_CONTINUE) goto done; break; case 0x90 ... 0x97: /* nop / xchg reg, rax */ if (c->dst.addr.reg == &c->regs[VCPU_REGS_RAX]) break; goto xchg; case 0x98: /* cbw/cwde/cdqe */ switch (c->op_bytes) { case 2: c->dst.val = (s8)c->dst.val; break; case 4: c->dst.val = (s16)c->dst.val; break; case 8: c->dst.val = (s32)c->dst.val; break; } break; case 0x9c: /* pushf */ c->src.val = (unsigned long) ctxt->eflags; emulate_push(ctxt, ops); break; case 0x9d: /* popf */ c->dst.type = OP_REG; c->dst.addr.reg = &ctxt->eflags; c->dst.bytes = c->op_bytes; rc = emulate_popf(ctxt, ops, &c->dst.val, c->op_bytes); if (rc != X86EMUL_CONTINUE) goto done; break; case 0xa0 ... 0xa3: /* mov */ case 0xa4 ... 0xa5: /* movs */ goto mov; case 0xa6 ... 0xa7: /* cmps */ c->dst.type = OP_NONE; /* Disable writeback. */ DPRINTF("cmps: mem1=0x%p mem2=0x%p\n", c->src.addr.mem, c->dst.addr.mem); goto cmp; case 0xa8 ... 0xa9: /* test ax, imm */ goto test; case 0xaa ... 0xab: /* stos */ case 0xac ... 0xad: /* lods */ goto mov; case 0xae ... 0xaf: /* scas */ goto cmp; case 0xb0 ... 0xbf: /* mov r, imm */ goto mov; case 0xc0 ... 0xc1: emulate_grp2(ctxt); break; case 0xc3: /* ret */ c->dst.type = OP_REG; c->dst.addr.reg = &c->eip; c->dst.bytes = c->op_bytes; goto pop_instruction; case 0xc4: /* les */ rc = emulate_load_segment(ctxt, ops, VCPU_SREG_ES); if (rc != X86EMUL_CONTINUE) goto done; break; case 0xc5: /* lds */ rc = emulate_load_segment(ctxt, ops, VCPU_SREG_DS); if (rc != X86EMUL_CONTINUE) goto done; break; case 0xc6 ... 0xc7: /* mov (sole member of Grp11) */ mov: c->dst.val = c->src.val; break; case 0xcb: /* ret far */ rc = emulate_ret_far(ctxt, ops); if (rc != X86EMUL_CONTINUE) goto done; break; case 0xcc: /* int3 */ irq = 3; goto do_interrupt; case 0xcd: /* int n */ irq = c->src.val; do_interrupt: rc = emulate_int(ctxt, ops, irq); if (rc != X86EMUL_CONTINUE) goto done; break; case 0xce: /* into */ if (ctxt->eflags & EFLG_OF) { irq = 4; goto do_interrupt; } break; case 0xcf: /* iret */ rc = emulate_iret(ctxt, ops); if (rc != X86EMUL_CONTINUE) goto done; break; case 0xd0 ... 0xd1: /* Grp2 */ emulate_grp2(ctxt); break; case 0xd2 ... 0xd3: /* Grp2 */ c->src.val = c->regs[VCPU_REGS_RCX]; emulate_grp2(ctxt); break; case 0xe0 ... 0xe2: /* loop/loopz/loopnz */ register_address_increment(c, &c->regs[VCPU_REGS_RCX], -1); if (address_mask(c, c->regs[VCPU_REGS_RCX]) != 0 && (c->b == 0xe2 || test_cc(c->b ^ 0x5, ctxt->eflags))) jmp_rel(c, c->src.val); break; case 0xe3: /* jcxz/jecxz/jrcxz */ if (address_mask(c, c->regs[VCPU_REGS_RCX]) == 0) jmp_rel(c, c->src.val); break; case 0xe4: /* inb */ case 0xe5: /* in */ goto do_io_in; case 0xe6: /* outb */ case 0xe7: /* out */ goto do_io_out; case 0xe8: /* call (near) */ { long int rel = c->src.val; c->src.val = (unsigned long) c->eip; jmp_rel(c, rel); emulate_push(ctxt, ops); break; } case 0xe9: /* jmp rel */ goto jmp; case 0xea: { /* jmp far */ unsigned short sel; jump_far: memcpy(&sel, c->src.valptr + c->op_bytes, 2); if (load_segment_descriptor(ctxt, ops, sel, VCPU_SREG_CS)) goto done; c->eip = 0; memcpy(&c->eip, c->src.valptr, c->op_bytes); break; } case 0xeb: jmp: /* jmp rel short */ jmp_rel(c, c->src.val); c->dst.type = OP_NONE; /* Disable writeback. */ break; case 0xec: /* in al,dx */ case 0xed: /* in (e/r)ax,dx */ c->src.val = c->regs[VCPU_REGS_RDX]; do_io_in: c->dst.bytes = min(c->dst.bytes, 4u); if (!emulator_io_permited(ctxt, ops, c->src.val, c->dst.bytes)) { emulate_gp(ctxt, 0); goto done; } if (!pio_in_emulated(ctxt, ops, c->dst.bytes, c->src.val, &c->dst.val)) goto done; /* IO is needed */ break; case 0xee: /* out dx,al */ case 0xef: /* out dx,(e/r)ax */ c->dst.val = c->regs[VCPU_REGS_RDX]; do_io_out: c->src.bytes = min(c->src.bytes, 4u); if (!emulator_io_permited(ctxt, ops, c->dst.val, c->src.bytes)) { emulate_gp(ctxt, 0); goto done; } ops->pio_out_emulated(c->src.bytes, c->dst.val, &c->src.val, 1, ctxt->vcpu); c->dst.type = OP_NONE; /* Disable writeback. */ break; case 0xf4: /* hlt */ ctxt->vcpu->arch.halt_request = 1; break; case 0xf5: /* cmc */ /* complement carry flag from eflags reg */ ctxt->eflags ^= EFLG_CF; break; case 0xf6 ... 0xf7: /* Grp3 */ if (emulate_grp3(ctxt, ops) != X86EMUL_CONTINUE) goto cannot_emulate; break; case 0xf8: /* clc */ ctxt->eflags &= ~EFLG_CF; break; case 0xf9: /* stc */ ctxt->eflags |= EFLG_CF; break; case 0xfa: /* cli */ if (emulator_bad_iopl(ctxt, ops)) { emulate_gp(ctxt, 0); goto done; } else ctxt->eflags &= ~X86_EFLAGS_IF; break; case 0xfb: /* sti */ if (emulator_bad_iopl(ctxt, ops)) { emulate_gp(ctxt, 0); goto done; } else { ctxt->interruptibility = KVM_X86_SHADOW_INT_STI; ctxt->eflags |= X86_EFLAGS_IF; } break; case 0xfc: /* cld */ ctxt->eflags &= ~EFLG_DF; break; case 0xfd: /* std */ ctxt->eflags |= EFLG_DF; break; case 0xfe: /* Grp4 */ grp45: rc = emulate_grp45(ctxt, ops); if (rc != X86EMUL_CONTINUE) goto done; break; case 0xff: /* Grp5 */ if (c->modrm_reg == 5) goto jump_far; goto grp45; default: goto cannot_emulate; } writeback: rc = writeback(ctxt, ops); if (rc != X86EMUL_CONTINUE) goto done; /* * restore dst type in case the decoding will be reused * (happens for string instruction ) */ c->dst.type = saved_dst_type; if ((c->d & SrcMask) == SrcSI) string_addr_inc(ctxt, seg_override_base(ctxt, ops, c), VCPU_REGS_RSI, &c->src); if ((c->d & DstMask) == DstDI) string_addr_inc(ctxt, es_base(ctxt, ops), VCPU_REGS_RDI, &c->dst); if (c->rep_prefix && (c->d & String)) { struct read_cache *rc = &ctxt->decode.io_read; register_address_increment(c, &c->regs[VCPU_REGS_RCX], -1); /* The second termination condition only applies for REPE * and REPNE. Test if the repeat string operation prefix is * REPE/REPZ or REPNE/REPNZ and if it's the case it tests the * corresponding termination condition according to: * - if REPE/REPZ and ZF = 0 then done * - if REPNE/REPNZ and ZF = 1 then done */ if (((c->b == 0xa6) || (c->b == 0xa7) || (c->b == 0xae) || (c->b == 0xaf)) && (((c->rep_prefix == REPE_PREFIX) && ((ctxt->eflags & EFLG_ZF) == 0)) || ((c->rep_prefix == REPNE_PREFIX) && ((ctxt->eflags & EFLG_ZF) == EFLG_ZF)))) ctxt->restart = false; /* * Re-enter guest when pio read ahead buffer is empty or, * if it is not used, after each 1024 iteration. */ else if ((rc->end == 0 && !(c->regs[VCPU_REGS_RCX] & 0x3ff)) || (rc->end != 0 && rc->end == rc->pos)) { ctxt->restart = false; c->eip = ctxt->eip; } } /* * reset read cache here in case string instruction is restared * without decoding */ ctxt->decode.mem_read.end = 0; if (!ctxt->restart) ctxt->eip = c->eip; done: return (rc == X86EMUL_UNHANDLEABLE) ? -1 : 0; twobyte_insn: switch (c->b) { case 0x01: /* lgdt, lidt, lmsw */ switch (c->modrm_reg) { u16 size; unsigned long address; case 0: /* vmcall */ if (c->modrm_mod != 3 || c->modrm_rm != 1) goto cannot_emulate; rc = kvm_fix_hypercall(ctxt->vcpu); if (rc != X86EMUL_CONTINUE) goto done; /* Let the processor re-execute the fixed hypercall */ c->eip = ctxt->eip; /* Disable writeback. */ c->dst.type = OP_NONE; break; case 2: /* lgdt */ rc = read_descriptor(ctxt, ops, c->src.addr.mem, &size, &address, c->op_bytes); if (rc != X86EMUL_CONTINUE) goto done; realmode_lgdt(ctxt->vcpu, size, address); /* Disable writeback. */ c->dst.type = OP_NONE; break; case 3: /* lidt/vmmcall */ if (c->modrm_mod == 3) { switch (c->modrm_rm) { case 1: rc = kvm_fix_hypercall(ctxt->vcpu); if (rc != X86EMUL_CONTINUE) goto done; break; default: goto cannot_emulate; } } else { rc = read_descriptor(ctxt, ops, c->src.addr.mem, &size, &address, c->op_bytes); if (rc != X86EMUL_CONTINUE) goto done; realmode_lidt(ctxt->vcpu, size, address); } /* Disable writeback. */ c->dst.type = OP_NONE; break; case 4: /* smsw */ c->dst.bytes = 2; c->dst.val = ops->get_cr(0, ctxt->vcpu); break; case 6: /* lmsw */ ops->set_cr(0, (ops->get_cr(0, ctxt->vcpu) & ~0x0eul) | (c->src.val & 0x0f), ctxt->vcpu); c->dst.type = OP_NONE; break; case 5: /* not defined */ emulate_ud(ctxt); goto done; case 7: /* invlpg*/ emulate_invlpg(ctxt->vcpu, c->src.addr.mem); /* Disable writeback. */ c->dst.type = OP_NONE; break; default: goto cannot_emulate; } break; case 0x05: /* syscall */ rc = emulate_syscall(ctxt, ops); if (rc != X86EMUL_CONTINUE) goto done; else goto writeback; break; case 0x06: emulate_clts(ctxt->vcpu); break; case 0x09: /* wbinvd */ kvm_emulate_wbinvd(ctxt->vcpu); break; case 0x08: /* invd */ case 0x0d: /* GrpP (prefetch) */ case 0x18: /* Grp16 (prefetch/nop) */ break; case 0x20: /* mov cr, reg */ switch (c->modrm_reg) { case 1: case 5 ... 7: case 9 ... 15: emulate_ud(ctxt); goto done; } c->dst.val = ops->get_cr(c->modrm_reg, ctxt->vcpu); break; case 0x21: /* mov from dr to reg */ if ((ops->get_cr(4, ctxt->vcpu) & X86_CR4_DE) && (c->modrm_reg == 4 || c->modrm_reg == 5)) { emulate_ud(ctxt); goto done; } ops->get_dr(c->modrm_reg, &c->dst.val, ctxt->vcpu); break; case 0x22: /* mov reg, cr */ if (ops->set_cr(c->modrm_reg, c->src.val, ctxt->vcpu)) { emulate_gp(ctxt, 0); goto done; } c->dst.type = OP_NONE; break; case 0x23: /* mov from reg to dr */ if ((ops->get_cr(4, ctxt->vcpu) & X86_CR4_DE) && (c->modrm_reg == 4 || c->modrm_reg == 5)) { emulate_ud(ctxt); goto done; } if (ops->set_dr(c->modrm_reg, c->src.val & ((ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U), ctxt->vcpu) < 0) { /* #UD condition is already handled by the code above */ emulate_gp(ctxt, 0); goto done; } c->dst.type = OP_NONE; /* no writeback */ break; case 0x30: /* wrmsr */ msr_data = (u32)c->regs[VCPU_REGS_RAX] | ((u64)c->regs[VCPU_REGS_RDX] << 32); if (ops->set_msr(ctxt->vcpu, c->regs[VCPU_REGS_RCX], msr_data)) { emulate_gp(ctxt, 0); goto done; } rc = X86EMUL_CONTINUE; break; case 0x32: /* rdmsr */ if (ops->get_msr(ctxt->vcpu, c->regs[VCPU_REGS_RCX], &msr_data)) { emulate_gp(ctxt, 0); goto done; } else { c->regs[VCPU_REGS_RAX] = (u32)msr_data; c->regs[VCPU_REGS_RDX] = msr_data >> 32; } rc = X86EMUL_CONTINUE; break; case 0x34: /* sysenter */ rc = emulate_sysenter(ctxt, ops); if (rc != X86EMUL_CONTINUE) goto done; else goto writeback; break; case 0x35: /* sysexit */ rc = emulate_sysexit(ctxt, ops); if (rc != X86EMUL_CONTINUE) goto done; else goto writeback; break; case 0x40 ... 0x4f: /* cmov */ c->dst.val = c->dst.orig_val = c->src.val; if (!test_cc(c->b, ctxt->eflags)) c->dst.type = OP_NONE; /* no writeback */ break; case 0x80 ... 0x8f: /* jnz rel, etc*/ if (test_cc(c->b, ctxt->eflags)) jmp_rel(c, c->src.val); break; case 0x90 ... 0x9f: /* setcc r/m8 */ c->dst.val = test_cc(c->b, ctxt->eflags); break; case 0xa0: /* push fs */ emulate_push_sreg(ctxt, ops, VCPU_SREG_FS); break; case 0xa1: /* pop fs */ rc = emulate_pop_sreg(ctxt, ops, VCPU_SREG_FS); if (rc != X86EMUL_CONTINUE) goto done; break; case 0xa3: bt: /* bt */ c->dst.type = OP_NONE; /* only subword offset */ c->src.val &= (c->dst.bytes << 3) - 1; emulate_2op_SrcV_nobyte("bt", c->src, c->dst, ctxt->eflags); break; case 0xa4: /* shld imm8, r, r/m */ case 0xa5: /* shld cl, r, r/m */ emulate_2op_cl("shld", c->src2, c->src, c->dst, ctxt->eflags); break; case 0xa8: /* push gs */ emulate_push_sreg(ctxt, ops, VCPU_SREG_GS); break; case 0xa9: /* pop gs */ rc = emulate_pop_sreg(ctxt, ops, VCPU_SREG_GS); if (rc != X86EMUL_CONTINUE) goto done; break; case 0xab: bts: /* bts */ emulate_2op_SrcV_nobyte("bts", c->src, c->dst, ctxt->eflags); break; case 0xac: /* shrd imm8, r, r/m */ case 0xad: /* shrd cl, r, r/m */ emulate_2op_cl("shrd", c->src2, c->src, c->dst, ctxt->eflags); break; case 0xae: /* clflush */ break; case 0xb0 ... 0xb1: /* cmpxchg */ /* * Save real source value, then compare EAX against * destination. */ c->src.orig_val = c->src.val; c->src.val = c->regs[VCPU_REGS_RAX]; emulate_2op_SrcV("cmp", c->src, c->dst, ctxt->eflags); if (ctxt->eflags & EFLG_ZF) { /* Success: write back to memory. */ c->dst.val = c->src.orig_val; } else { /* Failure: write the value we saw to EAX. */ c->dst.type = OP_REG; c->dst.addr.reg = (unsigned long *)&c->regs[VCPU_REGS_RAX]; } break; case 0xb2: /* lss */ rc = emulate_load_segment(ctxt, ops, VCPU_SREG_SS); if (rc != X86EMUL_CONTINUE) goto done; break; case 0xb3: btr: /* btr */ emulate_2op_SrcV_nobyte("btr", c->src, c->dst, ctxt->eflags); break; case 0xb4: /* lfs */ rc = emulate_load_segment(ctxt, ops, VCPU_SREG_FS); if (rc != X86EMUL_CONTINUE) goto done; break; case 0xb5: /* lgs */ rc = emulate_load_segment(ctxt, ops, VCPU_SREG_GS); if (rc != X86EMUL_CONTINUE) goto done; break; case 0xb6 ... 0xb7: /* movzx */ c->dst.bytes = c->op_bytes; c->dst.val = (c->d & ByteOp) ? (u8) c->src.val : (u16) c->src.val; break; case 0xba: /* Grp8 */ switch (c->modrm_reg & 3) { case 0: goto bt; case 1: goto bts; case 2: goto btr; case 3: goto btc; } break; case 0xbb: btc: /* btc */ emulate_2op_SrcV_nobyte("btc", c->src, c->dst, ctxt->eflags); break; case 0xbc: { /* bsf */ u8 zf; __asm__ ("bsf %2, %0; setz %1" : "=r"(c->dst.val), "=q"(zf) : "r"(c->src.val)); ctxt->eflags &= ~X86_EFLAGS_ZF; if (zf) { ctxt->eflags |= X86_EFLAGS_ZF; c->dst.type = OP_NONE; /* Disable writeback. */ } break; } case 0xbd: { /* bsr */ u8 zf; __asm__ ("bsr %2, %0; setz %1" : "=r"(c->dst.val), "=q"(zf) : "r"(c->src.val)); ctxt->eflags &= ~X86_EFLAGS_ZF; if (zf) { ctxt->eflags |= X86_EFLAGS_ZF; c->dst.type = OP_NONE; /* Disable writeback. */ } break; } case 0xbe ... 0xbf: /* movsx */ c->dst.bytes = c->op_bytes; c->dst.val = (c->d & ByteOp) ? (s8) c->src.val : (s16) c->src.val; break; case 0xc0 ... 0xc1: /* xadd */ emulate_2op_SrcV("add", c->src, c->dst, ctxt->eflags); /* Write back the register source. */ c->src.val = c->dst.orig_val; write_register_operand(&c->src); break; case 0xc3: /* movnti */ c->dst.bytes = c->op_bytes; c->dst.val = (c->op_bytes == 4) ? (u32) c->src.val : (u64) c->src.val; break; case 0xc7: /* Grp9 (cmpxchg8b) */ rc = emulate_grp9(ctxt, ops); if (rc != X86EMUL_CONTINUE) goto done; break; default: goto cannot_emulate; } goto writeback; cannot_emulate: DPRINTF("Cannot emulate %02x\n", c->b); return -1; }