// SPDX-License-Identifier: GPL-2.0-or-later /* * * Copyright (C) 2007 Alan Stern * Copyright (C) 2009 IBM Corporation * Copyright (C) 2009 Frederic Weisbecker * * Authors: Alan Stern * K.Prasad * Frederic Weisbecker */ /* * HW_breakpoint: a unified kernel/user-space hardware breakpoint facility, * using the CPU's debug registers. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* Per cpu debug control register value */ DEFINE_PER_CPU(unsigned long, cpu_dr7); EXPORT_PER_CPU_SYMBOL(cpu_dr7); /* Per cpu debug address registers values */ static DEFINE_PER_CPU(unsigned long, cpu_debugreg[HBP_NUM]); /* * Stores the breakpoints currently in use on each breakpoint address * register for each cpus */ static DEFINE_PER_CPU(struct perf_event *, bp_per_reg[HBP_NUM]); static inline unsigned long __encode_dr7(int drnum, unsigned int len, unsigned int type) { unsigned long bp_info; bp_info = (len | type) & 0xf; bp_info <<= (DR_CONTROL_SHIFT + drnum * DR_CONTROL_SIZE); bp_info |= (DR_GLOBAL_ENABLE << (drnum * DR_ENABLE_SIZE)); return bp_info; } /* * Encode the length, type, Exact, and Enable bits for a particular breakpoint * as stored in debug register 7. */ unsigned long encode_dr7(int drnum, unsigned int len, unsigned int type) { return __encode_dr7(drnum, len, type) | DR_GLOBAL_SLOWDOWN; } /* * Decode the length and type bits for a particular breakpoint as * stored in debug register 7. Return the "enabled" status. */ int decode_dr7(unsigned long dr7, int bpnum, unsigned *len, unsigned *type) { int bp_info = dr7 >> (DR_CONTROL_SHIFT + bpnum * DR_CONTROL_SIZE); *len = (bp_info & 0xc) | 0x40; *type = (bp_info & 0x3) | 0x80; return (dr7 >> (bpnum * DR_ENABLE_SIZE)) & 0x3; } /* * Install a perf counter breakpoint. * * We seek a free debug address register and use it for this * breakpoint. Eventually we enable it in the debug control register. * * Atomic: we hold the counter->ctx->lock and we only handle variables * and registers local to this cpu. */ int arch_install_hw_breakpoint(struct perf_event *bp) { struct arch_hw_breakpoint *info = counter_arch_bp(bp); unsigned long *dr7; int i; for (i = 0; i < HBP_NUM; i++) { struct perf_event **slot = this_cpu_ptr(&bp_per_reg[i]); if (!*slot) { *slot = bp; break; } } if (WARN_ONCE(i == HBP_NUM, "Can't find any breakpoint slot")) return -EBUSY; set_debugreg(info->address, i); __this_cpu_write(cpu_debugreg[i], info->address); dr7 = this_cpu_ptr(&cpu_dr7); *dr7 |= encode_dr7(i, info->len, info->type); set_debugreg(*dr7, 7); if (info->mask) set_dr_addr_mask(info->mask, i); return 0; } /* * Uninstall the breakpoint contained in the given counter. * * First we search the debug address register it uses and then we disable * it. * * Atomic: we hold the counter->ctx->lock and we only handle variables * and registers local to this cpu. */ void arch_uninstall_hw_breakpoint(struct perf_event *bp) { struct arch_hw_breakpoint *info = counter_arch_bp(bp); unsigned long *dr7; int i; for (i = 0; i < HBP_NUM; i++) { struct perf_event **slot = this_cpu_ptr(&bp_per_reg[i]); if (*slot == bp) { *slot = NULL; break; } } if (WARN_ONCE(i == HBP_NUM, "Can't find any breakpoint slot")) return; dr7 = this_cpu_ptr(&cpu_dr7); *dr7 &= ~__encode_dr7(i, info->len, info->type); set_debugreg(*dr7, 7); if (info->mask) set_dr_addr_mask(0, i); } static int arch_bp_generic_len(int x86_len) { switch (x86_len) { case X86_BREAKPOINT_LEN_1: return HW_BREAKPOINT_LEN_1; case X86_BREAKPOINT_LEN_2: return HW_BREAKPOINT_LEN_2; case X86_BREAKPOINT_LEN_4: return HW_BREAKPOINT_LEN_4; #ifdef CONFIG_X86_64 case X86_BREAKPOINT_LEN_8: return HW_BREAKPOINT_LEN_8; #endif default: return -EINVAL; } } int arch_bp_generic_fields(int x86_len, int x86_type, int *gen_len, int *gen_type) { int len; /* Type */ switch (x86_type) { case X86_BREAKPOINT_EXECUTE: if (x86_len != X86_BREAKPOINT_LEN_X) return -EINVAL; *gen_type = HW_BREAKPOINT_X; *gen_len = sizeof(long); return 0; case X86_BREAKPOINT_WRITE: *gen_type = HW_BREAKPOINT_W; break; case X86_BREAKPOINT_RW: *gen_type = HW_BREAKPOINT_W | HW_BREAKPOINT_R; break; default: return -EINVAL; } /* Len */ len = arch_bp_generic_len(x86_len); if (len < 0) return -EINVAL; *gen_len = len; return 0; } /* * Check for virtual address in kernel space. */ int arch_check_bp_in_kernelspace(struct arch_hw_breakpoint *hw) { unsigned long va; int len; va = hw->address; len = arch_bp_generic_len(hw->len); WARN_ON_ONCE(len < 0); /* * We don't need to worry about va + len - 1 overflowing: * we already require that va is aligned to a multiple of len. */ return (va >= TASK_SIZE_MAX) || ((va + len - 1) >= TASK_SIZE_MAX); } /* * Checks whether the range from addr to end, inclusive, overlaps the CPU * entry area range. */ static inline bool within_cpu_entry_area(unsigned long addr, unsigned long end) { return end >= CPU_ENTRY_AREA_BASE && addr < (CPU_ENTRY_AREA_BASE + CPU_ENTRY_AREA_TOTAL_SIZE); } static int arch_build_bp_info(struct perf_event *bp, const struct perf_event_attr *attr, struct arch_hw_breakpoint *hw) { unsigned long bp_end; bp_end = attr->bp_addr + attr->bp_len - 1; if (bp_end < attr->bp_addr) return -EINVAL; /* * Prevent any breakpoint of any type that overlaps the * cpu_entry_area. This protects the IST stacks and also * reduces the chance that we ever find out what happens if * there's a data breakpoint on the GDT, IDT, or TSS. */ if (within_cpu_entry_area(attr->bp_addr, bp_end)) return -EINVAL; hw->address = attr->bp_addr; hw->mask = 0; /* Type */ switch (attr->bp_type) { case HW_BREAKPOINT_W: hw->type = X86_BREAKPOINT_WRITE; break; case HW_BREAKPOINT_W | HW_BREAKPOINT_R: hw->type = X86_BREAKPOINT_RW; break; case HW_BREAKPOINT_X: /* * We don't allow kernel breakpoints in places that are not * acceptable for kprobes. On non-kprobes kernels, we don't * allow kernel breakpoints at all. */ if (attr->bp_addr >= TASK_SIZE_MAX) { if (within_kprobe_blacklist(attr->bp_addr)) return -EINVAL; } hw->type = X86_BREAKPOINT_EXECUTE; /* * x86 inst breakpoints need to have a specific undefined len. * But we still need to check userspace is not trying to setup * an unsupported length, to get a range breakpoint for example. */ if (attr->bp_len == sizeof(long)) { hw->len = X86_BREAKPOINT_LEN_X; return 0; } /* fall through */ default: return -EINVAL; } /* Len */ switch (attr->bp_len) { case HW_BREAKPOINT_LEN_1: hw->len = X86_BREAKPOINT_LEN_1; break; case HW_BREAKPOINT_LEN_2: hw->len = X86_BREAKPOINT_LEN_2; break; case HW_BREAKPOINT_LEN_4: hw->len = X86_BREAKPOINT_LEN_4; break; #ifdef CONFIG_X86_64 case HW_BREAKPOINT_LEN_8: hw->len = X86_BREAKPOINT_LEN_8; break; #endif default: /* AMD range breakpoint */ if (!is_power_of_2(attr->bp_len)) return -EINVAL; if (attr->bp_addr & (attr->bp_len - 1)) return -EINVAL; if (!boot_cpu_has(X86_FEATURE_BPEXT)) return -EOPNOTSUPP; /* * It's impossible to use a range breakpoint to fake out * user vs kernel detection because bp_len - 1 can't * have the high bit set. If we ever allow range instruction * breakpoints, then we'll have to check for kprobe-blacklisted * addresses anywhere in the range. */ hw->mask = attr->bp_len - 1; hw->len = X86_BREAKPOINT_LEN_1; } return 0; } /* * Validate the arch-specific HW Breakpoint register settings */ int hw_breakpoint_arch_parse(struct perf_event *bp, const struct perf_event_attr *attr, struct arch_hw_breakpoint *hw) { unsigned int align; int ret; ret = arch_build_bp_info(bp, attr, hw); if (ret) return ret; switch (hw->len) { case X86_BREAKPOINT_LEN_1: align = 0; if (hw->mask) align = hw->mask; break; case X86_BREAKPOINT_LEN_2: align = 1; break; case X86_BREAKPOINT_LEN_4: align = 3; break; #ifdef CONFIG_X86_64 case X86_BREAKPOINT_LEN_8: align = 7; break; #endif default: WARN_ON_ONCE(1); return -EINVAL; } /* * Check that the low-order bits of the address are appropriate * for the alignment implied by len. */ if (hw->address & align) return -EINVAL; return 0; } /* * Dump the debug register contents to the user. * We can't dump our per cpu values because it * may contain cpu wide breakpoint, something that * doesn't belong to the current task. * * TODO: include non-ptrace user breakpoints (perf) */ void aout_dump_debugregs(struct user *dump) { int i; int dr7 = 0; struct perf_event *bp; struct arch_hw_breakpoint *info; struct thread_struct *thread = ¤t->thread; for (i = 0; i < HBP_NUM; i++) { bp = thread->ptrace_bps[i]; if (bp && !bp->attr.disabled) { dump->u_debugreg[i] = bp->attr.bp_addr; info = counter_arch_bp(bp); dr7 |= encode_dr7(i, info->len, info->type); } else { dump->u_debugreg[i] = 0; } } dump->u_debugreg[4] = 0; dump->u_debugreg[5] = 0; dump->u_debugreg[6] = current->thread.debugreg6; dump->u_debugreg[7] = dr7; } EXPORT_SYMBOL_GPL(aout_dump_debugregs); /* * Release the user breakpoints used by ptrace */ void flush_ptrace_hw_breakpoint(struct task_struct *tsk) { int i; struct thread_struct *t = &tsk->thread; for (i = 0; i < HBP_NUM; i++) { unregister_hw_breakpoint(t->ptrace_bps[i]); t->ptrace_bps[i] = NULL; } t->debugreg6 = 0; t->ptrace_dr7 = 0; } void hw_breakpoint_restore(void) { set_debugreg(__this_cpu_read(cpu_debugreg[0]), 0); set_debugreg(__this_cpu_read(cpu_debugreg[1]), 1); set_debugreg(__this_cpu_read(cpu_debugreg[2]), 2); set_debugreg(__this_cpu_read(cpu_debugreg[3]), 3); set_debugreg(current->thread.debugreg6, 6); set_debugreg(__this_cpu_read(cpu_dr7), 7); } EXPORT_SYMBOL_GPL(hw_breakpoint_restore); /* * Handle debug exception notifications. * * Return value is either NOTIFY_STOP or NOTIFY_DONE as explained below. * * NOTIFY_DONE returned if one of the following conditions is true. * i) When the causative address is from user-space and the exception * is a valid one, i.e. not triggered as a result of lazy debug register * switching * ii) When there are more bits than trap set in DR6 register (such * as BD, BS or BT) indicating that more than one debug condition is * met and requires some more action in do_debug(). * * NOTIFY_STOP returned for all other cases * */ static int hw_breakpoint_handler(struct die_args *args) { int i, cpu, rc = NOTIFY_STOP; struct perf_event *bp; unsigned long dr7, dr6; unsigned long *dr6_p; /* The DR6 value is pointed by args->err */ dr6_p = (unsigned long *)ERR_PTR(args->err); dr6 = *dr6_p; /* If it's a single step, TRAP bits are random */ if (dr6 & DR_STEP) return NOTIFY_DONE; /* Do an early return if no trap bits are set in DR6 */ if ((dr6 & DR_TRAP_BITS) == 0) return NOTIFY_DONE; get_debugreg(dr7, 7); /* Disable breakpoints during exception handling */ set_debugreg(0UL, 7); /* * Assert that local interrupts are disabled * Reset the DRn bits in the virtualized register value. * The ptrace trigger routine will add in whatever is needed. */ current->thread.debugreg6 &= ~DR_TRAP_BITS; cpu = get_cpu(); /* Handle all the breakpoints that were triggered */ for (i = 0; i < HBP_NUM; ++i) { if (likely(!(dr6 & (DR_TRAP0 << i)))) continue; /* * The counter may be concurrently released but that can only * occur from a call_rcu() path. We can then safely fetch * the breakpoint, use its callback, touch its counter * while we are in an rcu_read_lock() path. */ rcu_read_lock(); bp = per_cpu(bp_per_reg[i], cpu); /* * Reset the 'i'th TRAP bit in dr6 to denote completion of * exception handling */ (*dr6_p) &= ~(DR_TRAP0 << i); /* * bp can be NULL due to lazy debug register switching * or due to concurrent perf counter removing. */ if (!bp) { rcu_read_unlock(); break; } perf_bp_event(bp, args->regs); /* * Set up resume flag to avoid breakpoint recursion when * returning back to origin. */ if (bp->hw.info.type == X86_BREAKPOINT_EXECUTE) args->regs->flags |= X86_EFLAGS_RF; rcu_read_unlock(); } /* * Further processing in do_debug() is needed for a) user-space * breakpoints (to generate signals) and b) when the system has * taken exception due to multiple causes */ if ((current->thread.debugreg6 & DR_TRAP_BITS) || (dr6 & (~DR_TRAP_BITS))) rc = NOTIFY_DONE; set_debugreg(dr7, 7); put_cpu(); return rc; } /* * Handle debug exception notifications. */ int hw_breakpoint_exceptions_notify( struct notifier_block *unused, unsigned long val, void *data) { if (val != DIE_DEBUG) return NOTIFY_DONE; return hw_breakpoint_handler(data); } void hw_breakpoint_pmu_read(struct perf_event *bp) { /* TODO */ }