// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2012 Regents of the University of California * Copyright (C) 2019 Western Digital Corporation or its affiliates. * Copyright (C) 2020 FORTH-ICS/CARV * Nick Kossifidis */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "../kernel/head.h" unsigned long kernel_virt_addr = KERNEL_LINK_ADDR; EXPORT_SYMBOL(kernel_virt_addr); #ifdef CONFIG_XIP_KERNEL #define kernel_virt_addr (*((unsigned long *)XIP_FIXUP(&kernel_virt_addr))) extern char _xiprom[], _exiprom[]; #endif unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)] __page_aligned_bss; EXPORT_SYMBOL(empty_zero_page); extern char _start[]; #define DTB_EARLY_BASE_VA PGDIR_SIZE void *_dtb_early_va __initdata; uintptr_t _dtb_early_pa __initdata; struct pt_alloc_ops { pte_t *(*get_pte_virt)(phys_addr_t pa); phys_addr_t (*alloc_pte)(uintptr_t va); #ifndef __PAGETABLE_PMD_FOLDED pmd_t *(*get_pmd_virt)(phys_addr_t pa); phys_addr_t (*alloc_pmd)(uintptr_t va); #endif }; static phys_addr_t dma32_phys_limit __initdata; static void __init zone_sizes_init(void) { unsigned long max_zone_pfns[MAX_NR_ZONES] = { 0, }; #ifdef CONFIG_ZONE_DMA32 max_zone_pfns[ZONE_DMA32] = PFN_DOWN(dma32_phys_limit); #endif max_zone_pfns[ZONE_NORMAL] = max_low_pfn; free_area_init(max_zone_pfns); } #if defined(CONFIG_MMU) && defined(CONFIG_DEBUG_VM) static inline void print_mlk(char *name, unsigned long b, unsigned long t) { pr_notice("%12s : 0x%08lx - 0x%08lx (%4ld kB)\n", name, b, t, (((t) - (b)) >> 10)); } static inline void print_mlm(char *name, unsigned long b, unsigned long t) { pr_notice("%12s : 0x%08lx - 0x%08lx (%4ld MB)\n", name, b, t, (((t) - (b)) >> 20)); } static void __init print_vm_layout(void) { pr_notice("Virtual kernel memory layout:\n"); print_mlk("fixmap", (unsigned long)FIXADDR_START, (unsigned long)FIXADDR_TOP); print_mlm("pci io", (unsigned long)PCI_IO_START, (unsigned long)PCI_IO_END); print_mlm("vmemmap", (unsigned long)VMEMMAP_START, (unsigned long)VMEMMAP_END); print_mlm("vmalloc", (unsigned long)VMALLOC_START, (unsigned long)VMALLOC_END); print_mlm("lowmem", (unsigned long)PAGE_OFFSET, (unsigned long)high_memory); #ifdef CONFIG_64BIT print_mlm("kernel", (unsigned long)KERNEL_LINK_ADDR, (unsigned long)ADDRESS_SPACE_END); #endif } #else static void print_vm_layout(void) { } #endif /* CONFIG_DEBUG_VM */ void __init mem_init(void) { #ifdef CONFIG_FLATMEM BUG_ON(!mem_map); #endif /* CONFIG_FLATMEM */ high_memory = (void *)(__va(PFN_PHYS(max_low_pfn))); memblock_free_all(); print_vm_layout(); } static void __init setup_bootmem(void) { phys_addr_t vmlinux_end = __pa_symbol(&_end); phys_addr_t vmlinux_start = __pa_symbol(&_start); phys_addr_t dram_end = memblock_end_of_DRAM(); phys_addr_t max_mapped_addr = __pa(~(ulong)0); #ifdef CONFIG_XIP_KERNEL vmlinux_start = __pa_symbol(&_sdata); #endif /* The maximal physical memory size is -PAGE_OFFSET. */ memblock_enforce_memory_limit(-PAGE_OFFSET); /* * Reserve from the start of the kernel to the end of the kernel */ #if defined(CONFIG_64BIT) && defined(CONFIG_STRICT_KERNEL_RWX) /* * Make sure we align the reservation on PMD_SIZE since we will * map the kernel in the linear mapping as read-only: we do not want * any allocation to happen between _end and the next pmd aligned page. */ vmlinux_end = (vmlinux_end + PMD_SIZE - 1) & PMD_MASK; #endif memblock_reserve(vmlinux_start, vmlinux_end - vmlinux_start); /* * memblock allocator is not aware of the fact that last 4K bytes of * the addressable memory can not be mapped because of IS_ERR_VALUE * macro. Make sure that last 4k bytes are not usable by memblock * if end of dram is equal to maximum addressable memory. */ if (max_mapped_addr == (dram_end - 1)) memblock_set_current_limit(max_mapped_addr - 4096); min_low_pfn = PFN_UP(memblock_start_of_DRAM()); max_low_pfn = max_pfn = PFN_DOWN(dram_end); dma32_phys_limit = min(4UL * SZ_1G, (unsigned long)PFN_PHYS(max_low_pfn)); set_max_mapnr(max_low_pfn - ARCH_PFN_OFFSET); reserve_initrd_mem(); /* * If DTB is built in, no need to reserve its memblock. * Otherwise, do reserve it but avoid using * early_init_fdt_reserve_self() since __pa() does * not work for DTB pointers that are fixmap addresses */ if (!IS_ENABLED(CONFIG_BUILTIN_DTB)) memblock_reserve(dtb_early_pa, fdt_totalsize(dtb_early_va)); early_init_fdt_scan_reserved_mem(); dma_contiguous_reserve(dma32_phys_limit); memblock_allow_resize(); } #ifdef CONFIG_MMU static struct pt_alloc_ops _pt_ops __initdata; #ifdef CONFIG_XIP_KERNEL #define pt_ops (*(struct pt_alloc_ops *)XIP_FIXUP(&_pt_ops)) #else #define pt_ops _pt_ops #endif /* Offset between linear mapping virtual address and kernel load address */ unsigned long va_pa_offset __ro_after_init; EXPORT_SYMBOL(va_pa_offset); #ifdef CONFIG_XIP_KERNEL #define va_pa_offset (*((unsigned long *)XIP_FIXUP(&va_pa_offset))) #endif /* Offset between kernel mapping virtual address and kernel load address */ #ifdef CONFIG_64BIT unsigned long va_kernel_pa_offset __ro_after_init; EXPORT_SYMBOL(va_kernel_pa_offset); #endif #ifdef CONFIG_XIP_KERNEL #define va_kernel_pa_offset (*((unsigned long *)XIP_FIXUP(&va_kernel_pa_offset))) #endif unsigned long va_kernel_xip_pa_offset __ro_after_init; EXPORT_SYMBOL(va_kernel_xip_pa_offset); #ifdef CONFIG_XIP_KERNEL #define va_kernel_xip_pa_offset (*((unsigned long *)XIP_FIXUP(&va_kernel_xip_pa_offset))) #endif unsigned long pfn_base __ro_after_init; EXPORT_SYMBOL(pfn_base); pgd_t swapper_pg_dir[PTRS_PER_PGD] __page_aligned_bss; pgd_t trampoline_pg_dir[PTRS_PER_PGD] __page_aligned_bss; static pte_t fixmap_pte[PTRS_PER_PTE] __page_aligned_bss; pgd_t early_pg_dir[PTRS_PER_PGD] __initdata __aligned(PAGE_SIZE); #ifdef CONFIG_XIP_KERNEL #define trampoline_pg_dir ((pgd_t *)XIP_FIXUP(trampoline_pg_dir)) #define fixmap_pte ((pte_t *)XIP_FIXUP(fixmap_pte)) #define early_pg_dir ((pgd_t *)XIP_FIXUP(early_pg_dir)) #endif /* CONFIG_XIP_KERNEL */ void __set_fixmap(enum fixed_addresses idx, phys_addr_t phys, pgprot_t prot) { unsigned long addr = __fix_to_virt(idx); pte_t *ptep; BUG_ON(idx <= FIX_HOLE || idx >= __end_of_fixed_addresses); ptep = &fixmap_pte[pte_index(addr)]; if (pgprot_val(prot)) set_pte(ptep, pfn_pte(phys >> PAGE_SHIFT, prot)); else pte_clear(&init_mm, addr, ptep); local_flush_tlb_page(addr); } static inline pte_t *__init get_pte_virt_early(phys_addr_t pa) { return (pte_t *)((uintptr_t)pa); } static inline pte_t *__init get_pte_virt_fixmap(phys_addr_t pa) { clear_fixmap(FIX_PTE); return (pte_t *)set_fixmap_offset(FIX_PTE, pa); } static inline pte_t *__init get_pte_virt_late(phys_addr_t pa) { return (pte_t *) __va(pa); } static inline phys_addr_t __init alloc_pte_early(uintptr_t va) { /* * We only create PMD or PGD early mappings so we * should never reach here with MMU disabled. */ BUG(); } static inline phys_addr_t __init alloc_pte_fixmap(uintptr_t va) { return memblock_phys_alloc(PAGE_SIZE, PAGE_SIZE); } static phys_addr_t __init alloc_pte_late(uintptr_t va) { unsigned long vaddr; vaddr = __get_free_page(GFP_KERNEL); BUG_ON(!vaddr || !pgtable_pte_page_ctor(virt_to_page(vaddr))); return __pa(vaddr); } static void __init create_pte_mapping(pte_t *ptep, uintptr_t va, phys_addr_t pa, phys_addr_t sz, pgprot_t prot) { uintptr_t pte_idx = pte_index(va); BUG_ON(sz != PAGE_SIZE); if (pte_none(ptep[pte_idx])) ptep[pte_idx] = pfn_pte(PFN_DOWN(pa), prot); } #ifndef __PAGETABLE_PMD_FOLDED static pmd_t trampoline_pmd[PTRS_PER_PMD] __page_aligned_bss; static pmd_t fixmap_pmd[PTRS_PER_PMD] __page_aligned_bss; static pmd_t early_pmd[PTRS_PER_PMD] __initdata __aligned(PAGE_SIZE); static pmd_t early_dtb_pmd[PTRS_PER_PMD] __initdata __aligned(PAGE_SIZE); #ifdef CONFIG_XIP_KERNEL #define trampoline_pmd ((pmd_t *)XIP_FIXUP(trampoline_pmd)) #define fixmap_pmd ((pmd_t *)XIP_FIXUP(fixmap_pmd)) #define early_pmd ((pmd_t *)XIP_FIXUP(early_pmd)) #endif /* CONFIG_XIP_KERNEL */ static pmd_t *__init get_pmd_virt_early(phys_addr_t pa) { /* Before MMU is enabled */ return (pmd_t *)((uintptr_t)pa); } static pmd_t *__init get_pmd_virt_fixmap(phys_addr_t pa) { clear_fixmap(FIX_PMD); return (pmd_t *)set_fixmap_offset(FIX_PMD, pa); } static pmd_t *__init get_pmd_virt_late(phys_addr_t pa) { return (pmd_t *) __va(pa); } static phys_addr_t __init alloc_pmd_early(uintptr_t va) { BUG_ON((va - kernel_virt_addr) >> PGDIR_SHIFT); return (uintptr_t)early_pmd; } static phys_addr_t __init alloc_pmd_fixmap(uintptr_t va) { return memblock_phys_alloc(PAGE_SIZE, PAGE_SIZE); } static phys_addr_t __init alloc_pmd_late(uintptr_t va) { unsigned long vaddr; vaddr = __get_free_page(GFP_KERNEL); BUG_ON(!vaddr); return __pa(vaddr); } static void __init create_pmd_mapping(pmd_t *pmdp, uintptr_t va, phys_addr_t pa, phys_addr_t sz, pgprot_t prot) { pte_t *ptep; phys_addr_t pte_phys; uintptr_t pmd_idx = pmd_index(va); if (sz == PMD_SIZE) { if (pmd_none(pmdp[pmd_idx])) pmdp[pmd_idx] = pfn_pmd(PFN_DOWN(pa), prot); return; } if (pmd_none(pmdp[pmd_idx])) { pte_phys = pt_ops.alloc_pte(va); pmdp[pmd_idx] = pfn_pmd(PFN_DOWN(pte_phys), PAGE_TABLE); ptep = pt_ops.get_pte_virt(pte_phys); memset(ptep, 0, PAGE_SIZE); } else { pte_phys = PFN_PHYS(_pmd_pfn(pmdp[pmd_idx])); ptep = pt_ops.get_pte_virt(pte_phys); } create_pte_mapping(ptep, va, pa, sz, prot); } #define pgd_next_t pmd_t #define alloc_pgd_next(__va) pt_ops.alloc_pmd(__va) #define get_pgd_next_virt(__pa) pt_ops.get_pmd_virt(__pa) #define create_pgd_next_mapping(__nextp, __va, __pa, __sz, __prot) \ create_pmd_mapping(__nextp, __va, __pa, __sz, __prot) #define fixmap_pgd_next fixmap_pmd #else #define pgd_next_t pte_t #define alloc_pgd_next(__va) pt_ops.alloc_pte(__va) #define get_pgd_next_virt(__pa) pt_ops.get_pte_virt(__pa) #define create_pgd_next_mapping(__nextp, __va, __pa, __sz, __prot) \ create_pte_mapping(__nextp, __va, __pa, __sz, __prot) #define fixmap_pgd_next fixmap_pte #endif void __init create_pgd_mapping(pgd_t *pgdp, uintptr_t va, phys_addr_t pa, phys_addr_t sz, pgprot_t prot) { pgd_next_t *nextp; phys_addr_t next_phys; uintptr_t pgd_idx = pgd_index(va); if (sz == PGDIR_SIZE) { if (pgd_val(pgdp[pgd_idx]) == 0) pgdp[pgd_idx] = pfn_pgd(PFN_DOWN(pa), prot); return; } if (pgd_val(pgdp[pgd_idx]) == 0) { next_phys = alloc_pgd_next(va); pgdp[pgd_idx] = pfn_pgd(PFN_DOWN(next_phys), PAGE_TABLE); nextp = get_pgd_next_virt(next_phys); memset(nextp, 0, PAGE_SIZE); } else { next_phys = PFN_PHYS(_pgd_pfn(pgdp[pgd_idx])); nextp = get_pgd_next_virt(next_phys); } create_pgd_next_mapping(nextp, va, pa, sz, prot); } static uintptr_t __init best_map_size(phys_addr_t base, phys_addr_t size) { /* Upgrade to PMD_SIZE mappings whenever possible */ if ((base & (PMD_SIZE - 1)) || (size & (PMD_SIZE - 1))) return PAGE_SIZE; return PMD_SIZE; } #ifdef CONFIG_XIP_KERNEL /* called from head.S with MMU off */ asmlinkage void __init __copy_data(void) { void *from = (void *)(&_sdata); void *end = (void *)(&_end); void *to = (void *)CONFIG_PHYS_RAM_BASE; size_t sz = (size_t)(end - from + 1); memcpy(to, from, sz); } #endif /* * setup_vm() is called from head.S with MMU-off. * * Following requirements should be honoured for setup_vm() to work * correctly: * 1) It should use PC-relative addressing for accessing kernel symbols. * To achieve this we always use GCC cmodel=medany. * 2) The compiler instrumentation for FTRACE will not work for setup_vm() * so disable compiler instrumentation when FTRACE is enabled. * * Currently, the above requirements are honoured by using custom CFLAGS * for init.o in mm/Makefile. */ #ifndef __riscv_cmodel_medany #error "setup_vm() is called from head.S before relocate so it should not use absolute addressing." #endif static uintptr_t load_pa __initdata; static uintptr_t load_sz __initdata; #ifdef CONFIG_XIP_KERNEL #define load_pa (*((uintptr_t *)XIP_FIXUP(&load_pa))) #define load_sz (*((uintptr_t *)XIP_FIXUP(&load_sz))) #endif #ifdef CONFIG_XIP_KERNEL static uintptr_t xiprom __initdata; static uintptr_t xiprom_sz __initdata; #define xiprom_sz (*((uintptr_t *)XIP_FIXUP(&xiprom_sz))) #define xiprom (*((uintptr_t *)XIP_FIXUP(&xiprom))) static void __init create_kernel_page_table(pgd_t *pgdir, uintptr_t map_size) { uintptr_t va, end_va; /* Map the flash resident part */ end_va = kernel_virt_addr + xiprom_sz; for (va = kernel_virt_addr; va < end_va; va += map_size) create_pgd_mapping(pgdir, va, xiprom + (va - kernel_virt_addr), map_size, PAGE_KERNEL_EXEC); /* Map the data in RAM */ end_va = kernel_virt_addr + XIP_OFFSET + load_sz; for (va = kernel_virt_addr + XIP_OFFSET; va < end_va; va += map_size) create_pgd_mapping(pgdir, va, load_pa + (va - (kernel_virt_addr + XIP_OFFSET)), map_size, PAGE_KERNEL); } #else static void __init create_kernel_page_table(pgd_t *pgdir, uintptr_t map_size) { uintptr_t va, end_va; end_va = kernel_virt_addr + load_sz; for (va = kernel_virt_addr; va < end_va; va += map_size) create_pgd_mapping(pgdir, va, load_pa + (va - kernel_virt_addr), map_size, PAGE_KERNEL_EXEC); } #endif asmlinkage void __init setup_vm(uintptr_t dtb_pa) { uintptr_t __maybe_unused pa; uintptr_t map_size; #ifndef __PAGETABLE_PMD_FOLDED pmd_t fix_bmap_spmd, fix_bmap_epmd; #endif #ifdef CONFIG_XIP_KERNEL xiprom = (uintptr_t)CONFIG_XIP_PHYS_ADDR; xiprom_sz = (uintptr_t)(&_exiprom) - (uintptr_t)(&_xiprom); load_pa = (uintptr_t)CONFIG_PHYS_RAM_BASE; load_sz = (uintptr_t)(&_end) - (uintptr_t)(&_sdata); va_kernel_xip_pa_offset = kernel_virt_addr - xiprom; #else load_pa = (uintptr_t)(&_start); load_sz = (uintptr_t)(&_end) - load_pa; #endif va_pa_offset = PAGE_OFFSET - load_pa; #ifdef CONFIG_64BIT va_kernel_pa_offset = kernel_virt_addr - load_pa; #endif pfn_base = PFN_DOWN(load_pa); /* * Enforce boot alignment requirements of RV32 and * RV64 by only allowing PMD or PGD mappings. */ map_size = PMD_SIZE; /* Sanity check alignment and size */ BUG_ON((PAGE_OFFSET % PGDIR_SIZE) != 0); BUG_ON((load_pa % map_size) != 0); pt_ops.alloc_pte = alloc_pte_early; pt_ops.get_pte_virt = get_pte_virt_early; #ifndef __PAGETABLE_PMD_FOLDED pt_ops.alloc_pmd = alloc_pmd_early; pt_ops.get_pmd_virt = get_pmd_virt_early; #endif /* Setup early PGD for fixmap */ create_pgd_mapping(early_pg_dir, FIXADDR_START, (uintptr_t)fixmap_pgd_next, PGDIR_SIZE, PAGE_TABLE); #ifndef __PAGETABLE_PMD_FOLDED /* Setup fixmap PMD */ create_pmd_mapping(fixmap_pmd, FIXADDR_START, (uintptr_t)fixmap_pte, PMD_SIZE, PAGE_TABLE); /* Setup trampoline PGD and PMD */ create_pgd_mapping(trampoline_pg_dir, kernel_virt_addr, (uintptr_t)trampoline_pmd, PGDIR_SIZE, PAGE_TABLE); #ifdef CONFIG_XIP_KERNEL create_pmd_mapping(trampoline_pmd, kernel_virt_addr, xiprom, PMD_SIZE, PAGE_KERNEL_EXEC); #else create_pmd_mapping(trampoline_pmd, kernel_virt_addr, load_pa, PMD_SIZE, PAGE_KERNEL_EXEC); #endif #else /* Setup trampoline PGD */ create_pgd_mapping(trampoline_pg_dir, kernel_virt_addr, load_pa, PGDIR_SIZE, PAGE_KERNEL_EXEC); #endif /* * Setup early PGD covering entire kernel which will allow * us to reach paging_init(). We map all memory banks later * in setup_vm_final() below. */ create_kernel_page_table(early_pg_dir, map_size); #ifndef __PAGETABLE_PMD_FOLDED /* Setup early PMD for DTB */ create_pgd_mapping(early_pg_dir, DTB_EARLY_BASE_VA, (uintptr_t)early_dtb_pmd, PGDIR_SIZE, PAGE_TABLE); #ifndef CONFIG_BUILTIN_DTB /* Create two consecutive PMD mappings for FDT early scan */ pa = dtb_pa & ~(PMD_SIZE - 1); create_pmd_mapping(early_dtb_pmd, DTB_EARLY_BASE_VA, pa, PMD_SIZE, PAGE_KERNEL); create_pmd_mapping(early_dtb_pmd, DTB_EARLY_BASE_VA + PMD_SIZE, pa + PMD_SIZE, PMD_SIZE, PAGE_KERNEL); dtb_early_va = (void *)DTB_EARLY_BASE_VA + (dtb_pa & (PMD_SIZE - 1)); #else /* CONFIG_BUILTIN_DTB */ #ifdef CONFIG_64BIT /* * __va can't be used since it would return a linear mapping address * whereas dtb_early_va will be used before setup_vm_final installs * the linear mapping. */ dtb_early_va = kernel_mapping_pa_to_va(XIP_FIXUP(dtb_pa)); #else dtb_early_va = __va(dtb_pa); #endif /* CONFIG_64BIT */ #endif /* CONFIG_BUILTIN_DTB */ #else #ifndef CONFIG_BUILTIN_DTB /* Create two consecutive PGD mappings for FDT early scan */ pa = dtb_pa & ~(PGDIR_SIZE - 1); create_pgd_mapping(early_pg_dir, DTB_EARLY_BASE_VA, pa, PGDIR_SIZE, PAGE_KERNEL); create_pgd_mapping(early_pg_dir, DTB_EARLY_BASE_VA + PGDIR_SIZE, pa + PGDIR_SIZE, PGDIR_SIZE, PAGE_KERNEL); dtb_early_va = (void *)DTB_EARLY_BASE_VA + (dtb_pa & (PGDIR_SIZE - 1)); #else /* CONFIG_BUILTIN_DTB */ #ifdef CONFIG_64BIT dtb_early_va = kernel_mapping_pa_to_va(XIP_FIXUP(dtb_pa)); #else dtb_early_va = __va(dtb_pa); #endif /* CONFIG_64BIT */ #endif /* CONFIG_BUILTIN_DTB */ #endif dtb_early_pa = dtb_pa; /* * Bootime fixmap only can handle PMD_SIZE mapping. Thus, boot-ioremap * range can not span multiple pmds. */ BUILD_BUG_ON((__fix_to_virt(FIX_BTMAP_BEGIN) >> PMD_SHIFT) != (__fix_to_virt(FIX_BTMAP_END) >> PMD_SHIFT)); #ifndef __PAGETABLE_PMD_FOLDED /* * Early ioremap fixmap is already created as it lies within first 2MB * of fixmap region. We always map PMD_SIZE. Thus, both FIX_BTMAP_END * FIX_BTMAP_BEGIN should lie in the same pmd. Verify that and warn * the user if not. */ fix_bmap_spmd = fixmap_pmd[pmd_index(__fix_to_virt(FIX_BTMAP_BEGIN))]; fix_bmap_epmd = fixmap_pmd[pmd_index(__fix_to_virt(FIX_BTMAP_END))]; if (pmd_val(fix_bmap_spmd) != pmd_val(fix_bmap_epmd)) { WARN_ON(1); pr_warn("fixmap btmap start [%08lx] != end [%08lx]\n", pmd_val(fix_bmap_spmd), pmd_val(fix_bmap_epmd)); pr_warn("fix_to_virt(FIX_BTMAP_BEGIN): %08lx\n", fix_to_virt(FIX_BTMAP_BEGIN)); pr_warn("fix_to_virt(FIX_BTMAP_END): %08lx\n", fix_to_virt(FIX_BTMAP_END)); pr_warn("FIX_BTMAP_END: %d\n", FIX_BTMAP_END); pr_warn("FIX_BTMAP_BEGIN: %d\n", FIX_BTMAP_BEGIN); } #endif } #if defined(CONFIG_64BIT) && defined(CONFIG_STRICT_KERNEL_RWX) void __init protect_kernel_linear_mapping_text_rodata(void) { unsigned long text_start = (unsigned long)lm_alias(_start); unsigned long init_text_start = (unsigned long)lm_alias(__init_text_begin); unsigned long rodata_start = (unsigned long)lm_alias(__start_rodata); unsigned long data_start = (unsigned long)lm_alias(_data); set_memory_ro(text_start, (init_text_start - text_start) >> PAGE_SHIFT); set_memory_nx(text_start, (init_text_start - text_start) >> PAGE_SHIFT); set_memory_ro(rodata_start, (data_start - rodata_start) >> PAGE_SHIFT); set_memory_nx(rodata_start, (data_start - rodata_start) >> PAGE_SHIFT); } #endif static void __init setup_vm_final(void) { uintptr_t va, map_size; phys_addr_t pa, start, end; u64 i; /** * MMU is enabled at this point. But page table setup is not complete yet. * fixmap page table alloc functions should be used at this point */ pt_ops.alloc_pte = alloc_pte_fixmap; pt_ops.get_pte_virt = get_pte_virt_fixmap; #ifndef __PAGETABLE_PMD_FOLDED pt_ops.alloc_pmd = alloc_pmd_fixmap; pt_ops.get_pmd_virt = get_pmd_virt_fixmap; #endif /* Setup swapper PGD for fixmap */ create_pgd_mapping(swapper_pg_dir, FIXADDR_START, __pa_symbol(fixmap_pgd_next), PGDIR_SIZE, PAGE_TABLE); /* Map all memory banks in the linear mapping */ for_each_mem_range(i, &start, &end) { if (start >= end) break; if (start <= __pa(PAGE_OFFSET) && __pa(PAGE_OFFSET) < end) start = __pa(PAGE_OFFSET); map_size = best_map_size(start, end - start); for (pa = start; pa < end; pa += map_size) { va = (uintptr_t)__va(pa); create_pgd_mapping(swapper_pg_dir, va, pa, map_size, #ifdef CONFIG_64BIT PAGE_KERNEL #else PAGE_KERNEL_EXEC #endif ); } } #ifdef CONFIG_64BIT /* Map the kernel */ create_kernel_page_table(swapper_pg_dir, PMD_SIZE); #endif /* Clear fixmap PTE and PMD mappings */ clear_fixmap(FIX_PTE); clear_fixmap(FIX_PMD); /* Move to swapper page table */ csr_write(CSR_SATP, PFN_DOWN(__pa_symbol(swapper_pg_dir)) | SATP_MODE); local_flush_tlb_all(); /* generic page allocation functions must be used to setup page table */ pt_ops.alloc_pte = alloc_pte_late; pt_ops.get_pte_virt = get_pte_virt_late; #ifndef __PAGETABLE_PMD_FOLDED pt_ops.alloc_pmd = alloc_pmd_late; pt_ops.get_pmd_virt = get_pmd_virt_late; #endif } #else asmlinkage void __init setup_vm(uintptr_t dtb_pa) { dtb_early_va = (void *)dtb_pa; dtb_early_pa = dtb_pa; } static inline void setup_vm_final(void) { } #endif /* CONFIG_MMU */ #ifdef CONFIG_STRICT_KERNEL_RWX void __init protect_kernel_text_data(void) { unsigned long text_start = (unsigned long)_start; unsigned long init_text_start = (unsigned long)__init_text_begin; unsigned long init_data_start = (unsigned long)__init_data_begin; unsigned long rodata_start = (unsigned long)__start_rodata; unsigned long data_start = (unsigned long)_data; unsigned long max_low = (unsigned long)(__va(PFN_PHYS(max_low_pfn))); set_memory_ro(text_start, (init_text_start - text_start) >> PAGE_SHIFT); set_memory_ro(init_text_start, (init_data_start - init_text_start) >> PAGE_SHIFT); set_memory_nx(init_data_start, (rodata_start - init_data_start) >> PAGE_SHIFT); /* rodata section is marked readonly in mark_rodata_ro */ set_memory_nx(rodata_start, (data_start - rodata_start) >> PAGE_SHIFT); set_memory_nx(data_start, (max_low - data_start) >> PAGE_SHIFT); } void mark_rodata_ro(void) { unsigned long rodata_start = (unsigned long)__start_rodata; unsigned long data_start = (unsigned long)_data; set_memory_ro(rodata_start, (data_start - rodata_start) >> PAGE_SHIFT); debug_checkwx(); } #endif #ifdef CONFIG_KEXEC_CORE /* * reserve_crashkernel() - reserves memory for crash kernel * * This function reserves memory area given in "crashkernel=" kernel command * line parameter. The memory reserved is used by dump capture kernel when * primary kernel is crashing. */ static void __init reserve_crashkernel(void) { unsigned long long crash_base = 0; unsigned long long crash_size = 0; unsigned long search_start = memblock_start_of_DRAM(); unsigned long search_end = memblock_end_of_DRAM(); int ret = 0; /* * Don't reserve a region for a crash kernel on a crash kernel * since it doesn't make much sense and we have limited memory * resources. */ #ifdef CONFIG_CRASH_DUMP if (is_kdump_kernel()) { pr_info("crashkernel: ignoring reservation request\n"); return; } #endif ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(), &crash_size, &crash_base); if (ret || !crash_size) return; crash_size = PAGE_ALIGN(crash_size); if (crash_base == 0) { /* * Current riscv boot protocol requires 2MB alignment for * RV64 and 4MB alignment for RV32 (hugepage size) */ crash_base = memblock_find_in_range(search_start, search_end, crash_size, PMD_SIZE); if (crash_base == 0) { pr_warn("crashkernel: couldn't allocate %lldKB\n", crash_size >> 10); return; } } else { /* User specifies base address explicitly. */ if (!memblock_is_region_memory(crash_base, crash_size)) { pr_warn("crashkernel: requested region is not memory\n"); return; } if (memblock_is_region_reserved(crash_base, crash_size)) { pr_warn("crashkernel: requested region is reserved\n"); return; } if (!IS_ALIGNED(crash_base, PMD_SIZE)) { pr_warn("crashkernel: requested region is misaligned\n"); return; } } memblock_reserve(crash_base, crash_size); pr_info("crashkernel: reserved 0x%016llx - 0x%016llx (%lld MB)\n", crash_base, crash_base + crash_size, crash_size >> 20); crashk_res.start = crash_base; crashk_res.end = crash_base + crash_size - 1; } #endif /* CONFIG_KEXEC_CORE */ #ifdef CONFIG_CRASH_DUMP /* * We keep track of the ELF core header of the crashed * kernel with a reserved-memory region with compatible * string "linux,elfcorehdr". Here we register a callback * to populate elfcorehdr_addr/size when this region is * present. Note that this region will be marked as * reserved once we call early_init_fdt_scan_reserved_mem() * later on. */ static int __init elfcore_hdr_setup(struct reserved_mem *rmem) { elfcorehdr_addr = rmem->base; elfcorehdr_size = rmem->size; return 0; } RESERVEDMEM_OF_DECLARE(elfcorehdr, "linux,elfcorehdr", elfcore_hdr_setup); #endif void __init paging_init(void) { setup_bootmem(); setup_vm_final(); } void __init misc_mem_init(void) { early_memtest(min_low_pfn << PAGE_SHIFT, max_low_pfn << PAGE_SHIFT); arch_numa_init(); sparse_init(); zone_sizes_init(); #ifdef CONFIG_KEXEC_CORE reserve_crashkernel(); #endif memblock_dump_all(); } #ifdef CONFIG_SPARSEMEM_VMEMMAP int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node, struct vmem_altmap *altmap) { return vmemmap_populate_basepages(start, end, node, NULL); } #endif