/* * This file implements the DMA operations for NVLink devices. The NPU * devices all point to the same iommu table as the parent PCI device. * * Copyright Alistair Popple, IBM Corporation 2015. * * This program is free software; you can redistribute it and/or * modify it under the terms of version 2 of the GNU General Public * License as published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "powernv.h" #include "pci.h" #define npu_to_phb(x) container_of(x, struct pnv_phb, npu) /* * spinlock to protect initialisation of an npu_context for a particular * mm_struct. */ static DEFINE_SPINLOCK(npu_context_lock); /* * When an address shootdown range exceeds this threshold we invalidate the * entire TLB on the GPU for the given PID rather than each specific address in * the range. */ static uint64_t atsd_threshold = 2 * 1024 * 1024; static struct dentry *atsd_threshold_dentry; /* * Other types of TCE cache invalidation are not functional in the * hardware. */ static struct pci_dev *get_pci_dev(struct device_node *dn) { struct pci_dn *pdn = PCI_DN(dn); return pci_get_domain_bus_and_slot(pci_domain_nr(pdn->phb->bus), pdn->busno, pdn->devfn); } /* Given a NPU device get the associated PCI device. */ struct pci_dev *pnv_pci_get_gpu_dev(struct pci_dev *npdev) { struct device_node *dn; struct pci_dev *gpdev; if (WARN_ON(!npdev)) return NULL; if (WARN_ON(!npdev->dev.of_node)) return NULL; /* Get assoicated PCI device */ dn = of_parse_phandle(npdev->dev.of_node, "ibm,gpu", 0); if (!dn) return NULL; gpdev = get_pci_dev(dn); of_node_put(dn); return gpdev; } EXPORT_SYMBOL(pnv_pci_get_gpu_dev); /* Given the real PCI device get a linked NPU device. */ struct pci_dev *pnv_pci_get_npu_dev(struct pci_dev *gpdev, int index) { struct device_node *dn; struct pci_dev *npdev; if (WARN_ON(!gpdev)) return NULL; /* Not all PCI devices have device-tree nodes */ if (!gpdev->dev.of_node) return NULL; /* Get assoicated PCI device */ dn = of_parse_phandle(gpdev->dev.of_node, "ibm,npu", index); if (!dn) return NULL; npdev = get_pci_dev(dn); of_node_put(dn); return npdev; } EXPORT_SYMBOL(pnv_pci_get_npu_dev); #define NPU_DMA_OP_UNSUPPORTED() \ dev_err_once(dev, "%s operation unsupported for NVLink devices\n", \ __func__) static void *dma_npu_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t flag, unsigned long attrs) { NPU_DMA_OP_UNSUPPORTED(); return NULL; } static void dma_npu_free(struct device *dev, size_t size, void *vaddr, dma_addr_t dma_handle, unsigned long attrs) { NPU_DMA_OP_UNSUPPORTED(); } static dma_addr_t dma_npu_map_page(struct device *dev, struct page *page, unsigned long offset, size_t size, enum dma_data_direction direction, unsigned long attrs) { NPU_DMA_OP_UNSUPPORTED(); return 0; } static int dma_npu_map_sg(struct device *dev, struct scatterlist *sglist, int nelems, enum dma_data_direction direction, unsigned long attrs) { NPU_DMA_OP_UNSUPPORTED(); return 0; } static int dma_npu_dma_supported(struct device *dev, u64 mask) { NPU_DMA_OP_UNSUPPORTED(); return 0; } static u64 dma_npu_get_required_mask(struct device *dev) { NPU_DMA_OP_UNSUPPORTED(); return 0; } static const struct dma_map_ops dma_npu_ops = { .map_page = dma_npu_map_page, .map_sg = dma_npu_map_sg, .alloc = dma_npu_alloc, .free = dma_npu_free, .dma_supported = dma_npu_dma_supported, .get_required_mask = dma_npu_get_required_mask, }; /* * Returns the PE assoicated with the PCI device of the given * NPU. Returns the linked pci device if pci_dev != NULL. */ static struct pnv_ioda_pe *get_gpu_pci_dev_and_pe(struct pnv_ioda_pe *npe, struct pci_dev **gpdev) { struct pnv_phb *phb; struct pci_controller *hose; struct pci_dev *pdev; struct pnv_ioda_pe *pe; struct pci_dn *pdn; pdev = pnv_pci_get_gpu_dev(npe->pdev); if (!pdev) return NULL; pdn = pci_get_pdn(pdev); if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE)) return NULL; hose = pci_bus_to_host(pdev->bus); phb = hose->private_data; pe = &phb->ioda.pe_array[pdn->pe_number]; if (gpdev) *gpdev = pdev; return pe; } long pnv_npu_set_window(struct pnv_ioda_pe *npe, int num, struct iommu_table *tbl) { struct pnv_phb *phb = npe->phb; int64_t rc; const unsigned long size = tbl->it_indirect_levels ? tbl->it_level_size : tbl->it_size; const __u64 start_addr = tbl->it_offset << tbl->it_page_shift; const __u64 win_size = tbl->it_size << tbl->it_page_shift; pe_info(npe, "Setting up window %llx..%llx pg=%lx\n", start_addr, start_addr + win_size - 1, IOMMU_PAGE_SIZE(tbl)); rc = opal_pci_map_pe_dma_window(phb->opal_id, npe->pe_number, npe->pe_number, tbl->it_indirect_levels + 1, __pa(tbl->it_base), size << 3, IOMMU_PAGE_SIZE(tbl)); if (rc) { pe_err(npe, "Failed to configure TCE table, err %lld\n", rc); return rc; } pnv_pci_ioda2_tce_invalidate_entire(phb, false); /* Add the table to the list so its TCE cache will get invalidated */ pnv_pci_link_table_and_group(phb->hose->node, num, tbl, &npe->table_group); return 0; } long pnv_npu_unset_window(struct pnv_ioda_pe *npe, int num) { struct pnv_phb *phb = npe->phb; int64_t rc; pe_info(npe, "Removing DMA window\n"); rc = opal_pci_map_pe_dma_window(phb->opal_id, npe->pe_number, npe->pe_number, 0/* levels */, 0/* table address */, 0/* table size */, 0/* page size */); if (rc) { pe_err(npe, "Unmapping failed, ret = %lld\n", rc); return rc; } pnv_pci_ioda2_tce_invalidate_entire(phb, false); pnv_pci_unlink_table_and_group(npe->table_group.tables[num], &npe->table_group); return 0; } /* * Enables 32 bit DMA on NPU. */ static void pnv_npu_dma_set_32(struct pnv_ioda_pe *npe) { struct pci_dev *gpdev; struct pnv_ioda_pe *gpe; int64_t rc; /* * Find the assoicated PCI devices and get the dma window * information from there. */ if (!npe->pdev || !(npe->flags & PNV_IODA_PE_DEV)) return; gpe = get_gpu_pci_dev_and_pe(npe, &gpdev); if (!gpe) return; rc = pnv_npu_set_window(npe, 0, gpe->table_group.tables[0]); /* * We don't initialise npu_pe->tce32_table as we always use * dma_npu_ops which are nops. */ set_dma_ops(&npe->pdev->dev, &dma_npu_ops); } /* * Enables bypass mode on the NPU. The NPU only supports one * window per link, so bypass needs to be explicitly enabled or * disabled. Unlike for a PHB3 bypass and non-bypass modes can't be * active at the same time. */ static int pnv_npu_dma_set_bypass(struct pnv_ioda_pe *npe) { struct pnv_phb *phb = npe->phb; int64_t rc = 0; phys_addr_t top = memblock_end_of_DRAM(); if (phb->type != PNV_PHB_NPU_NVLINK || !npe->pdev) return -EINVAL; rc = pnv_npu_unset_window(npe, 0); if (rc != OPAL_SUCCESS) return rc; /* Enable the bypass window */ top = roundup_pow_of_two(top); dev_info(&npe->pdev->dev, "Enabling bypass for PE %x\n", npe->pe_number); rc = opal_pci_map_pe_dma_window_real(phb->opal_id, npe->pe_number, npe->pe_number, 0 /* bypass base */, top); if (rc == OPAL_SUCCESS) pnv_pci_ioda2_tce_invalidate_entire(phb, false); return rc; } void pnv_npu_try_dma_set_bypass(struct pci_dev *gpdev, bool bypass) { int i; struct pnv_phb *phb; struct pci_dn *pdn; struct pnv_ioda_pe *npe; struct pci_dev *npdev; for (i = 0; ; ++i) { npdev = pnv_pci_get_npu_dev(gpdev, i); if (!npdev) break; pdn = pci_get_pdn(npdev); if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE)) return; phb = pci_bus_to_host(npdev->bus)->private_data; /* We only do bypass if it's enabled on the linked device */ npe = &phb->ioda.pe_array[pdn->pe_number]; if (bypass) { dev_info(&npdev->dev, "Using 64-bit DMA iommu bypass\n"); pnv_npu_dma_set_bypass(npe); } else { dev_info(&npdev->dev, "Using 32-bit DMA via iommu\n"); pnv_npu_dma_set_32(npe); } } } /* Switch ownership from platform code to external user (e.g. VFIO) */ void pnv_npu_take_ownership(struct pnv_ioda_pe *npe) { struct pnv_phb *phb = npe->phb; int64_t rc; /* * Note: NPU has just a single TVE in the hardware which means that * while used by the kernel, it can have either 32bit window or * DMA bypass but never both. So we deconfigure 32bit window only * if it was enabled at the moment of ownership change. */ if (npe->table_group.tables[0]) { pnv_npu_unset_window(npe, 0); return; } /* Disable bypass */ rc = opal_pci_map_pe_dma_window_real(phb->opal_id, npe->pe_number, npe->pe_number, 0 /* bypass base */, 0); if (rc) { pe_err(npe, "Failed to disable bypass, err %lld\n", rc); return; } pnv_pci_ioda2_tce_invalidate_entire(npe->phb, false); } struct pnv_ioda_pe *pnv_pci_npu_setup_iommu(struct pnv_ioda_pe *npe) { struct pnv_phb *phb = npe->phb; struct pci_bus *pbus = phb->hose->bus; struct pci_dev *npdev, *gpdev = NULL, *gptmp; struct pnv_ioda_pe *gpe = get_gpu_pci_dev_and_pe(npe, &gpdev); if (!gpe || !gpdev) return NULL; list_for_each_entry(npdev, &pbus->devices, bus_list) { gptmp = pnv_pci_get_gpu_dev(npdev); if (gptmp != gpdev) continue; pe_info(gpe, "Attached NPU %s\n", dev_name(&npdev->dev)); iommu_group_add_device(gpe->table_group.group, &npdev->dev); } return gpe; } /* Maximum number of nvlinks per npu */ #define NV_MAX_LINKS 6 /* Maximum index of npu2 hosts in the system. Always < NV_MAX_NPUS */ static int max_npu2_index; struct npu_context { struct mm_struct *mm; struct pci_dev *npdev[NV_MAX_NPUS][NV_MAX_LINKS]; struct mmu_notifier mn; struct kref kref; bool nmmu_flush; /* Callback to stop translation requests on a given GPU */ void (*release_cb)(struct npu_context *context, void *priv); /* * Private pointer passed to the above callback for usage by * device drivers. */ void *priv; }; struct mmio_atsd_reg { struct npu *npu; int reg; }; /* * Find a free MMIO ATSD register and mark it in use. Return -ENOSPC * if none are available. */ static int get_mmio_atsd_reg(struct npu *npu) { int i; for (i = 0; i < npu->mmio_atsd_count; i++) { if (!test_and_set_bit_lock(i, &npu->mmio_atsd_usage)) return i; } return -ENOSPC; } static void put_mmio_atsd_reg(struct npu *npu, int reg) { clear_bit_unlock(reg, &npu->mmio_atsd_usage); } /* MMIO ATSD register offsets */ #define XTS_ATSD_AVA 1 #define XTS_ATSD_STAT 2 static void mmio_launch_invalidate(struct mmio_atsd_reg *mmio_atsd_reg, unsigned long launch, unsigned long va) { struct npu *npu = mmio_atsd_reg->npu; int reg = mmio_atsd_reg->reg; __raw_writeq_be(va, npu->mmio_atsd_regs[reg] + XTS_ATSD_AVA); eieio(); __raw_writeq_be(launch, npu->mmio_atsd_regs[reg]); } static void mmio_invalidate_pid(struct mmio_atsd_reg mmio_atsd_reg[NV_MAX_NPUS], unsigned long pid, bool flush) { int i; unsigned long launch; for (i = 0; i <= max_npu2_index; i++) { if (mmio_atsd_reg[i].reg < 0) continue; /* IS set to invalidate matching PID */ launch = PPC_BIT(12); /* PRS set to process-scoped */ launch |= PPC_BIT(13); /* AP */ launch |= (u64) mmu_get_ap(mmu_virtual_psize) << PPC_BITLSHIFT(17); /* PID */ launch |= pid << PPC_BITLSHIFT(38); /* No flush */ launch |= !flush << PPC_BITLSHIFT(39); /* Invalidating the entire process doesn't use a va */ mmio_launch_invalidate(&mmio_atsd_reg[i], launch, 0); } } static void mmio_invalidate_va(struct mmio_atsd_reg mmio_atsd_reg[NV_MAX_NPUS], unsigned long va, unsigned long pid, bool flush) { int i; unsigned long launch; for (i = 0; i <= max_npu2_index; i++) { if (mmio_atsd_reg[i].reg < 0) continue; /* IS set to invalidate target VA */ launch = 0; /* PRS set to process scoped */ launch |= PPC_BIT(13); /* AP */ launch |= (u64) mmu_get_ap(mmu_virtual_psize) << PPC_BITLSHIFT(17); /* PID */ launch |= pid << PPC_BITLSHIFT(38); /* No flush */ launch |= !flush << PPC_BITLSHIFT(39); mmio_launch_invalidate(&mmio_atsd_reg[i], launch, va); } } #define mn_to_npu_context(x) container_of(x, struct npu_context, mn) static void mmio_invalidate_wait( struct mmio_atsd_reg mmio_atsd_reg[NV_MAX_NPUS]) { struct npu *npu; int i, reg; /* Wait for all invalidations to complete */ for (i = 0; i <= max_npu2_index; i++) { if (mmio_atsd_reg[i].reg < 0) continue; /* Wait for completion */ npu = mmio_atsd_reg[i].npu; reg = mmio_atsd_reg[i].reg; while (__raw_readq(npu->mmio_atsd_regs[reg] + XTS_ATSD_STAT)) cpu_relax(); } } /* * Acquires all the address translation shootdown (ATSD) registers required to * launch an ATSD on all links this npu_context is active on. */ static void acquire_atsd_reg(struct npu_context *npu_context, struct mmio_atsd_reg mmio_atsd_reg[NV_MAX_NPUS]) { int i, j; struct npu *npu; struct pci_dev *npdev; struct pnv_phb *nphb; for (i = 0; i <= max_npu2_index; i++) { mmio_atsd_reg[i].reg = -1; for (j = 0; j < NV_MAX_LINKS; j++) { /* * There are no ordering requirements with respect to * the setup of struct npu_context, but to ensure * consistent behaviour we need to ensure npdev[][] is * only read once. */ npdev = READ_ONCE(npu_context->npdev[i][j]); if (!npdev) continue; nphb = pci_bus_to_host(npdev->bus)->private_data; npu = &nphb->npu; mmio_atsd_reg[i].npu = npu; mmio_atsd_reg[i].reg = get_mmio_atsd_reg(npu); while (mmio_atsd_reg[i].reg < 0) { mmio_atsd_reg[i].reg = get_mmio_atsd_reg(npu); cpu_relax(); } break; } } } /* * Release previously acquired ATSD registers. To avoid deadlocks the registers * must be released in the same order they were acquired above in * acquire_atsd_reg. */ static void release_atsd_reg(struct mmio_atsd_reg mmio_atsd_reg[NV_MAX_NPUS]) { int i; for (i = 0; i <= max_npu2_index; i++) { /* * We can't rely on npu_context->npdev[][] being the same here * as when acquire_atsd_reg() was called, hence we use the * values stored in mmio_atsd_reg during the acquire phase * rather than re-reading npdev[][]. */ if (mmio_atsd_reg[i].reg < 0) continue; put_mmio_atsd_reg(mmio_atsd_reg[i].npu, mmio_atsd_reg[i].reg); } } /* * Invalidate either a single address or an entire PID depending on * the value of va. */ static void mmio_invalidate(struct npu_context *npu_context, int va, unsigned long address, bool flush) { struct mmio_atsd_reg mmio_atsd_reg[NV_MAX_NPUS]; unsigned long pid = npu_context->mm->context.id; if (npu_context->nmmu_flush) /* * Unfortunately the nest mmu does not support flushing specific * addresses so we have to flush the whole mm once before * shooting down the GPU translation. */ flush_all_mm(npu_context->mm); /* * Loop over all the NPUs this process is active on and launch * an invalidate. */ acquire_atsd_reg(npu_context, mmio_atsd_reg); if (va) mmio_invalidate_va(mmio_atsd_reg, address, pid, flush); else mmio_invalidate_pid(mmio_atsd_reg, pid, flush); mmio_invalidate_wait(mmio_atsd_reg); if (flush) { /* * The GPU requires two flush ATSDs to ensure all entries have * been flushed. We use PID 0 as it will never be used for a * process on the GPU. */ mmio_invalidate_pid(mmio_atsd_reg, 0, true); mmio_invalidate_wait(mmio_atsd_reg); mmio_invalidate_pid(mmio_atsd_reg, 0, true); mmio_invalidate_wait(mmio_atsd_reg); } release_atsd_reg(mmio_atsd_reg); } static void pnv_npu2_mn_release(struct mmu_notifier *mn, struct mm_struct *mm) { struct npu_context *npu_context = mn_to_npu_context(mn); /* Call into device driver to stop requests to the NMMU */ if (npu_context->release_cb) npu_context->release_cb(npu_context, npu_context->priv); /* * There should be no more translation requests for this PID, but we * need to ensure any entries for it are removed from the TLB. */ mmio_invalidate(npu_context, 0, 0, true); } static void pnv_npu2_mn_change_pte(struct mmu_notifier *mn, struct mm_struct *mm, unsigned long address, pte_t pte) { struct npu_context *npu_context = mn_to_npu_context(mn); mmio_invalidate(npu_context, 1, address, true); } static void pnv_npu2_mn_invalidate_range(struct mmu_notifier *mn, struct mm_struct *mm, unsigned long start, unsigned long end) { struct npu_context *npu_context = mn_to_npu_context(mn); unsigned long address; if (end - start > atsd_threshold) { /* * Just invalidate the entire PID if the address range is too * large. */ mmio_invalidate(npu_context, 0, 0, true); } else { for (address = start; address < end; address += PAGE_SIZE) mmio_invalidate(npu_context, 1, address, false); /* Do the flush only on the final addess == end */ mmio_invalidate(npu_context, 1, address, true); } } static const struct mmu_notifier_ops nv_nmmu_notifier_ops = { .release = pnv_npu2_mn_release, .change_pte = pnv_npu2_mn_change_pte, .invalidate_range = pnv_npu2_mn_invalidate_range, }; /* * Call into OPAL to setup the nmmu context for the current task in * the NPU. This must be called to setup the context tables before the * GPU issues ATRs. pdev should be a pointed to PCIe GPU device. * * A release callback should be registered to allow a device driver to * be notified that it should not launch any new translation requests * as the final TLB invalidate is about to occur. * * Returns an error if there no contexts are currently available or a * npu_context which should be passed to pnv_npu2_handle_fault(). * * mmap_sem must be held in write mode and must not be called from interrupt * context. */ struct npu_context *pnv_npu2_init_context(struct pci_dev *gpdev, unsigned long flags, void (*cb)(struct npu_context *, void *), void *priv) { int rc; u32 nvlink_index; struct device_node *nvlink_dn; struct mm_struct *mm = current->mm; struct pnv_phb *nphb; struct npu *npu; struct npu_context *npu_context; /* * At present we don't support GPUs connected to multiple NPUs and I'm * not sure the hardware does either. */ struct pci_dev *npdev = pnv_pci_get_npu_dev(gpdev, 0); if (!firmware_has_feature(FW_FEATURE_OPAL)) return ERR_PTR(-ENODEV); if (!npdev) /* No nvlink associated with this GPU device */ return ERR_PTR(-ENODEV); nvlink_dn = of_parse_phandle(npdev->dev.of_node, "ibm,nvlink", 0); if (WARN_ON(of_property_read_u32(nvlink_dn, "ibm,npu-link-index", &nvlink_index))) return ERR_PTR(-ENODEV); if (!mm || mm->context.id == 0) { /* * Kernel thread contexts are not supported and context id 0 is * reserved on the GPU. */ return ERR_PTR(-EINVAL); } nphb = pci_bus_to_host(npdev->bus)->private_data; npu = &nphb->npu; /* * Setup the NPU context table for a particular GPU. These need to be * per-GPU as we need the tables to filter ATSDs when there are no * active contexts on a particular GPU. It is safe for these to be * called concurrently with destroy as the OPAL call takes appropriate * locks and refcounts on init/destroy. */ rc = opal_npu_init_context(nphb->opal_id, mm->context.id, flags, PCI_DEVID(gpdev->bus->number, gpdev->devfn)); if (rc < 0) return ERR_PTR(-ENOSPC); /* * We store the npu pci device so we can more easily get at the * associated npus. */ spin_lock(&npu_context_lock); npu_context = mm->context.npu_context; if (npu_context) { if (npu_context->release_cb != cb || npu_context->priv != priv) { spin_unlock(&npu_context_lock); opal_npu_destroy_context(nphb->opal_id, mm->context.id, PCI_DEVID(gpdev->bus->number, gpdev->devfn)); return ERR_PTR(-EINVAL); } WARN_ON(!kref_get_unless_zero(&npu_context->kref)); } spin_unlock(&npu_context_lock); if (!npu_context) { /* * We can set up these fields without holding the * npu_context_lock as the npu_context hasn't been returned to * the caller meaning it can't be destroyed. Parallel allocation * is protected against by mmap_sem. */ rc = -ENOMEM; npu_context = kzalloc(sizeof(struct npu_context), GFP_KERNEL); if (npu_context) { kref_init(&npu_context->kref); npu_context->mm = mm; npu_context->mn.ops = &nv_nmmu_notifier_ops; rc = __mmu_notifier_register(&npu_context->mn, mm); } if (rc) { kfree(npu_context); opal_npu_destroy_context(nphb->opal_id, mm->context.id, PCI_DEVID(gpdev->bus->number, gpdev->devfn)); return ERR_PTR(rc); } mm->context.npu_context = npu_context; } npu_context->release_cb = cb; npu_context->priv = priv; /* * npdev is a pci_dev pointer setup by the PCI code. We assign it to * npdev[][] to indicate to the mmu notifiers that an invalidation * should also be sent over this nvlink. The notifiers don't use any * other fields in npu_context, so we just need to ensure that when they * deference npu_context->npdev[][] it is either a valid pointer or * NULL. */ WRITE_ONCE(npu_context->npdev[npu->index][nvlink_index], npdev); if (!nphb->npu.nmmu_flush) { /* * If we're not explicitly flushing ourselves we need to mark * the thread for global flushes */ npu_context->nmmu_flush = false; mm_context_add_copro(mm); } else npu_context->nmmu_flush = true; return npu_context; } EXPORT_SYMBOL(pnv_npu2_init_context); static void pnv_npu2_release_context(struct kref *kref) { struct npu_context *npu_context = container_of(kref, struct npu_context, kref); if (!npu_context->nmmu_flush) mm_context_remove_copro(npu_context->mm); npu_context->mm->context.npu_context = NULL; } /* * Destroy a context on the given GPU. May free the npu_context if it is no * longer active on any GPUs. Must not be called from interrupt context. */ void pnv_npu2_destroy_context(struct npu_context *npu_context, struct pci_dev *gpdev) { int removed; struct pnv_phb *nphb; struct npu *npu; struct pci_dev *npdev = pnv_pci_get_npu_dev(gpdev, 0); struct device_node *nvlink_dn; u32 nvlink_index; if (WARN_ON(!npdev)) return; if (!firmware_has_feature(FW_FEATURE_OPAL)) return; nphb = pci_bus_to_host(npdev->bus)->private_data; npu = &nphb->npu; nvlink_dn = of_parse_phandle(npdev->dev.of_node, "ibm,nvlink", 0); if (WARN_ON(of_property_read_u32(nvlink_dn, "ibm,npu-link-index", &nvlink_index))) return; WRITE_ONCE(npu_context->npdev[npu->index][nvlink_index], NULL); opal_npu_destroy_context(nphb->opal_id, npu_context->mm->context.id, PCI_DEVID(gpdev->bus->number, gpdev->devfn)); spin_lock(&npu_context_lock); removed = kref_put(&npu_context->kref, pnv_npu2_release_context); spin_unlock(&npu_context_lock); /* * We need to do this outside of pnv_npu2_release_context so that it is * outside the spinlock as mmu_notifier_destroy uses SRCU. */ if (removed) { mmu_notifier_unregister(&npu_context->mn, npu_context->mm); kfree(npu_context); } } EXPORT_SYMBOL(pnv_npu2_destroy_context); /* * Assumes mmap_sem is held for the contexts associated mm. */ int pnv_npu2_handle_fault(struct npu_context *context, uintptr_t *ea, unsigned long *flags, unsigned long *status, int count) { u64 rc = 0, result = 0; int i, is_write; struct page *page[1]; /* mmap_sem should be held so the struct_mm must be present */ struct mm_struct *mm = context->mm; if (!firmware_has_feature(FW_FEATURE_OPAL)) return -ENODEV; WARN_ON(!rwsem_is_locked(&mm->mmap_sem)); for (i = 0; i < count; i++) { is_write = flags[i] & NPU2_WRITE; rc = get_user_pages_remote(NULL, mm, ea[i], 1, is_write ? FOLL_WRITE : 0, page, NULL, NULL); /* * To support virtualised environments we will have to do an * access to the page to ensure it gets faulted into the * hypervisor. For the moment virtualisation is not supported in * other areas so leave the access out. */ if (rc != 1) { status[i] = rc; result = -EFAULT; continue; } status[i] = 0; put_page(page[0]); } return result; } EXPORT_SYMBOL(pnv_npu2_handle_fault); int pnv_npu2_init(struct pnv_phb *phb) { unsigned int i; u64 mmio_atsd; struct device_node *dn; struct pci_dev *gpdev; static int npu_index; uint64_t rc = 0; if (!atsd_threshold_dentry) { atsd_threshold_dentry = debugfs_create_x64("atsd_threshold", 0600, powerpc_debugfs_root, &atsd_threshold); } phb->npu.nmmu_flush = of_property_read_bool(phb->hose->dn, "ibm,nmmu-flush"); for_each_child_of_node(phb->hose->dn, dn) { gpdev = pnv_pci_get_gpu_dev(get_pci_dev(dn)); if (gpdev) { rc = opal_npu_map_lpar(phb->opal_id, PCI_DEVID(gpdev->bus->number, gpdev->devfn), 0, 0); if (rc) dev_err(&gpdev->dev, "Error %lld mapping device to LPAR\n", rc); } } for (i = 0; !of_property_read_u64_index(phb->hose->dn, "ibm,mmio-atsd", i, &mmio_atsd); i++) phb->npu.mmio_atsd_regs[i] = ioremap(mmio_atsd, 32); pr_info("NPU%lld: Found %d MMIO ATSD registers", phb->opal_id, i); phb->npu.mmio_atsd_count = i; phb->npu.mmio_atsd_usage = 0; npu_index++; if (WARN_ON(npu_index >= NV_MAX_NPUS)) return -ENOSPC; max_npu2_index = npu_index; phb->npu.index = npu_index; return 0; }