/* * TLB flush routines for radix kernels. * * Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. */ #include #include #include #include #include #include #include #include #define RIC_FLUSH_TLB 0 #define RIC_FLUSH_PWC 1 #define RIC_FLUSH_ALL 2 /* * tlbiel instruction for radix, set invalidation * i.e., r=1 and is=01 or is=10 or is=11 */ static inline void tlbiel_radix_set_isa300(unsigned int set, unsigned int is, unsigned int pid, unsigned int ric, unsigned int prs) { unsigned long rb; unsigned long rs; rb = (set << PPC_BITLSHIFT(51)) | (is << PPC_BITLSHIFT(53)); rs = ((unsigned long)pid << PPC_BITLSHIFT(31)); asm volatile(PPC_TLBIEL(%0, %1, %2, %3, 1) : : "r"(rb), "r"(rs), "i"(ric), "i"(prs) : "memory"); } static void tlbiel_all_isa300(unsigned int num_sets, unsigned int is) { unsigned int set; asm volatile("ptesync": : :"memory"); /* * Flush the first set of the TLB, and the entire Page Walk Cache * and partition table entries. Then flush the remaining sets of the * TLB. */ tlbiel_radix_set_isa300(0, is, 0, RIC_FLUSH_ALL, 0); for (set = 1; set < num_sets; set++) tlbiel_radix_set_isa300(set, is, 0, RIC_FLUSH_TLB, 0); /* Do the same for process scoped entries. */ tlbiel_radix_set_isa300(0, is, 0, RIC_FLUSH_ALL, 1); for (set = 1; set < num_sets; set++) tlbiel_radix_set_isa300(set, is, 0, RIC_FLUSH_TLB, 1); asm volatile("ptesync": : :"memory"); } void radix__tlbiel_all(unsigned int action) { unsigned int is; switch (action) { case TLB_INVAL_SCOPE_GLOBAL: is = 3; break; case TLB_INVAL_SCOPE_LPID: is = 2; break; default: BUG(); } if (early_cpu_has_feature(CPU_FTR_ARCH_300)) tlbiel_all_isa300(POWER9_TLB_SETS_RADIX, is); else WARN(1, "%s called on pre-POWER9 CPU\n", __func__); asm volatile(PPC_INVALIDATE_ERAT "; isync" : : :"memory"); } static inline void __tlbiel_pid(unsigned long pid, int set, unsigned long ric) { unsigned long rb,rs,prs,r; rb = PPC_BIT(53); /* IS = 1 */ rb |= set << PPC_BITLSHIFT(51); rs = ((unsigned long)pid) << PPC_BITLSHIFT(31); prs = 1; /* process scoped */ r = 1; /* radix format */ asm volatile(PPC_TLBIEL(%0, %4, %3, %2, %1) : : "r"(rb), "i"(r), "i"(prs), "i"(ric), "r"(rs) : "memory"); trace_tlbie(0, 1, rb, rs, ric, prs, r); } static inline void __tlbie_pid(unsigned long pid, unsigned long ric) { unsigned long rb,rs,prs,r; rb = PPC_BIT(53); /* IS = 1 */ rs = pid << PPC_BITLSHIFT(31); prs = 1; /* process scoped */ r = 1; /* radix format */ asm volatile(PPC_TLBIE_5(%0, %4, %3, %2, %1) : : "r"(rb), "i"(r), "i"(prs), "i"(ric), "r"(rs) : "memory"); trace_tlbie(0, 0, rb, rs, ric, prs, r); } static inline void __tlbiel_lpid(unsigned long lpid, int set, unsigned long ric) { unsigned long rb,rs,prs,r; rb = PPC_BIT(52); /* IS = 2 */ rb |= set << PPC_BITLSHIFT(51); rs = 0; /* LPID comes from LPIDR */ prs = 0; /* partition scoped */ r = 1; /* radix format */ asm volatile(PPC_TLBIEL(%0, %4, %3, %2, %1) : : "r"(rb), "i"(r), "i"(prs), "i"(ric), "r"(rs) : "memory"); trace_tlbie(lpid, 1, rb, rs, ric, prs, r); } static inline void __tlbie_lpid(unsigned long lpid, unsigned long ric) { unsigned long rb,rs,prs,r; rb = PPC_BIT(52); /* IS = 2 */ rs = lpid; prs = 0; /* partition scoped */ r = 1; /* radix format */ asm volatile(PPC_TLBIE_5(%0, %4, %3, %2, %1) : : "r"(rb), "i"(r), "i"(prs), "i"(ric), "r"(rs) : "memory"); trace_tlbie(lpid, 0, rb, rs, ric, prs, r); } static inline void __tlbiel_lpid_guest(unsigned long lpid, int set, unsigned long ric) { unsigned long rb,rs,prs,r; rb = PPC_BIT(52); /* IS = 2 */ rb |= set << PPC_BITLSHIFT(51); rs = 0; /* LPID comes from LPIDR */ prs = 1; /* process scoped */ r = 1; /* radix format */ asm volatile(PPC_TLBIEL(%0, %4, %3, %2, %1) : : "r"(rb), "i"(r), "i"(prs), "i"(ric), "r"(rs) : "memory"); trace_tlbie(lpid, 1, rb, rs, ric, prs, r); } static inline void __tlbiel_va(unsigned long va, unsigned long pid, unsigned long ap, unsigned long ric) { unsigned long rb,rs,prs,r; rb = va & ~(PPC_BITMASK(52, 63)); rb |= ap << PPC_BITLSHIFT(58); rs = pid << PPC_BITLSHIFT(31); prs = 1; /* process scoped */ r = 1; /* radix format */ asm volatile(PPC_TLBIEL(%0, %4, %3, %2, %1) : : "r"(rb), "i"(r), "i"(prs), "i"(ric), "r"(rs) : "memory"); trace_tlbie(0, 1, rb, rs, ric, prs, r); } static inline void __tlbie_va(unsigned long va, unsigned long pid, unsigned long ap, unsigned long ric) { unsigned long rb,rs,prs,r; rb = va & ~(PPC_BITMASK(52, 63)); rb |= ap << PPC_BITLSHIFT(58); rs = pid << PPC_BITLSHIFT(31); prs = 1; /* process scoped */ r = 1; /* radix format */ asm volatile(PPC_TLBIE_5(%0, %4, %3, %2, %1) : : "r"(rb), "i"(r), "i"(prs), "i"(ric), "r"(rs) : "memory"); trace_tlbie(0, 0, rb, rs, ric, prs, r); } static inline void __tlbie_lpid_va(unsigned long va, unsigned long lpid, unsigned long ap, unsigned long ric) { unsigned long rb,rs,prs,r; rb = va & ~(PPC_BITMASK(52, 63)); rb |= ap << PPC_BITLSHIFT(58); rs = lpid; prs = 0; /* partition scoped */ r = 1; /* radix format */ asm volatile(PPC_TLBIE_5(%0, %4, %3, %2, %1) : : "r"(rb), "i"(r), "i"(prs), "i"(ric), "r"(rs) : "memory"); trace_tlbie(lpid, 0, rb, rs, ric, prs, r); } static inline void fixup_tlbie(void) { unsigned long pid = 0; unsigned long va = ((1UL << 52) - 1); if (cpu_has_feature(CPU_FTR_P9_TLBIE_BUG)) { asm volatile("ptesync": : :"memory"); __tlbie_va(va, pid, mmu_get_ap(MMU_PAGE_64K), RIC_FLUSH_TLB); } } static inline void fixup_tlbie_lpid(unsigned long lpid) { unsigned long va = ((1UL << 52) - 1); if (cpu_has_feature(CPU_FTR_P9_TLBIE_BUG)) { asm volatile("ptesync": : :"memory"); __tlbie_lpid_va(va, lpid, mmu_get_ap(MMU_PAGE_64K), RIC_FLUSH_TLB); } } /* * We use 128 set in radix mode and 256 set in hpt mode. */ static inline void _tlbiel_pid(unsigned long pid, unsigned long ric) { int set; asm volatile("ptesync": : :"memory"); /* * Flush the first set of the TLB, and if we're doing a RIC_FLUSH_ALL, * also flush the entire Page Walk Cache. */ __tlbiel_pid(pid, 0, ric); /* For PWC, only one flush is needed */ if (ric == RIC_FLUSH_PWC) { asm volatile("ptesync": : :"memory"); return; } /* For the remaining sets, just flush the TLB */ for (set = 1; set < POWER9_TLB_SETS_RADIX ; set++) __tlbiel_pid(pid, set, RIC_FLUSH_TLB); asm volatile("ptesync": : :"memory"); asm volatile(PPC_INVALIDATE_ERAT "; isync" : : :"memory"); } static inline void _tlbie_pid(unsigned long pid, unsigned long ric) { asm volatile("ptesync": : :"memory"); /* * Workaround the fact that the "ric" argument to __tlbie_pid * must be a compile-time contraint to match the "i" constraint * in the asm statement. */ switch (ric) { case RIC_FLUSH_TLB: __tlbie_pid(pid, RIC_FLUSH_TLB); break; case RIC_FLUSH_PWC: __tlbie_pid(pid, RIC_FLUSH_PWC); break; case RIC_FLUSH_ALL: default: __tlbie_pid(pid, RIC_FLUSH_ALL); } fixup_tlbie(); asm volatile("eieio; tlbsync; ptesync": : :"memory"); } static inline void _tlbiel_lpid(unsigned long lpid, unsigned long ric) { int set; VM_BUG_ON(mfspr(SPRN_LPID) != lpid); asm volatile("ptesync": : :"memory"); /* * Flush the first set of the TLB, and if we're doing a RIC_FLUSH_ALL, * also flush the entire Page Walk Cache. */ __tlbiel_lpid(lpid, 0, ric); /* For PWC, only one flush is needed */ if (ric == RIC_FLUSH_PWC) { asm volatile("ptesync": : :"memory"); return; } /* For the remaining sets, just flush the TLB */ for (set = 1; set < POWER9_TLB_SETS_RADIX ; set++) __tlbiel_lpid(lpid, set, RIC_FLUSH_TLB); asm volatile("ptesync": : :"memory"); asm volatile(PPC_INVALIDATE_ERAT "; isync" : : :"memory"); } static inline void _tlbie_lpid(unsigned long lpid, unsigned long ric) { asm volatile("ptesync": : :"memory"); /* * Workaround the fact that the "ric" argument to __tlbie_pid * must be a compile-time contraint to match the "i" constraint * in the asm statement. */ switch (ric) { case RIC_FLUSH_TLB: __tlbie_lpid(lpid, RIC_FLUSH_TLB); break; case RIC_FLUSH_PWC: __tlbie_lpid(lpid, RIC_FLUSH_PWC); break; case RIC_FLUSH_ALL: default: __tlbie_lpid(lpid, RIC_FLUSH_ALL); } fixup_tlbie_lpid(lpid); asm volatile("eieio; tlbsync; ptesync": : :"memory"); } static inline void _tlbiel_lpid_guest(unsigned long lpid, unsigned long ric) { int set; VM_BUG_ON(mfspr(SPRN_LPID) != lpid); asm volatile("ptesync": : :"memory"); /* * Flush the first set of the TLB, and if we're doing a RIC_FLUSH_ALL, * also flush the entire Page Walk Cache. */ __tlbiel_lpid_guest(lpid, 0, ric); /* For PWC, only one flush is needed */ if (ric == RIC_FLUSH_PWC) { asm volatile("ptesync": : :"memory"); return; } /* For the remaining sets, just flush the TLB */ for (set = 1; set < POWER9_TLB_SETS_RADIX ; set++) __tlbiel_lpid_guest(lpid, set, RIC_FLUSH_TLB); asm volatile("ptesync": : :"memory"); } static inline void __tlbiel_va_range(unsigned long start, unsigned long end, unsigned long pid, unsigned long page_size, unsigned long psize) { unsigned long addr; unsigned long ap = mmu_get_ap(psize); for (addr = start; addr < end; addr += page_size) __tlbiel_va(addr, pid, ap, RIC_FLUSH_TLB); } static inline void _tlbiel_va(unsigned long va, unsigned long pid, unsigned long psize, unsigned long ric) { unsigned long ap = mmu_get_ap(psize); asm volatile("ptesync": : :"memory"); __tlbiel_va(va, pid, ap, ric); asm volatile("ptesync": : :"memory"); } static inline void _tlbiel_va_range(unsigned long start, unsigned long end, unsigned long pid, unsigned long page_size, unsigned long psize, bool also_pwc) { asm volatile("ptesync": : :"memory"); if (also_pwc) __tlbiel_pid(pid, 0, RIC_FLUSH_PWC); __tlbiel_va_range(start, end, pid, page_size, psize); asm volatile("ptesync": : :"memory"); } static inline void __tlbie_va_range(unsigned long start, unsigned long end, unsigned long pid, unsigned long page_size, unsigned long psize) { unsigned long addr; unsigned long ap = mmu_get_ap(psize); for (addr = start; addr < end; addr += page_size) __tlbie_va(addr, pid, ap, RIC_FLUSH_TLB); } static inline void _tlbie_va(unsigned long va, unsigned long pid, unsigned long psize, unsigned long ric) { unsigned long ap = mmu_get_ap(psize); asm volatile("ptesync": : :"memory"); __tlbie_va(va, pid, ap, ric); fixup_tlbie(); asm volatile("eieio; tlbsync; ptesync": : :"memory"); } static inline void _tlbie_lpid_va(unsigned long va, unsigned long lpid, unsigned long psize, unsigned long ric) { unsigned long ap = mmu_get_ap(psize); asm volatile("ptesync": : :"memory"); __tlbie_lpid_va(va, lpid, ap, ric); fixup_tlbie_lpid(lpid); asm volatile("eieio; tlbsync; ptesync": : :"memory"); } static inline void _tlbie_va_range(unsigned long start, unsigned long end, unsigned long pid, unsigned long page_size, unsigned long psize, bool also_pwc) { asm volatile("ptesync": : :"memory"); if (also_pwc) __tlbie_pid(pid, RIC_FLUSH_PWC); __tlbie_va_range(start, end, pid, page_size, psize); fixup_tlbie(); asm volatile("eieio; tlbsync; ptesync": : :"memory"); } /* * Base TLB flushing operations: * * - flush_tlb_mm(mm) flushes the specified mm context TLB's * - flush_tlb_page(vma, vmaddr) flushes one page * - flush_tlb_range(vma, start, end) flushes a range of pages * - flush_tlb_kernel_range(start, end) flushes kernel pages * * - local_* variants of page and mm only apply to the current * processor */ void radix__local_flush_tlb_mm(struct mm_struct *mm) { unsigned long pid; preempt_disable(); pid = mm->context.id; if (pid != MMU_NO_CONTEXT) _tlbiel_pid(pid, RIC_FLUSH_TLB); preempt_enable(); } EXPORT_SYMBOL(radix__local_flush_tlb_mm); #ifndef CONFIG_SMP void radix__local_flush_all_mm(struct mm_struct *mm) { unsigned long pid; preempt_disable(); pid = mm->context.id; if (pid != MMU_NO_CONTEXT) _tlbiel_pid(pid, RIC_FLUSH_ALL); preempt_enable(); } EXPORT_SYMBOL(radix__local_flush_all_mm); #endif /* CONFIG_SMP */ void radix__local_flush_tlb_page_psize(struct mm_struct *mm, unsigned long vmaddr, int psize) { unsigned long pid; preempt_disable(); pid = mm->context.id; if (pid != MMU_NO_CONTEXT) _tlbiel_va(vmaddr, pid, psize, RIC_FLUSH_TLB); preempt_enable(); } void radix__local_flush_tlb_page(struct vm_area_struct *vma, unsigned long vmaddr) { #ifdef CONFIG_HUGETLB_PAGE /* need the return fix for nohash.c */ if (is_vm_hugetlb_page(vma)) return radix__local_flush_hugetlb_page(vma, vmaddr); #endif radix__local_flush_tlb_page_psize(vma->vm_mm, vmaddr, mmu_virtual_psize); } EXPORT_SYMBOL(radix__local_flush_tlb_page); static bool mm_needs_flush_escalation(struct mm_struct *mm) { /* * P9 nest MMU has issues with the page walk cache * caching PTEs and not flushing them properly when * RIC = 0 for a PID/LPID invalidate */ return atomic_read(&mm->context.copros) != 0; } #ifdef CONFIG_SMP void radix__flush_tlb_mm(struct mm_struct *mm) { unsigned long pid; pid = mm->context.id; if (unlikely(pid == MMU_NO_CONTEXT)) return; preempt_disable(); if (!mm_is_thread_local(mm)) { if (mm_needs_flush_escalation(mm)) _tlbie_pid(pid, RIC_FLUSH_ALL); else _tlbie_pid(pid, RIC_FLUSH_TLB); } else _tlbiel_pid(pid, RIC_FLUSH_TLB); preempt_enable(); } EXPORT_SYMBOL(radix__flush_tlb_mm); void radix__flush_all_mm(struct mm_struct *mm) { unsigned long pid; pid = mm->context.id; if (unlikely(pid == MMU_NO_CONTEXT)) return; preempt_disable(); if (!mm_is_thread_local(mm)) _tlbie_pid(pid, RIC_FLUSH_ALL); else _tlbiel_pid(pid, RIC_FLUSH_ALL); preempt_enable(); } EXPORT_SYMBOL(radix__flush_all_mm); void radix__flush_tlb_pwc(struct mmu_gather *tlb, unsigned long addr) { tlb->need_flush_all = 1; } EXPORT_SYMBOL(radix__flush_tlb_pwc); void radix__flush_tlb_page_psize(struct mm_struct *mm, unsigned long vmaddr, int psize) { unsigned long pid; pid = mm->context.id; if (unlikely(pid == MMU_NO_CONTEXT)) return; preempt_disable(); if (!mm_is_thread_local(mm)) _tlbie_va(vmaddr, pid, psize, RIC_FLUSH_TLB); else _tlbiel_va(vmaddr, pid, psize, RIC_FLUSH_TLB); preempt_enable(); } void radix__flush_tlb_page(struct vm_area_struct *vma, unsigned long vmaddr) { #ifdef CONFIG_HUGETLB_PAGE if (is_vm_hugetlb_page(vma)) return radix__flush_hugetlb_page(vma, vmaddr); #endif radix__flush_tlb_page_psize(vma->vm_mm, vmaddr, mmu_virtual_psize); } EXPORT_SYMBOL(radix__flush_tlb_page); #else /* CONFIG_SMP */ #define radix__flush_all_mm radix__local_flush_all_mm #endif /* CONFIG_SMP */ void radix__flush_tlb_kernel_range(unsigned long start, unsigned long end) { _tlbie_pid(0, RIC_FLUSH_ALL); } EXPORT_SYMBOL(radix__flush_tlb_kernel_range); #define TLB_FLUSH_ALL -1UL /* * Number of pages above which we invalidate the entire PID rather than * flush individual pages, for local and global flushes respectively. * * tlbie goes out to the interconnect and individual ops are more costly. * It also does not iterate over sets like the local tlbiel variant when * invalidating a full PID, so it has a far lower threshold to change from * individual page flushes to full-pid flushes. */ static unsigned long tlb_single_page_flush_ceiling __read_mostly = 33; static unsigned long tlb_local_single_page_flush_ceiling __read_mostly = POWER9_TLB_SETS_RADIX * 2; void radix__flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) { struct mm_struct *mm = vma->vm_mm; unsigned long pid; unsigned int page_shift = mmu_psize_defs[mmu_virtual_psize].shift; unsigned long page_size = 1UL << page_shift; unsigned long nr_pages = (end - start) >> page_shift; bool local, full; #ifdef CONFIG_HUGETLB_PAGE if (is_vm_hugetlb_page(vma)) return radix__flush_hugetlb_tlb_range(vma, start, end); #endif pid = mm->context.id; if (unlikely(pid == MMU_NO_CONTEXT)) return; preempt_disable(); if (mm_is_thread_local(mm)) { local = true; full = (end == TLB_FLUSH_ALL || nr_pages > tlb_local_single_page_flush_ceiling); } else { local = false; full = (end == TLB_FLUSH_ALL || nr_pages > tlb_single_page_flush_ceiling); } if (full) { if (local) { _tlbiel_pid(pid, RIC_FLUSH_TLB); } else { if (mm_needs_flush_escalation(mm)) _tlbie_pid(pid, RIC_FLUSH_ALL); else _tlbie_pid(pid, RIC_FLUSH_TLB); } } else { bool hflush = false; unsigned long hstart, hend; #ifdef CONFIG_TRANSPARENT_HUGEPAGE hstart = (start + HPAGE_PMD_SIZE - 1) >> HPAGE_PMD_SHIFT; hend = end >> HPAGE_PMD_SHIFT; if (hstart < hend) { hstart <<= HPAGE_PMD_SHIFT; hend <<= HPAGE_PMD_SHIFT; hflush = true; } #endif asm volatile("ptesync": : :"memory"); if (local) { __tlbiel_va_range(start, end, pid, page_size, mmu_virtual_psize); if (hflush) __tlbiel_va_range(hstart, hend, pid, HPAGE_PMD_SIZE, MMU_PAGE_2M); asm volatile("ptesync": : :"memory"); } else { __tlbie_va_range(start, end, pid, page_size, mmu_virtual_psize); if (hflush) __tlbie_va_range(hstart, hend, pid, HPAGE_PMD_SIZE, MMU_PAGE_2M); fixup_tlbie(); asm volatile("eieio; tlbsync; ptesync": : :"memory"); } } preempt_enable(); } EXPORT_SYMBOL(radix__flush_tlb_range); static int radix_get_mmu_psize(int page_size) { int psize; if (page_size == (1UL << mmu_psize_defs[mmu_virtual_psize].shift)) psize = mmu_virtual_psize; else if (page_size == (1UL << mmu_psize_defs[MMU_PAGE_2M].shift)) psize = MMU_PAGE_2M; else if (page_size == (1UL << mmu_psize_defs[MMU_PAGE_1G].shift)) psize = MMU_PAGE_1G; else return -1; return psize; } /* * Flush partition scoped LPID address translation for all CPUs. */ void radix__flush_tlb_lpid_page(unsigned int lpid, unsigned long addr, unsigned long page_size) { int psize = radix_get_mmu_psize(page_size); _tlbie_lpid_va(addr, lpid, psize, RIC_FLUSH_TLB); } EXPORT_SYMBOL_GPL(radix__flush_tlb_lpid_page); /* * Flush partition scoped PWC from LPID for all CPUs. */ void radix__flush_pwc_lpid(unsigned int lpid) { _tlbie_lpid(lpid, RIC_FLUSH_PWC); } EXPORT_SYMBOL_GPL(radix__flush_pwc_lpid); /* * Flush partition scoped translations from LPID (=LPIDR) */ void radix__local_flush_tlb_lpid(unsigned int lpid) { _tlbiel_lpid(lpid, RIC_FLUSH_ALL); } EXPORT_SYMBOL_GPL(radix__local_flush_tlb_lpid); /* * Flush process scoped translations from LPID (=LPIDR). * Important difference, the guest normally manages its own translations, * but some cases e.g., vCPU CPU migration require KVM to flush. */ void radix__local_flush_tlb_lpid_guest(unsigned int lpid) { _tlbiel_lpid_guest(lpid, RIC_FLUSH_ALL); } EXPORT_SYMBOL_GPL(radix__local_flush_tlb_lpid_guest); static void radix__flush_tlb_pwc_range_psize(struct mm_struct *mm, unsigned long start, unsigned long end, int psize); void radix__tlb_flush(struct mmu_gather *tlb) { int psize = 0; struct mm_struct *mm = tlb->mm; int page_size = tlb->page_size; /* * if page size is not something we understand, do a full mm flush * * A "fullmm" flush must always do a flush_all_mm (RIC=2) flush * that flushes the process table entry cache upon process teardown. * See the comment for radix in arch_exit_mmap(). */ if (tlb->fullmm) { radix__flush_all_mm(mm); } else if ( (psize = radix_get_mmu_psize(page_size)) == -1) { if (!tlb->need_flush_all) radix__flush_tlb_mm(mm); else radix__flush_all_mm(mm); } else { unsigned long start = tlb->start; unsigned long end = tlb->end; if (!tlb->need_flush_all) radix__flush_tlb_range_psize(mm, start, end, psize); else radix__flush_tlb_pwc_range_psize(mm, start, end, psize); } tlb->need_flush_all = 0; } static inline void __radix__flush_tlb_range_psize(struct mm_struct *mm, unsigned long start, unsigned long end, int psize, bool also_pwc) { unsigned long pid; unsigned int page_shift = mmu_psize_defs[psize].shift; unsigned long page_size = 1UL << page_shift; unsigned long nr_pages = (end - start) >> page_shift; bool local, full; pid = mm->context.id; if (unlikely(pid == MMU_NO_CONTEXT)) return; preempt_disable(); if (mm_is_thread_local(mm)) { local = true; full = (end == TLB_FLUSH_ALL || nr_pages > tlb_local_single_page_flush_ceiling); } else { local = false; full = (end == TLB_FLUSH_ALL || nr_pages > tlb_single_page_flush_ceiling); } if (full) { if (!local && mm_needs_flush_escalation(mm)) also_pwc = true; if (local) _tlbiel_pid(pid, also_pwc ? RIC_FLUSH_ALL : RIC_FLUSH_TLB); else _tlbie_pid(pid, also_pwc ? RIC_FLUSH_ALL: RIC_FLUSH_TLB); } else { if (local) _tlbiel_va_range(start, end, pid, page_size, psize, also_pwc); else _tlbie_va_range(start, end, pid, page_size, psize, also_pwc); } preempt_enable(); } void radix__flush_tlb_range_psize(struct mm_struct *mm, unsigned long start, unsigned long end, int psize) { return __radix__flush_tlb_range_psize(mm, start, end, psize, false); } static void radix__flush_tlb_pwc_range_psize(struct mm_struct *mm, unsigned long start, unsigned long end, int psize) { __radix__flush_tlb_range_psize(mm, start, end, psize, true); } #ifdef CONFIG_TRANSPARENT_HUGEPAGE void radix__flush_tlb_collapsed_pmd(struct mm_struct *mm, unsigned long addr) { unsigned long pid, end; pid = mm->context.id; if (unlikely(pid == MMU_NO_CONTEXT)) return; /* 4k page size, just blow the world */ if (PAGE_SIZE == 0x1000) { radix__flush_all_mm(mm); return; } end = addr + HPAGE_PMD_SIZE; /* Otherwise first do the PWC, then iterate the pages. */ preempt_disable(); if (mm_is_thread_local(mm)) { _tlbiel_va_range(addr, end, pid, PAGE_SIZE, mmu_virtual_psize, true); } else { _tlbie_va_range(addr, end, pid, PAGE_SIZE, mmu_virtual_psize, true); } preempt_enable(); } #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ void radix__flush_pmd_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) { radix__flush_tlb_range_psize(vma->vm_mm, start, end, MMU_PAGE_2M); } EXPORT_SYMBOL(radix__flush_pmd_tlb_range); void radix__flush_tlb_all(void) { unsigned long rb,prs,r,rs; unsigned long ric = RIC_FLUSH_ALL; rb = 0x3 << PPC_BITLSHIFT(53); /* IS = 3 */ prs = 0; /* partition scoped */ r = 1; /* radix format */ rs = 1 & ((1UL << 32) - 1); /* any LPID value to flush guest mappings */ asm volatile("ptesync": : :"memory"); /* * now flush guest entries by passing PRS = 1 and LPID != 0 */ asm volatile(PPC_TLBIE_5(%0, %4, %3, %2, %1) : : "r"(rb), "i"(r), "i"(1), "i"(ric), "r"(rs) : "memory"); /* * now flush host entires by passing PRS = 0 and LPID == 0 */ asm volatile(PPC_TLBIE_5(%0, %4, %3, %2, %1) : : "r"(rb), "i"(r), "i"(prs), "i"(ric), "r"(0) : "memory"); asm volatile("eieio; tlbsync; ptesync": : :"memory"); } void radix__flush_tlb_pte_p9_dd1(unsigned long old_pte, struct mm_struct *mm, unsigned long address) { /* * We track page size in pte only for DD1, So we can * call this only on DD1. */ if (!cpu_has_feature(CPU_FTR_POWER9_DD1)) { VM_WARN_ON(1); return; } if (old_pte & R_PAGE_LARGE) radix__flush_tlb_page_psize(mm, address, MMU_PAGE_2M); else radix__flush_tlb_page_psize(mm, address, mmu_virtual_psize); } #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE extern void radix_kvm_prefetch_workaround(struct mm_struct *mm) { unsigned long pid = mm->context.id; if (unlikely(pid == MMU_NO_CONTEXT)) return; /* * If this context hasn't run on that CPU before and KVM is * around, there's a slim chance that the guest on another * CPU just brought in obsolete translation into the TLB of * this CPU due to a bad prefetch using the guest PID on * the way into the hypervisor. * * We work around this here. If KVM is possible, we check if * any sibling thread is in KVM. If it is, the window may exist * and thus we flush that PID from the core. * * A potential future improvement would be to mark which PIDs * have never been used on the system and avoid it if the PID * is new and the process has no other cpumask bit set. */ if (cpu_has_feature(CPU_FTR_HVMODE) && radix_enabled()) { int cpu = smp_processor_id(); int sib = cpu_first_thread_sibling(cpu); bool flush = false; for (; sib <= cpu_last_thread_sibling(cpu) && !flush; sib++) { if (sib == cpu) continue; if (paca_ptrs[sib]->kvm_hstate.kvm_vcpu) flush = true; } if (flush) _tlbiel_pid(pid, RIC_FLUSH_ALL); } } EXPORT_SYMBOL_GPL(radix_kvm_prefetch_workaround); #endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */