/* * Machine check exception handling. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * * Copyright 2013 IBM Corporation * Author: Mahesh Salgaonkar */ #undef DEBUG #define pr_fmt(fmt) "mce: " fmt #include #include #include #include #include #include static DEFINE_PER_CPU(int, mce_nest_count); static DEFINE_PER_CPU(struct machine_check_event[MAX_MC_EVT], mce_event); /* Queue for delayed MCE events. */ static DEFINE_PER_CPU(int, mce_queue_count); static DEFINE_PER_CPU(struct machine_check_event[MAX_MC_EVT], mce_event_queue); static void machine_check_process_queued_event(struct irq_work *work); static struct irq_work mce_event_process_work = { .func = machine_check_process_queued_event, }; static void mce_set_error_info(struct machine_check_event *mce, struct mce_error_info *mce_err) { mce->error_type = mce_err->error_type; switch (mce_err->error_type) { case MCE_ERROR_TYPE_UE: mce->u.ue_error.ue_error_type = mce_err->u.ue_error_type; break; case MCE_ERROR_TYPE_SLB: mce->u.slb_error.slb_error_type = mce_err->u.slb_error_type; break; case MCE_ERROR_TYPE_ERAT: mce->u.erat_error.erat_error_type = mce_err->u.erat_error_type; break; case MCE_ERROR_TYPE_TLB: mce->u.tlb_error.tlb_error_type = mce_err->u.tlb_error_type; break; case MCE_ERROR_TYPE_USER: mce->u.user_error.user_error_type = mce_err->u.user_error_type; break; case MCE_ERROR_TYPE_RA: mce->u.ra_error.ra_error_type = mce_err->u.ra_error_type; break; case MCE_ERROR_TYPE_LINK: mce->u.link_error.link_error_type = mce_err->u.link_error_type; break; case MCE_ERROR_TYPE_UNKNOWN: default: break; } } /* * Decode and save high level MCE information into per cpu buffer which * is an array of machine_check_event structure. */ void save_mce_event(struct pt_regs *regs, long handled, struct mce_error_info *mce_err, uint64_t nip, uint64_t addr) { int index = __this_cpu_inc_return(mce_nest_count) - 1; struct machine_check_event *mce = this_cpu_ptr(&mce_event[index]); /* * Return if we don't have enough space to log mce event. * mce_nest_count may go beyond MAX_MC_EVT but that's ok, * the check below will stop buffer overrun. */ if (index >= MAX_MC_EVT) return; /* Populate generic machine check info */ mce->version = MCE_V1; mce->srr0 = nip; mce->srr1 = regs->msr; mce->gpr3 = regs->gpr[3]; mce->in_use = 1; /* Mark it recovered if we have handled it and MSR(RI=1). */ if (handled && (regs->msr & MSR_RI)) mce->disposition = MCE_DISPOSITION_RECOVERED; else mce->disposition = MCE_DISPOSITION_NOT_RECOVERED; mce->initiator = mce_err->initiator; mce->severity = mce_err->severity; /* * Populate the mce error_type and type-specific error_type. */ mce_set_error_info(mce, mce_err); if (!addr) return; if (mce->error_type == MCE_ERROR_TYPE_TLB) { mce->u.tlb_error.effective_address_provided = true; mce->u.tlb_error.effective_address = addr; } else if (mce->error_type == MCE_ERROR_TYPE_SLB) { mce->u.slb_error.effective_address_provided = true; mce->u.slb_error.effective_address = addr; } else if (mce->error_type == MCE_ERROR_TYPE_ERAT) { mce->u.erat_error.effective_address_provided = true; mce->u.erat_error.effective_address = addr; } else if (mce->error_type == MCE_ERROR_TYPE_USER) { mce->u.user_error.effective_address_provided = true; mce->u.user_error.effective_address = addr; } else if (mce->error_type == MCE_ERROR_TYPE_RA) { mce->u.ra_error.effective_address_provided = true; mce->u.ra_error.effective_address = addr; } else if (mce->error_type == MCE_ERROR_TYPE_LINK) { mce->u.link_error.effective_address_provided = true; mce->u.link_error.effective_address = addr; } else if (mce->error_type == MCE_ERROR_TYPE_UE) { mce->u.ue_error.effective_address_provided = true; mce->u.ue_error.effective_address = addr; } return; } /* * get_mce_event: * mce Pointer to machine_check_event structure to be filled. * release Flag to indicate whether to free the event slot or not. * 0 <= do not release the mce event. Caller will invoke * release_mce_event() once event has been consumed. * 1 <= release the slot. * * return 1 = success * 0 = failure * * get_mce_event() will be called by platform specific machine check * handle routine and in KVM. * When we call get_mce_event(), we are still in interrupt context and * preemption will not be scheduled until ret_from_expect() routine * is called. */ int get_mce_event(struct machine_check_event *mce, bool release) { int index = __this_cpu_read(mce_nest_count) - 1; struct machine_check_event *mc_evt; int ret = 0; /* Sanity check */ if (index < 0) return ret; /* Check if we have MCE info to process. */ if (index < MAX_MC_EVT) { mc_evt = this_cpu_ptr(&mce_event[index]); /* Copy the event structure and release the original */ if (mce) *mce = *mc_evt; if (release) mc_evt->in_use = 0; ret = 1; } /* Decrement the count to free the slot. */ if (release) __this_cpu_dec(mce_nest_count); return ret; } void release_mce_event(void) { get_mce_event(NULL, true); } /* * Queue up the MCE event which then can be handled later. */ void machine_check_queue_event(void) { int index; struct machine_check_event evt; if (!get_mce_event(&evt, MCE_EVENT_RELEASE)) return; index = __this_cpu_inc_return(mce_queue_count) - 1; /* If queue is full, just return for now. */ if (index >= MAX_MC_EVT) { __this_cpu_dec(mce_queue_count); return; } memcpy(this_cpu_ptr(&mce_event_queue[index]), &evt, sizeof(evt)); /* Queue irq work to process this event later. */ irq_work_queue(&mce_event_process_work); } /* * process pending MCE event from the mce event queue. This function will be * called during syscall exit. */ static void machine_check_process_queued_event(struct irq_work *work) { int index; /* * For now just print it to console. * TODO: log this error event to FSP or nvram. */ while (__this_cpu_read(mce_queue_count) > 0) { index = __this_cpu_read(mce_queue_count) - 1; machine_check_print_event_info( this_cpu_ptr(&mce_event_queue[index]), false); __this_cpu_dec(mce_queue_count); } } void machine_check_print_event_info(struct machine_check_event *evt, bool user_mode) { const char *level, *sevstr, *subtype; static const char *mc_ue_types[] = { "Indeterminate", "Instruction fetch", "Page table walk ifetch", "Load/Store", "Page table walk Load/Store", }; static const char *mc_slb_types[] = { "Indeterminate", "Parity", "Multihit", }; static const char *mc_erat_types[] = { "Indeterminate", "Parity", "Multihit", }; static const char *mc_tlb_types[] = { "Indeterminate", "Parity", "Multihit", }; static const char *mc_user_types[] = { "Indeterminate", "tlbie(l) invalid", }; static const char *mc_ra_types[] = { "Indeterminate", "Instruction fetch (bad)", "Page table walk ifetch (bad)", "Page table walk ifetch (foreign)", "Load (bad)", "Store (bad)", "Page table walk Load/Store (bad)", "Page table walk Load/Store (foreign)", "Load/Store (foreign)", }; static const char *mc_link_types[] = { "Indeterminate", "Instruction fetch (timeout)", "Page table walk ifetch (timeout)", "Load (timeout)", "Store (timeout)", "Page table walk Load/Store (timeout)", }; /* Print things out */ if (evt->version != MCE_V1) { pr_err("Machine Check Exception, Unknown event version %d !\n", evt->version); return; } switch (evt->severity) { case MCE_SEV_NO_ERROR: level = KERN_INFO; sevstr = "Harmless"; break; case MCE_SEV_WARNING: level = KERN_WARNING; sevstr = ""; break; case MCE_SEV_ERROR_SYNC: level = KERN_ERR; sevstr = "Severe"; break; case MCE_SEV_FATAL: default: level = KERN_ERR; sevstr = "Fatal"; break; } printk("%s%s Machine check interrupt [%s]\n", level, sevstr, evt->disposition == MCE_DISPOSITION_RECOVERED ? "Recovered" : "Not recovered"); if (user_mode) { printk("%s NIP: [%016llx] PID: %d Comm: %s\n", level, evt->srr0, current->pid, current->comm); } else { printk("%s NIP [%016llx]: %pS\n", level, evt->srr0, (void *)evt->srr0); } printk("%s Initiator: %s\n", level, evt->initiator == MCE_INITIATOR_CPU ? "CPU" : "Unknown"); switch (evt->error_type) { case MCE_ERROR_TYPE_UE: subtype = evt->u.ue_error.ue_error_type < ARRAY_SIZE(mc_ue_types) ? mc_ue_types[evt->u.ue_error.ue_error_type] : "Unknown"; printk("%s Error type: UE [%s]\n", level, subtype); if (evt->u.ue_error.effective_address_provided) printk("%s Effective address: %016llx\n", level, evt->u.ue_error.effective_address); if (evt->u.ue_error.physical_address_provided) printk("%s Physical address: %016llx\n", level, evt->u.ue_error.physical_address); break; case MCE_ERROR_TYPE_SLB: subtype = evt->u.slb_error.slb_error_type < ARRAY_SIZE(mc_slb_types) ? mc_slb_types[evt->u.slb_error.slb_error_type] : "Unknown"; printk("%s Error type: SLB [%s]\n", level, subtype); if (evt->u.slb_error.effective_address_provided) printk("%s Effective address: %016llx\n", level, evt->u.slb_error.effective_address); break; case MCE_ERROR_TYPE_ERAT: subtype = evt->u.erat_error.erat_error_type < ARRAY_SIZE(mc_erat_types) ? mc_erat_types[evt->u.erat_error.erat_error_type] : "Unknown"; printk("%s Error type: ERAT [%s]\n", level, subtype); if (evt->u.erat_error.effective_address_provided) printk("%s Effective address: %016llx\n", level, evt->u.erat_error.effective_address); break; case MCE_ERROR_TYPE_TLB: subtype = evt->u.tlb_error.tlb_error_type < ARRAY_SIZE(mc_tlb_types) ? mc_tlb_types[evt->u.tlb_error.tlb_error_type] : "Unknown"; printk("%s Error type: TLB [%s]\n", level, subtype); if (evt->u.tlb_error.effective_address_provided) printk("%s Effective address: %016llx\n", level, evt->u.tlb_error.effective_address); break; case MCE_ERROR_TYPE_USER: subtype = evt->u.user_error.user_error_type < ARRAY_SIZE(mc_user_types) ? mc_user_types[evt->u.user_error.user_error_type] : "Unknown"; printk("%s Error type: User [%s]\n", level, subtype); if (evt->u.user_error.effective_address_provided) printk("%s Effective address: %016llx\n", level, evt->u.user_error.effective_address); break; case MCE_ERROR_TYPE_RA: subtype = evt->u.ra_error.ra_error_type < ARRAY_SIZE(mc_ra_types) ? mc_ra_types[evt->u.ra_error.ra_error_type] : "Unknown"; printk("%s Error type: Real address [%s]\n", level, subtype); if (evt->u.ra_error.effective_address_provided) printk("%s Effective address: %016llx\n", level, evt->u.ra_error.effective_address); break; case MCE_ERROR_TYPE_LINK: subtype = evt->u.link_error.link_error_type < ARRAY_SIZE(mc_link_types) ? mc_link_types[evt->u.link_error.link_error_type] : "Unknown"; printk("%s Error type: Link [%s]\n", level, subtype); if (evt->u.link_error.effective_address_provided) printk("%s Effective address: %016llx\n", level, evt->u.link_error.effective_address); break; default: case MCE_ERROR_TYPE_UNKNOWN: printk("%s Error type: Unknown\n", level); break; } } uint64_t get_mce_fault_addr(struct machine_check_event *evt) { switch (evt->error_type) { case MCE_ERROR_TYPE_UE: if (evt->u.ue_error.effective_address_provided) return evt->u.ue_error.effective_address; break; case MCE_ERROR_TYPE_SLB: if (evt->u.slb_error.effective_address_provided) return evt->u.slb_error.effective_address; break; case MCE_ERROR_TYPE_ERAT: if (evt->u.erat_error.effective_address_provided) return evt->u.erat_error.effective_address; break; case MCE_ERROR_TYPE_TLB: if (evt->u.tlb_error.effective_address_provided) return evt->u.tlb_error.effective_address; break; case MCE_ERROR_TYPE_USER: if (evt->u.user_error.effective_address_provided) return evt->u.user_error.effective_address; break; case MCE_ERROR_TYPE_RA: if (evt->u.ra_error.effective_address_provided) return evt->u.ra_error.effective_address; break; case MCE_ERROR_TYPE_LINK: if (evt->u.link_error.effective_address_provided) return evt->u.link_error.effective_address; break; default: case MCE_ERROR_TYPE_UNKNOWN: break; } return 0; } EXPORT_SYMBOL(get_mce_fault_addr);