/* MN10300 Dynamic DMA mapping support * * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved. * Written by David Howells (dhowells@redhat.com) * Derived from: arch/i386/kernel/pci-dma.c * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public Licence * as published by the Free Software Foundation; either version * 2 of the Licence, or (at your option) any later version. */ #include #include #include #include #include #include #include static unsigned long pci_sram_allocated = 0xbc000000; static void *mn10300_dma_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs) { unsigned long addr; void *ret; pr_debug("dma_alloc_coherent(%s,%zu,%x)\n", dev ? dev_name(dev) : "?", size, gfp); if (0xbe000000 - pci_sram_allocated >= size) { size = (size + 255) & ~255; addr = pci_sram_allocated; pci_sram_allocated += size; ret = (void *) addr; goto done; } if (dev == NULL || dev->coherent_dma_mask < 0xffffffff) gfp |= GFP_DMA; addr = __get_free_pages(gfp, get_order(size)); if (!addr) return NULL; /* map the coherent memory through the uncached memory window */ ret = (void *) (addr | 0x20000000); /* fill the memory with obvious rubbish */ memset((void *) addr, 0xfb, size); /* write back and evict all cache lines covering this region */ mn10300_dcache_flush_inv_range2(virt_to_phys((void *) addr), PAGE_SIZE); done: *dma_handle = virt_to_bus((void *) addr); printk("dma_alloc_coherent() = %p [%x]\n", ret, *dma_handle); return ret; } static void mn10300_dma_free(struct device *dev, size_t size, void *vaddr, dma_addr_t dma_handle, unsigned long attrs) { unsigned long addr = (unsigned long) vaddr & ~0x20000000; if (addr >= 0x9c000000) return; free_pages(addr, get_order(size)); } static int mn10300_dma_map_sg(struct device *dev, struct scatterlist *sglist, int nents, enum dma_data_direction direction, unsigned long attrs) { struct scatterlist *sg; int i; for_each_sg(sglist, sg, nents, i) { BUG_ON(!sg_page(sg)); sg->dma_address = sg_phys(sg); } mn10300_dcache_flush_inv(); return nents; } static dma_addr_t mn10300_dma_map_page(struct device *dev, struct page *page, unsigned long offset, size_t size, enum dma_data_direction direction, unsigned long attrs) { return page_to_bus(page) + offset; } static void mn10300_dma_sync_single_for_device(struct device *dev, dma_addr_t dma_handle, size_t size, enum dma_data_direction direction) { mn10300_dcache_flush_inv(); } static void mn10300_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg, int nelems, enum dma_data_direction direction) { mn10300_dcache_flush_inv(); } static int mn10300_dma_supported(struct device *dev, u64 mask) { /* * we fall back to GFP_DMA when the mask isn't all 1s, so we can't * guarantee allocations that must be within a tighter range than * GFP_DMA */ if (mask < 0x00ffffff) return 0; return 1; } const struct dma_map_ops mn10300_dma_ops = { .alloc = mn10300_dma_alloc, .free = mn10300_dma_free, .map_page = mn10300_dma_map_page, .map_sg = mn10300_dma_map_sg, .sync_single_for_device = mn10300_dma_sync_single_for_device, .sync_sg_for_device = mn10300_dma_sync_sg_for_device, };