/* * pci.c - Low-Level PCI Access in IA-64 * * Derived from bios32.c of i386 tree. * * (c) Copyright 2002, 2005 Hewlett-Packard Development Company, L.P. * David Mosberger-Tang * Bjorn Helgaas * Copyright (C) 2004 Silicon Graphics, Inc. * * Note: Above list of copyright holders is incomplete... */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * Low-level SAL-based PCI configuration access functions. Note that SAL * calls are already serialized (via sal_lock), so we don't need another * synchronization mechanism here. */ #define PCI_SAL_ADDRESS(seg, bus, devfn, reg) \ (((u64) seg << 24) | (bus << 16) | (devfn << 8) | (reg)) /* SAL 3.2 adds support for extended config space. */ #define PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg) \ (((u64) seg << 28) | (bus << 20) | (devfn << 12) | (reg)) static int pci_sal_read (unsigned int seg, unsigned int bus, unsigned int devfn, int reg, int len, u32 *value) { u64 addr, data = 0; int mode, result; if (!value || (seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095)) return -EINVAL; if ((seg | reg) <= 255) { addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg); mode = 0; } else { addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg); mode = 1; } result = ia64_sal_pci_config_read(addr, mode, len, &data); if (result != 0) return -EINVAL; *value = (u32) data; return 0; } static int pci_sal_write (unsigned int seg, unsigned int bus, unsigned int devfn, int reg, int len, u32 value) { u64 addr; int mode, result; if ((seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095)) return -EINVAL; if ((seg | reg) <= 255) { addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg); mode = 0; } else { addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg); mode = 1; } result = ia64_sal_pci_config_write(addr, mode, len, value); if (result != 0) return -EINVAL; return 0; } static struct pci_raw_ops pci_sal_ops = { .read = pci_sal_read, .write = pci_sal_write }; struct pci_raw_ops *raw_pci_ops = &pci_sal_ops; static int pci_read (struct pci_bus *bus, unsigned int devfn, int where, int size, u32 *value) { return raw_pci_ops->read(pci_domain_nr(bus), bus->number, devfn, where, size, value); } static int pci_write (struct pci_bus *bus, unsigned int devfn, int where, int size, u32 value) { return raw_pci_ops->write(pci_domain_nr(bus), bus->number, devfn, where, size, value); } struct pci_ops pci_root_ops = { .read = pci_read, .write = pci_write, }; /* Called by ACPI when it finds a new root bus. */ static struct pci_controller * __devinit alloc_pci_controller (int seg) { struct pci_controller *controller; controller = kmalloc(sizeof(*controller), GFP_KERNEL); if (!controller) return NULL; memset(controller, 0, sizeof(*controller)); controller->segment = seg; controller->node = -1; return controller; } struct pci_root_info { struct pci_controller *controller; char *name; }; static unsigned int new_space (u64 phys_base, int sparse) { u64 mmio_base; int i; if (phys_base == 0) return 0; /* legacy I/O port space */ mmio_base = (u64) ioremap(phys_base, 0); for (i = 0; i < num_io_spaces; i++) if (io_space[i].mmio_base == mmio_base && io_space[i].sparse == sparse) return i; if (num_io_spaces == MAX_IO_SPACES) { printk(KERN_ERR "PCI: Too many IO port spaces " "(MAX_IO_SPACES=%lu)\n", MAX_IO_SPACES); return ~0; } i = num_io_spaces++; io_space[i].mmio_base = mmio_base; io_space[i].sparse = sparse; return i; } static u64 __devinit add_io_space (struct pci_root_info *info, struct acpi_resource_address64 *addr) { struct resource *resource; char *name; u64 base, min, max, base_port; unsigned int sparse = 0, space_nr, len; resource = kzalloc(sizeof(*resource), GFP_KERNEL); if (!resource) { printk(KERN_ERR "PCI: No memory for %s I/O port space\n", info->name); goto out; } len = strlen(info->name) + 32; name = kzalloc(len, GFP_KERNEL); if (!name) { printk(KERN_ERR "PCI: No memory for %s I/O port space name\n", info->name); goto free_resource; } min = addr->minimum; max = min + addr->address_length - 1; if (addr->attribute.io.translation_attribute == ACPI_SPARSE_TRANSLATION) sparse = 1; space_nr = new_space(addr->translation_offset, sparse); if (space_nr == ~0) goto free_name; base = __pa(io_space[space_nr].mmio_base); base_port = IO_SPACE_BASE(space_nr); snprintf(name, len, "%s I/O Ports %08lx-%08lx", info->name, base_port + min, base_port + max); /* * The SDM guarantees the legacy 0-64K space is sparse, but if the * mapping is done by the processor (not the bridge), ACPI may not * mark it as sparse. */ if (space_nr == 0) sparse = 1; resource->name = name; resource->flags = IORESOURCE_MEM; resource->start = base + (sparse ? IO_SPACE_SPARSE_ENCODING(min) : min); resource->end = base + (sparse ? IO_SPACE_SPARSE_ENCODING(max) : max); insert_resource(&iomem_resource, resource); return base_port; free_name: kfree(name); free_resource: kfree(resource); out: return ~0; } static acpi_status __devinit resource_to_window(struct acpi_resource *resource, struct acpi_resource_address64 *addr) { acpi_status status; /* * We're only interested in _CRS descriptors that are * - address space descriptors for memory or I/O space * - non-zero size * - producers, i.e., the address space is routed downstream, * not consumed by the bridge itself */ status = acpi_resource_to_address64(resource, addr); if (ACPI_SUCCESS(status) && (addr->resource_type == ACPI_MEMORY_RANGE || addr->resource_type == ACPI_IO_RANGE) && addr->address_length && addr->producer_consumer == ACPI_PRODUCER) return AE_OK; return AE_ERROR; } static acpi_status __devinit count_window (struct acpi_resource *resource, void *data) { unsigned int *windows = (unsigned int *) data; struct acpi_resource_address64 addr; acpi_status status; status = resource_to_window(resource, &addr); if (ACPI_SUCCESS(status)) (*windows)++; return AE_OK; } static __devinit acpi_status add_window(struct acpi_resource *res, void *data) { struct pci_root_info *info = data; struct pci_window *window; struct acpi_resource_address64 addr; acpi_status status; unsigned long flags, offset = 0; struct resource *root; /* Return AE_OK for non-window resources to keep scanning for more */ status = resource_to_window(res, &addr); if (!ACPI_SUCCESS(status)) return AE_OK; if (addr.resource_type == ACPI_MEMORY_RANGE) { flags = IORESOURCE_MEM; root = &iomem_resource; offset = addr.translation_offset; } else if (addr.resource_type == ACPI_IO_RANGE) { flags = IORESOURCE_IO; root = &ioport_resource; offset = add_io_space(info, &addr); if (offset == ~0) return AE_OK; } else return AE_OK; window = &info->controller->window[info->controller->windows++]; window->resource.name = info->name; window->resource.flags = flags; window->resource.start = addr.minimum + offset; window->resource.end = window->resource.start + addr.address_length - 1; window->resource.child = NULL; window->offset = offset; if (insert_resource(root, &window->resource)) { printk(KERN_ERR "alloc 0x%lx-0x%lx from %s for %s failed\n", window->resource.start, window->resource.end, root->name, info->name); } return AE_OK; } static void __devinit pcibios_setup_root_windows(struct pci_bus *bus, struct pci_controller *ctrl) { int i, j; j = 0; for (i = 0; i < ctrl->windows; i++) { struct resource *res = &ctrl->window[i].resource; /* HP's firmware has a hack to work around a Windows bug. * Ignore these tiny memory ranges */ if ((res->flags & IORESOURCE_MEM) && (res->end - res->start < 16)) continue; if (j >= PCI_BUS_NUM_RESOURCES) { printk("Ignoring range [%lx-%lx] (%lx)\n", res->start, res->end, res->flags); continue; } bus->resource[j++] = res; } } struct pci_bus * __devinit pci_acpi_scan_root(struct acpi_device *device, int domain, int bus) { struct pci_root_info info; struct pci_controller *controller; unsigned int windows = 0; struct pci_bus *pbus; char *name; int pxm; controller = alloc_pci_controller(domain); if (!controller) goto out1; controller->acpi_handle = device->handle; pxm = acpi_get_pxm(controller->acpi_handle); #ifdef CONFIG_NUMA if (pxm >= 0) controller->node = pxm_to_nid_map[pxm]; #endif acpi_walk_resources(device->handle, METHOD_NAME__CRS, count_window, &windows); controller->window = kmalloc_node(sizeof(*controller->window) * windows, GFP_KERNEL, controller->node); if (!controller->window) goto out2; name = kmalloc(16, GFP_KERNEL); if (!name) goto out3; sprintf(name, "PCI Bus %04x:%02x", domain, bus); info.controller = controller; info.name = name; acpi_walk_resources(device->handle, METHOD_NAME__CRS, add_window, &info); pbus = pci_scan_bus_parented(NULL, bus, &pci_root_ops, controller); if (pbus) pcibios_setup_root_windows(pbus, controller); return pbus; out3: kfree(controller->window); out2: kfree(controller); out1: return NULL; } void pcibios_resource_to_bus(struct pci_dev *dev, struct pci_bus_region *region, struct resource *res) { struct pci_controller *controller = PCI_CONTROLLER(dev); unsigned long offset = 0; int i; for (i = 0; i < controller->windows; i++) { struct pci_window *window = &controller->window[i]; if (!(window->resource.flags & res->flags)) continue; if (window->resource.start > res->start) continue; if (window->resource.end < res->end) continue; offset = window->offset; break; } region->start = res->start - offset; region->end = res->end - offset; } EXPORT_SYMBOL(pcibios_resource_to_bus); void pcibios_bus_to_resource(struct pci_dev *dev, struct resource *res, struct pci_bus_region *region) { struct pci_controller *controller = PCI_CONTROLLER(dev); unsigned long offset = 0; int i; for (i = 0; i < controller->windows; i++) { struct pci_window *window = &controller->window[i]; if (!(window->resource.flags & res->flags)) continue; if (window->resource.start - window->offset > region->start) continue; if (window->resource.end - window->offset < region->end) continue; offset = window->offset; break; } res->start = region->start + offset; res->end = region->end + offset; } EXPORT_SYMBOL(pcibios_bus_to_resource); static int __devinit is_valid_resource(struct pci_dev *dev, int idx) { unsigned int i, type_mask = IORESOURCE_IO | IORESOURCE_MEM; struct resource *devr = &dev->resource[idx]; if (!dev->bus) return 0; for (i=0; ibus->resource[i]; if (!busr || ((busr->flags ^ devr->flags) & type_mask)) continue; if ((devr->start) && (devr->start >= busr->start) && (devr->end <= busr->end)) return 1; } return 0; } static void __devinit pcibios_fixup_device_resources(struct pci_dev *dev) { struct pci_bus_region region; int i; int limit = (dev->hdr_type == PCI_HEADER_TYPE_NORMAL) ? \ PCI_BRIDGE_RESOURCES : PCI_NUM_RESOURCES; for (i = 0; i < limit; i++) { if (!dev->resource[i].flags) continue; region.start = dev->resource[i].start; region.end = dev->resource[i].end; pcibios_bus_to_resource(dev, &dev->resource[i], ®ion); if ((is_valid_resource(dev, i))) pci_claim_resource(dev, i); } } /* * Called after each bus is probed, but before its children are examined. */ void __devinit pcibios_fixup_bus (struct pci_bus *b) { struct pci_dev *dev; if (b->self) { pci_read_bridge_bases(b); pcibios_fixup_device_resources(b->self); } list_for_each_entry(dev, &b->devices, bus_list) pcibios_fixup_device_resources(dev); return; } void __devinit pcibios_update_irq (struct pci_dev *dev, int irq) { pci_write_config_byte(dev, PCI_INTERRUPT_LINE, irq); /* ??? FIXME -- record old value for shutdown. */ } static inline int pcibios_enable_resources (struct pci_dev *dev, int mask) { u16 cmd, old_cmd; int idx; struct resource *r; unsigned long type_mask = IORESOURCE_IO | IORESOURCE_MEM; if (!dev) return -EINVAL; pci_read_config_word(dev, PCI_COMMAND, &cmd); old_cmd = cmd; for (idx=0; idxresource[idx]; if (!(r->flags & type_mask)) continue; if ((idx == PCI_ROM_RESOURCE) && (!(r->flags & IORESOURCE_ROM_ENABLE))) continue; if (!r->start && r->end) { printk(KERN_ERR "PCI: Device %s not available because of resource collisions\n", pci_name(dev)); return -EINVAL; } if (r->flags & IORESOURCE_IO) cmd |= PCI_COMMAND_IO; if (r->flags & IORESOURCE_MEM) cmd |= PCI_COMMAND_MEMORY; } if (cmd != old_cmd) { printk("PCI: Enabling device %s (%04x -> %04x)\n", pci_name(dev), old_cmd, cmd); pci_write_config_word(dev, PCI_COMMAND, cmd); } return 0; } int pcibios_enable_device (struct pci_dev *dev, int mask) { int ret; ret = pcibios_enable_resources(dev, mask); if (ret < 0) return ret; return acpi_pci_irq_enable(dev); } void pcibios_disable_device (struct pci_dev *dev) { acpi_pci_irq_disable(dev); } void pcibios_align_resource (void *data, struct resource *res, unsigned long size, unsigned long align) { } /* * PCI BIOS setup, always defaults to SAL interface */ char * __init pcibios_setup (char *str) { return NULL; } int pci_mmap_page_range (struct pci_dev *dev, struct vm_area_struct *vma, enum pci_mmap_state mmap_state, int write_combine) { /* * I/O space cannot be accessed via normal processor loads and * stores on this platform. */ if (mmap_state == pci_mmap_io) /* * XXX we could relax this for I/O spaces for which ACPI * indicates that the space is 1-to-1 mapped. But at the * moment, we don't support multiple PCI address spaces and * the legacy I/O space is not 1-to-1 mapped, so this is moot. */ return -EINVAL; /* * Leave vm_pgoff as-is, the PCI space address is the physical * address on this platform. */ vma->vm_flags |= (VM_SHM | VM_RESERVED | VM_IO); if (write_combine && efi_range_is_wc(vma->vm_start, vma->vm_end - vma->vm_start)) vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot); else vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff, vma->vm_end - vma->vm_start, vma->vm_page_prot)) return -EAGAIN; return 0; } /** * ia64_pci_get_legacy_mem - generic legacy mem routine * @bus: bus to get legacy memory base address for * * Find the base of legacy memory for @bus. This is typically the first * megabyte of bus address space for @bus or is simply 0 on platforms whose * chipsets support legacy I/O and memory routing. Returns the base address * or an error pointer if an error occurred. * * This is the ia64 generic version of this routine. Other platforms * are free to override it with a machine vector. */ char *ia64_pci_get_legacy_mem(struct pci_bus *bus) { return (char *)__IA64_UNCACHED_OFFSET; } /** * pci_mmap_legacy_page_range - map legacy memory space to userland * @bus: bus whose legacy space we're mapping * @vma: vma passed in by mmap * * Map legacy memory space for this device back to userspace using a machine * vector to get the base address. */ int pci_mmap_legacy_page_range(struct pci_bus *bus, struct vm_area_struct *vma) { char *addr; addr = pci_get_legacy_mem(bus); if (IS_ERR(addr)) return PTR_ERR(addr); vma->vm_pgoff += (unsigned long)addr >> PAGE_SHIFT; vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); vma->vm_flags |= (VM_SHM | VM_RESERVED | VM_IO); if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff, vma->vm_end - vma->vm_start, vma->vm_page_prot)) return -EAGAIN; return 0; } /** * ia64_pci_legacy_read - read from legacy I/O space * @bus: bus to read * @port: legacy port value * @val: caller allocated storage for returned value * @size: number of bytes to read * * Simply reads @size bytes from @port and puts the result in @val. * * Again, this (and the write routine) are generic versions that can be * overridden by the platform. This is necessary on platforms that don't * support legacy I/O routing or that hard fail on legacy I/O timeouts. */ int ia64_pci_legacy_read(struct pci_bus *bus, u16 port, u32 *val, u8 size) { int ret = size; switch (size) { case 1: *val = inb(port); break; case 2: *val = inw(port); break; case 4: *val = inl(port); break; default: ret = -EINVAL; break; } return ret; } /** * ia64_pci_legacy_write - perform a legacy I/O write * @bus: bus pointer * @port: port to write * @val: value to write * @size: number of bytes to write from @val * * Simply writes @size bytes of @val to @port. */ int ia64_pci_legacy_write(struct pci_dev *bus, u16 port, u32 val, u8 size) { int ret = 0; switch (size) { case 1: outb(val, port); break; case 2: outw(val, port); break; case 4: outl(val, port); break; default: ret = -EINVAL; break; } return ret; } /** * pci_cacheline_size - determine cacheline size for PCI devices * @dev: void * * We want to use the line-size of the outer-most cache. We assume * that this line-size is the same for all CPUs. * * Code mostly taken from arch/ia64/kernel/palinfo.c:cache_info(). * * RETURNS: An appropriate -ERRNO error value on eror, or zero for success. */ static unsigned long pci_cacheline_size (void) { u64 levels, unique_caches; s64 status; pal_cache_config_info_t cci; static u8 cacheline_size; if (cacheline_size) return cacheline_size; status = ia64_pal_cache_summary(&levels, &unique_caches); if (status != 0) { printk(KERN_ERR "%s: ia64_pal_cache_summary() failed (status=%ld)\n", __FUNCTION__, status); return SMP_CACHE_BYTES; } status = ia64_pal_cache_config_info(levels - 1, /* cache_type (data_or_unified)= */ 2, &cci); if (status != 0) { printk(KERN_ERR "%s: ia64_pal_cache_config_info() failed (status=%ld)\n", __FUNCTION__, status); return SMP_CACHE_BYTES; } cacheline_size = 1 << cci.pcci_line_size; return cacheline_size; } /** * pcibios_prep_mwi - helper function for drivers/pci/pci.c:pci_set_mwi() * @dev: the PCI device for which MWI is enabled * * For ia64, we can get the cacheline sizes from PAL. * * RETURNS: An appropriate -ERRNO error value on eror, or zero for success. */ int pcibios_prep_mwi (struct pci_dev *dev) { unsigned long desired_linesize, current_linesize; int rc = 0; u8 pci_linesize; desired_linesize = pci_cacheline_size(); pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &pci_linesize); current_linesize = 4 * pci_linesize; if (desired_linesize != current_linesize) { printk(KERN_WARNING "PCI: slot %s has incorrect PCI cache line size of %lu bytes,", pci_name(dev), current_linesize); if (current_linesize > desired_linesize) { printk(" expected %lu bytes instead\n", desired_linesize); rc = -EINVAL; } else { printk(" correcting to %lu\n", desired_linesize); pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, desired_linesize / 4); } } return rc; } int pci_vector_resources(int last, int nr_released) { int count = nr_released; count += (IA64_LAST_DEVICE_VECTOR - last); return count; }