/* * linux/arch/arm/plat-nomadik/timer.c * * Copyright (C) 2008 STMicroelectronics * Copyright (C) 2010 Alessandro Rubini * Copyright (C) 2010 Linus Walleij for ST-Ericsson * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2, as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include #include #include #include void __iomem *mtu_base; /* Assigned by machine code */ /* * Kernel assumes that sched_clock can be called early * but the MTU may not yet be initialized. */ static cycle_t nmdk_read_timer_dummy(struct clocksource *cs) { return 0; } /* clocksource: MTU decrements, so we negate the value being read. */ static cycle_t nmdk_read_timer(struct clocksource *cs) { return -readl(mtu_base + MTU_VAL(0)); } static struct clocksource nmdk_clksrc = { .name = "mtu_0", .rating = 200, .read = nmdk_read_timer_dummy, .mask = CLOCKSOURCE_MASK(32), .flags = CLOCK_SOURCE_IS_CONTINUOUS, }; /* * Override the global weak sched_clock symbol with this * local implementation which uses the clocksource to get some * better resolution when scheduling the kernel. * * Because the hardware timer period may be quite short * (32.3 secs on the 133 MHz MTU timer selection on ux500) * and because cnt32_to_63() needs to be called at least once per * half period to work properly, a kernel keepwarm() timer is set up * to ensure this requirement is always met. * * Also the sched_clock timer will wrap around at some point, * here we set it to run continously for a year. */ #define SCHED_CLOCK_MIN_WRAP 3600*24*365 static struct timer_list cnt32_to_63_keepwarm_timer; static u32 sched_mult; static u32 sched_shift; unsigned long long notrace sched_clock(void) { u64 cycles; if (unlikely(!mtu_base)) return 0; cycles = cnt32_to_63(-readl(mtu_base + MTU_VAL(0))); /* * sched_mult is guaranteed to be even so will * shift out bit 63 */ return (cycles * sched_mult) >> sched_shift; } /* Just kick sched_clock every so often */ static void cnt32_to_63_keepwarm(unsigned long data) { mod_timer(&cnt32_to_63_keepwarm_timer, round_jiffies(jiffies + data)); (void) sched_clock(); } /* * Set up a timer to keep sched_clock():s 32_to_63 algorithm warm * once in half a 32bit timer wrap interval. */ static void __init nmdk_sched_clock_init(unsigned long rate) { u32 v; unsigned long delta; u64 days; /* Find the apropriate mult and shift factors */ clocks_calc_mult_shift(&sched_mult, &sched_shift, rate, NSEC_PER_SEC, SCHED_CLOCK_MIN_WRAP); /* We need to multiply by an even number to get rid of bit 63 */ if (sched_mult & 1) sched_mult++; /* Let's see what we get, take max counter and scale it */ days = (0xFFFFFFFFFFFFFFFFLLU * sched_mult) >> sched_shift; do_div(days, NSEC_PER_SEC); do_div(days, (3600*24)); pr_info("sched_clock: using %d bits @ %lu Hz wrap in %lu days\n", (64 - sched_shift), rate, (unsigned long) days); /* * Program a timer to kick us at half 32bit wraparound * Formula: seconds per wrap = (2^32) / f */ v = 0xFFFFFFFFUL / rate; /* We want half of the wrap time to keep cnt32_to_63 warm */ v /= 2; pr_debug("sched_clock: prescaled timer rate: %lu Hz, " "initialize keepwarm timer every %d seconds\n", rate, v); /* Convert seconds to jiffies */ delta = msecs_to_jiffies(v*1000); setup_timer(&cnt32_to_63_keepwarm_timer, cnt32_to_63_keepwarm, delta); mod_timer(&cnt32_to_63_keepwarm_timer, round_jiffies(jiffies + delta)); } /* Clockevent device: use one-shot mode */ static void nmdk_clkevt_mode(enum clock_event_mode mode, struct clock_event_device *dev) { u32 cr; switch (mode) { case CLOCK_EVT_MODE_PERIODIC: pr_err("%s: periodic mode not supported\n", __func__); break; case CLOCK_EVT_MODE_ONESHOT: /* Load highest value, enable device, enable interrupts */ cr = readl(mtu_base + MTU_CR(1)); writel(0, mtu_base + MTU_LR(1)); writel(cr | MTU_CRn_ENA, mtu_base + MTU_CR(1)); writel(1 << 1, mtu_base + MTU_IMSC); break; case CLOCK_EVT_MODE_SHUTDOWN: case CLOCK_EVT_MODE_UNUSED: /* disable irq */ writel(0, mtu_base + MTU_IMSC); /* disable timer */ cr = readl(mtu_base + MTU_CR(1)); cr &= ~MTU_CRn_ENA; writel(cr, mtu_base + MTU_CR(1)); /* load some high default value */ writel(0xffffffff, mtu_base + MTU_LR(1)); break; case CLOCK_EVT_MODE_RESUME: break; } } static int nmdk_clkevt_next(unsigned long evt, struct clock_event_device *ev) { /* writing the value has immediate effect */ writel(evt, mtu_base + MTU_LR(1)); return 0; } static struct clock_event_device nmdk_clkevt = { .name = "mtu_1", .features = CLOCK_EVT_FEAT_ONESHOT, .rating = 200, .set_mode = nmdk_clkevt_mode, .set_next_event = nmdk_clkevt_next, }; /* * IRQ Handler for timer 1 of the MTU block. */ static irqreturn_t nmdk_timer_interrupt(int irq, void *dev_id) { struct clock_event_device *evdev = dev_id; writel(1 << 1, mtu_base + MTU_ICR); /* Interrupt clear reg */ evdev->event_handler(evdev); return IRQ_HANDLED; } static struct irqaction nmdk_timer_irq = { .name = "Nomadik Timer Tick", .flags = IRQF_DISABLED | IRQF_TIMER, .handler = nmdk_timer_interrupt, .dev_id = &nmdk_clkevt, }; void __init nmdk_timer_init(void) { unsigned long rate; struct clk *clk0; u32 cr = MTU_CRn_32BITS; clk0 = clk_get_sys("mtu0", NULL); BUG_ON(IS_ERR(clk0)); clk_enable(clk0); /* * Tick rate is 2.4MHz for Nomadik and 2.4Mhz, 100MHz or 133 MHz * for ux500. * Use a divide-by-16 counter if the tick rate is more than 32MHz. * At 32 MHz, the timer (with 32 bit counter) can be programmed * to wake-up at a max 127s a head in time. Dividing a 2.4 MHz timer * with 16 gives too low timer resolution. */ rate = clk_get_rate(clk0); if (rate > 32000000) { rate /= 16; cr |= MTU_CRn_PRESCALE_16; } else { cr |= MTU_CRn_PRESCALE_1; } /* Timer 0 is the free running clocksource */ writel(cr, mtu_base + MTU_CR(0)); writel(0, mtu_base + MTU_LR(0)); writel(0, mtu_base + MTU_BGLR(0)); writel(cr | MTU_CRn_ENA, mtu_base + MTU_CR(0)); /* Now the clock source is ready */ nmdk_clksrc.read = nmdk_read_timer; if (clocksource_register_hz(&nmdk_clksrc, rate)) pr_err("timer: failed to initialize clock source %s\n", nmdk_clksrc.name); nmdk_sched_clock_init(rate); /* Timer 1 is used for events */ clockevents_calc_mult_shift(&nmdk_clkevt, rate, MTU_MIN_RANGE); writel(cr | MTU_CRn_ONESHOT, mtu_base + MTU_CR(1)); /* off, currently */ nmdk_clkevt.max_delta_ns = clockevent_delta2ns(0xffffffff, &nmdk_clkevt); nmdk_clkevt.min_delta_ns = clockevent_delta2ns(0x00000002, &nmdk_clkevt); nmdk_clkevt.cpumask = cpumask_of(0); /* Register irq and clockevents */ setup_irq(IRQ_MTU0, &nmdk_timer_irq); clockevents_register_device(&nmdk_clkevt); }