/* * linux/arch/arm/kernel/entry-armv.S * * Copyright (C) 1996,1997,1998 Russell King. * ARM700 fix by Matthew Godbolt (linux-user@willothewisp.demon.co.uk) * nommu support by Hyok S. Choi (hyok.choi@samsung.com) * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * Low-level vector interface routines * * Note: there is a StrongARM bug in the STMIA rn, {regs}^ instruction * that causes it to save wrong values... Be aware! */ #include #include #include #include #include #include #include #include #include "entry-header.S" #include /* * Interrupt handling. Preserves r7, r8, r9 */ .macro irq_handler #ifdef CONFIG_MULTI_IRQ_HANDLER ldr r5, =handle_arch_irq mov r0, sp ldr r5, [r5] adr lr, BSYM(9997f) teq r5, #0 movne pc, r5 #endif arch_irq_handler_default 9997: .endm #ifdef CONFIG_KPROBES .section .kprobes.text,"ax",%progbits #else .text #endif /* * Invalid mode handlers */ .macro inv_entry, reason sub sp, sp, #S_FRAME_SIZE ARM( stmib sp, {r1 - lr} ) THUMB( stmia sp, {r0 - r12} ) THUMB( str sp, [sp, #S_SP] ) THUMB( str lr, [sp, #S_LR] ) mov r1, #\reason .endm __pabt_invalid: inv_entry BAD_PREFETCH b common_invalid ENDPROC(__pabt_invalid) __dabt_invalid: inv_entry BAD_DATA b common_invalid ENDPROC(__dabt_invalid) __irq_invalid: inv_entry BAD_IRQ b common_invalid ENDPROC(__irq_invalid) __und_invalid: inv_entry BAD_UNDEFINSTR @ @ XXX fall through to common_invalid @ @ @ common_invalid - generic code for failed exception (re-entrant version of handlers) @ common_invalid: zero_fp ldmia r0, {r4 - r6} add r0, sp, #S_PC @ here for interlock avoidance mov r7, #-1 @ "" "" "" "" str r4, [sp] @ save preserved r0 stmia r0, {r5 - r7} @ lr_, @ cpsr_, "old_r0" mov r0, sp b bad_mode ENDPROC(__und_invalid) /* * SVC mode handlers */ #if defined(CONFIG_AEABI) && (__LINUX_ARM_ARCH__ >= 5) #define SPFIX(code...) code #else #define SPFIX(code...) #endif .macro svc_entry, stack_hole=0 UNWIND(.fnstart ) UNWIND(.save {r0 - pc} ) sub sp, sp, #(S_FRAME_SIZE + \stack_hole - 4) #ifdef CONFIG_THUMB2_KERNEL SPFIX( str r0, [sp] ) @ temporarily saved SPFIX( mov r0, sp ) SPFIX( tst r0, #4 ) @ test original stack alignment SPFIX( ldr r0, [sp] ) @ restored #else SPFIX( tst sp, #4 ) #endif SPFIX( subeq sp, sp, #4 ) stmia sp, {r1 - r12} ldmia r0, {r1 - r3} add r5, sp, #S_SP - 4 @ here for interlock avoidance mov r4, #-1 @ "" "" "" "" add r0, sp, #(S_FRAME_SIZE + \stack_hole - 4) SPFIX( addeq r0, r0, #4 ) str r1, [sp, #-4]! @ save the "real" r0 copied @ from the exception stack mov r1, lr @ @ We are now ready to fill in the remaining blanks on the stack: @ @ r0 - sp_svc @ r1 - lr_svc @ r2 - lr_, already fixed up for correct return/restart @ r3 - spsr_ @ r4 - orig_r0 (see pt_regs definition in ptrace.h) @ stmia r5, {r0 - r4} .endm .align 5 __dabt_svc: svc_entry @ @ get ready to re-enable interrupts if appropriate @ mrs r9, cpsr tst r3, #PSR_I_BIT biceq r9, r9, #PSR_I_BIT @ @ Call the processor-specific abort handler: @ @ r2 - aborted context pc @ r3 - aborted context cpsr @ @ The abort handler must return the aborted address in r0, and @ the fault status register in r1. r9 must be preserved. @ #ifdef MULTI_DABORT ldr r4, .LCprocfns mov lr, pc ldr pc, [r4, #PROCESSOR_DABT_FUNC] #else bl CPU_DABORT_HANDLER #endif @ @ set desired IRQ state, then call main handler @ msr cpsr_c, r9 mov r2, sp bl do_DataAbort @ @ IRQs off again before pulling preserved data off the stack @ disable_irq_notrace @ @ restore SPSR and restart the instruction @ ldr r2, [sp, #S_PSR] svc_exit r2 @ return from exception UNWIND(.fnend ) ENDPROC(__dabt_svc) .align 5 __irq_svc: svc_entry #ifdef CONFIG_TRACE_IRQFLAGS bl trace_hardirqs_off #endif #ifdef CONFIG_PREEMPT get_thread_info tsk ldr r8, [tsk, #TI_PREEMPT] @ get preempt count add r7, r8, #1 @ increment it str r7, [tsk, #TI_PREEMPT] #endif irq_handler #ifdef CONFIG_PREEMPT str r8, [tsk, #TI_PREEMPT] @ restore preempt count ldr r0, [tsk, #TI_FLAGS] @ get flags teq r8, #0 @ if preempt count != 0 movne r0, #0 @ force flags to 0 tst r0, #_TIF_NEED_RESCHED blne svc_preempt #endif ldr r4, [sp, #S_PSR] @ irqs are already disabled #ifdef CONFIG_TRACE_IRQFLAGS tst r4, #PSR_I_BIT bleq trace_hardirqs_on #endif svc_exit r4 @ return from exception UNWIND(.fnend ) ENDPROC(__irq_svc) .ltorg #ifdef CONFIG_PREEMPT svc_preempt: mov r8, lr 1: bl preempt_schedule_irq @ irq en/disable is done inside ldr r0, [tsk, #TI_FLAGS] @ get new tasks TI_FLAGS tst r0, #_TIF_NEED_RESCHED moveq pc, r8 @ go again b 1b #endif .align 5 __und_svc: #ifdef CONFIG_KPROBES @ If a kprobe is about to simulate a "stmdb sp..." instruction, @ it obviously needs free stack space which then will belong to @ the saved context. svc_entry 64 #else svc_entry #endif @ @ call emulation code, which returns using r9 if it has emulated @ the instruction, or the more conventional lr if we are to treat @ this as a real undefined instruction @ @ r0 - instruction @ #ifndef CONFIG_THUMB2_KERNEL ldr r0, [r2, #-4] #else ldrh r0, [r2, #-2] @ Thumb instruction at LR - 2 and r9, r0, #0xf800 cmp r9, #0xe800 @ 32-bit instruction if xx >= 0 ldrhhs r9, [r2] @ bottom 16 bits orrhs r0, r9, r0, lsl #16 #endif adr r9, BSYM(1f) bl call_fpe mov r0, sp @ struct pt_regs *regs bl do_undefinstr @ @ IRQs off again before pulling preserved data off the stack @ 1: disable_irq_notrace @ @ restore SPSR and restart the instruction @ ldr r2, [sp, #S_PSR] @ Get SVC cpsr svc_exit r2 @ return from exception UNWIND(.fnend ) ENDPROC(__und_svc) .align 5 __pabt_svc: svc_entry @ @ re-enable interrupts if appropriate @ mrs r9, cpsr tst r3, #PSR_I_BIT biceq r9, r9, #PSR_I_BIT mov r0, r2 @ pass address of aborted instruction. #ifdef MULTI_PABORT ldr r4, .LCprocfns mov lr, pc ldr pc, [r4, #PROCESSOR_PABT_FUNC] #else bl CPU_PABORT_HANDLER #endif msr cpsr_c, r9 @ Maybe enable interrupts mov r2, sp @ regs bl do_PrefetchAbort @ call abort handler @ @ IRQs off again before pulling preserved data off the stack @ disable_irq_notrace @ @ restore SPSR and restart the instruction @ ldr r2, [sp, #S_PSR] svc_exit r2 @ return from exception UNWIND(.fnend ) ENDPROC(__pabt_svc) .align 5 .LCcralign: .word cr_alignment #ifdef MULTI_DABORT .LCprocfns: .word processor #endif .LCfp: .word fp_enter /* * User mode handlers * * EABI note: sp_svc is always 64-bit aligned here, so should S_FRAME_SIZE */ #if defined(CONFIG_AEABI) && (__LINUX_ARM_ARCH__ >= 5) && (S_FRAME_SIZE & 7) #error "sizeof(struct pt_regs) must be a multiple of 8" #endif .macro usr_entry UNWIND(.fnstart ) UNWIND(.cantunwind ) @ don't unwind the user space sub sp, sp, #S_FRAME_SIZE ARM( stmib sp, {r1 - r12} ) THUMB( stmia sp, {r0 - r12} ) ldmia r0, {r1 - r3} add r0, sp, #S_PC @ here for interlock avoidance mov r4, #-1 @ "" "" "" "" str r1, [sp] @ save the "real" r0 copied @ from the exception stack @ @ We are now ready to fill in the remaining blanks on the stack: @ @ r2 - lr_, already fixed up for correct return/restart @ r3 - spsr_ @ r4 - orig_r0 (see pt_regs definition in ptrace.h) @ @ Also, separately save sp_usr and lr_usr @ stmia r0, {r2 - r4} ARM( stmdb r0, {sp, lr}^ ) THUMB( store_user_sp_lr r0, r1, S_SP - S_PC ) @ @ Enable the alignment trap while in kernel mode @ alignment_trap r0 @ @ Clear FP to mark the first stack frame @ zero_fp .endm .macro kuser_cmpxchg_check #if __LINUX_ARM_ARCH__ < 6 && !defined(CONFIG_NEEDS_SYSCALL_FOR_CMPXCHG) #ifndef CONFIG_MMU #warning "NPTL on non MMU needs fixing" #else @ Make sure our user space atomic helper is restarted @ if it was interrupted in a critical region. Here we @ perform a quick test inline since it should be false @ 99.9999% of the time. The rest is done out of line. cmp r2, #TASK_SIZE blhs kuser_cmpxchg_fixup #endif #endif .endm .align 5 __dabt_usr: usr_entry kuser_cmpxchg_check @ @ Call the processor-specific abort handler: @ @ r2 - aborted context pc @ r3 - aborted context cpsr @ @ The abort handler must return the aborted address in r0, and @ the fault status register in r1. @ #ifdef MULTI_DABORT ldr r4, .LCprocfns mov lr, pc ldr pc, [r4, #PROCESSOR_DABT_FUNC] #else bl CPU_DABORT_HANDLER #endif @ @ IRQs on, then call the main handler @ enable_irq mov r2, sp adr lr, BSYM(ret_from_exception) b do_DataAbort UNWIND(.fnend ) ENDPROC(__dabt_usr) .align 5 __irq_usr: usr_entry kuser_cmpxchg_check get_thread_info tsk #ifdef CONFIG_PREEMPT ldr r8, [tsk, #TI_PREEMPT] @ get preempt count add r7, r8, #1 @ increment it str r7, [tsk, #TI_PREEMPT] #endif irq_handler #ifdef CONFIG_PREEMPT ldr r0, [tsk, #TI_PREEMPT] str r8, [tsk, #TI_PREEMPT] teq r0, r7 ARM( strne r0, [r0, -r0] ) THUMB( movne r0, #0 ) THUMB( strne r0, [r0] ) #endif mov why, #0 b ret_to_user UNWIND(.fnend ) ENDPROC(__irq_usr) .ltorg .align 5 __und_usr: usr_entry @ @ fall through to the emulation code, which returns using r9 if @ it has emulated the instruction, or the more conventional lr @ if we are to treat this as a real undefined instruction @ @ r0 - instruction @ adr r9, BSYM(ret_from_exception) adr lr, BSYM(__und_usr_unknown) tst r3, #PSR_T_BIT @ Thumb mode? itet eq @ explicit IT needed for the 1f label subeq r4, r2, #4 @ ARM instr at LR - 4 subne r4, r2, #2 @ Thumb instr at LR - 2 1: ldreqt r0, [r4] #ifdef CONFIG_CPU_ENDIAN_BE8 reveq r0, r0 @ little endian instruction #endif beq call_fpe @ Thumb instruction #if __LINUX_ARM_ARCH__ >= 7 2: ARM( ldrht r5, [r4], #2 ) THUMB( ldrht r5, [r4] ) THUMB( add r4, r4, #2 ) and r0, r5, #0xf800 @ mask bits 111x x... .... .... cmp r0, #0xe800 @ 32bit instruction if xx != 0 blo __und_usr_unknown 3: ldrht r0, [r4] add r2, r2, #2 @ r2 is PC + 2, make it PC + 4 orr r0, r0, r5, lsl #16 #else b __und_usr_unknown #endif UNWIND(.fnend ) ENDPROC(__und_usr) @ @ fallthrough to call_fpe @ /* * The out of line fixup for the ldrt above. */ .pushsection .fixup, "ax" 4: mov pc, r9 .popsection .pushsection __ex_table,"a" .long 1b, 4b #if __LINUX_ARM_ARCH__ >= 7 .long 2b, 4b .long 3b, 4b #endif .popsection /* * Check whether the instruction is a co-processor instruction. * If yes, we need to call the relevant co-processor handler. * * Note that we don't do a full check here for the co-processor * instructions; all instructions with bit 27 set are well * defined. The only instructions that should fault are the * co-processor instructions. However, we have to watch out * for the ARM6/ARM7 SWI bug. * * NEON is a special case that has to be handled here. Not all * NEON instructions are co-processor instructions, so we have * to make a special case of checking for them. Plus, there's * five groups of them, so we have a table of mask/opcode pairs * to check against, and if any match then we branch off into the * NEON handler code. * * Emulators may wish to make use of the following registers: * r0 = instruction opcode. * r2 = PC+4 * r9 = normal "successful" return address * r10 = this threads thread_info structure. * lr = unrecognised instruction return address */ @ @ Fall-through from Thumb-2 __und_usr @ #ifdef CONFIG_NEON adr r6, .LCneon_thumb_opcodes b 2f #endif call_fpe: #ifdef CONFIG_NEON adr r6, .LCneon_arm_opcodes 2: ldr r7, [r6], #4 @ mask value cmp r7, #0 @ end mask? beq 1f and r8, r0, r7 ldr r7, [r6], #4 @ opcode bits matching in mask cmp r8, r7 @ NEON instruction? bne 2b get_thread_info r10 mov r7, #1 strb r7, [r10, #TI_USED_CP + 10] @ mark CP#10 as used strb r7, [r10, #TI_USED_CP + 11] @ mark CP#11 as used b do_vfp @ let VFP handler handle this 1: #endif tst r0, #0x08000000 @ only CDP/CPRT/LDC/STC have bit 27 tstne r0, #0x04000000 @ bit 26 set on both ARM and Thumb-2 #if defined(CONFIG_CPU_ARM610) || defined(CONFIG_CPU_ARM710) and r8, r0, #0x0f000000 @ mask out op-code bits teqne r8, #0x0f000000 @ SWI (ARM6/7 bug)? #endif moveq pc, lr get_thread_info r10 @ get current thread and r8, r0, #0x00000f00 @ mask out CP number THUMB( lsr r8, r8, #8 ) mov r7, #1 add r6, r10, #TI_USED_CP ARM( strb r7, [r6, r8, lsr #8] ) @ set appropriate used_cp[] THUMB( strb r7, [r6, r8] ) @ set appropriate used_cp[] #ifdef CONFIG_IWMMXT @ Test if we need to give access to iWMMXt coprocessors ldr r5, [r10, #TI_FLAGS] rsbs r7, r8, #(1 << 8) @ CP 0 or 1 only movcss r7, r5, lsr #(TIF_USING_IWMMXT + 1) bcs iwmmxt_task_enable #endif ARM( add pc, pc, r8, lsr #6 ) THUMB( lsl r8, r8, #2 ) THUMB( add pc, r8 ) nop movw_pc lr @ CP#0 W(b) do_fpe @ CP#1 (FPE) W(b) do_fpe @ CP#2 (FPE) movw_pc lr @ CP#3 #ifdef CONFIG_CRUNCH b crunch_task_enable @ CP#4 (MaverickCrunch) b crunch_task_enable @ CP#5 (MaverickCrunch) b crunch_task_enable @ CP#6 (MaverickCrunch) #else movw_pc lr @ CP#4 movw_pc lr @ CP#5 movw_pc lr @ CP#6 #endif movw_pc lr @ CP#7 movw_pc lr @ CP#8 movw_pc lr @ CP#9 #ifdef CONFIG_VFP W(b) do_vfp @ CP#10 (VFP) W(b) do_vfp @ CP#11 (VFP) #else movw_pc lr @ CP#10 (VFP) movw_pc lr @ CP#11 (VFP) #endif movw_pc lr @ CP#12 movw_pc lr @ CP#13 movw_pc lr @ CP#14 (Debug) movw_pc lr @ CP#15 (Control) #ifdef CONFIG_NEON .align 6 .LCneon_arm_opcodes: .word 0xfe000000 @ mask .word 0xf2000000 @ opcode .word 0xff100000 @ mask .word 0xf4000000 @ opcode .word 0x00000000 @ mask .word 0x00000000 @ opcode .LCneon_thumb_opcodes: .word 0xef000000 @ mask .word 0xef000000 @ opcode .word 0xff100000 @ mask .word 0xf9000000 @ opcode .word 0x00000000 @ mask .word 0x00000000 @ opcode #endif do_fpe: enable_irq ldr r4, .LCfp add r10, r10, #TI_FPSTATE @ r10 = workspace ldr pc, [r4] @ Call FP module USR entry point /* * The FP module is called with these registers set: * r0 = instruction * r2 = PC+4 * r9 = normal "successful" return address * r10 = FP workspace * lr = unrecognised FP instruction return address */ .pushsection .data ENTRY(fp_enter) .word no_fp .popsection ENTRY(no_fp) mov pc, lr ENDPROC(no_fp) __und_usr_unknown: enable_irq mov r0, sp adr lr, BSYM(ret_from_exception) b do_undefinstr ENDPROC(__und_usr_unknown) .align 5 __pabt_usr: usr_entry mov r0, r2 @ pass address of aborted instruction. #ifdef MULTI_PABORT ldr r4, .LCprocfns mov lr, pc ldr pc, [r4, #PROCESSOR_PABT_FUNC] #else bl CPU_PABORT_HANDLER #endif enable_irq @ Enable interrupts mov r2, sp @ regs bl do_PrefetchAbort @ call abort handler UNWIND(.fnend ) /* fall through */ /* * This is the return code to user mode for abort handlers */ ENTRY(ret_from_exception) UNWIND(.fnstart ) UNWIND(.cantunwind ) get_thread_info tsk mov why, #0 b ret_to_user UNWIND(.fnend ) ENDPROC(__pabt_usr) ENDPROC(ret_from_exception) /* * Register switch for ARMv3 and ARMv4 processors * r0 = previous task_struct, r1 = previous thread_info, r2 = next thread_info * previous and next are guaranteed not to be the same. */ ENTRY(__switch_to) UNWIND(.fnstart ) UNWIND(.cantunwind ) add ip, r1, #TI_CPU_SAVE ldr r3, [r2, #TI_TP_VALUE] ARM( stmia ip!, {r4 - sl, fp, sp, lr} ) @ Store most regs on stack THUMB( stmia ip!, {r4 - sl, fp} ) @ Store most regs on stack THUMB( str sp, [ip], #4 ) THUMB( str lr, [ip], #4 ) #ifdef CONFIG_CPU_USE_DOMAINS ldr r6, [r2, #TI_CPU_DOMAIN] #endif set_tls r3, r4, r5 #if defined(CONFIG_CC_STACKPROTECTOR) && !defined(CONFIG_SMP) ldr r7, [r2, #TI_TASK] ldr r8, =__stack_chk_guard ldr r7, [r7, #TSK_STACK_CANARY] #endif #ifdef CONFIG_CPU_USE_DOMAINS mcr p15, 0, r6, c3, c0, 0 @ Set domain register #endif mov r5, r0 add r4, r2, #TI_CPU_SAVE ldr r0, =thread_notify_head mov r1, #THREAD_NOTIFY_SWITCH bl atomic_notifier_call_chain #if defined(CONFIG_CC_STACKPROTECTOR) && !defined(CONFIG_SMP) str r7, [r8] #endif THUMB( mov ip, r4 ) mov r0, r5 ARM( ldmia r4, {r4 - sl, fp, sp, pc} ) @ Load all regs saved previously THUMB( ldmia ip!, {r4 - sl, fp} ) @ Load all regs saved previously THUMB( ldr sp, [ip], #4 ) THUMB( ldr pc, [ip] ) UNWIND(.fnend ) ENDPROC(__switch_to) __INIT /* * User helpers. * * These are segment of kernel provided user code reachable from user space * at a fixed address in kernel memory. This is used to provide user space * with some operations which require kernel help because of unimplemented * native feature and/or instructions in many ARM CPUs. The idea is for * this code to be executed directly in user mode for best efficiency but * which is too intimate with the kernel counter part to be left to user * libraries. In fact this code might even differ from one CPU to another * depending on the available instruction set and restrictions like on * SMP systems. In other words, the kernel reserves the right to change * this code as needed without warning. Only the entry points and their * results are guaranteed to be stable. * * Each segment is 32-byte aligned and will be moved to the top of the high * vector page. New segments (if ever needed) must be added in front of * existing ones. This mechanism should be used only for things that are * really small and justified, and not be abused freely. * * User space is expected to implement those things inline when optimizing * for a processor that has the necessary native support, but only if such * resulting binaries are already to be incompatible with earlier ARM * processors due to the use of unsupported instructions other than what * is provided here. In other words don't make binaries unable to run on * earlier processors just for the sake of not using these kernel helpers * if your compiled code is not going to use the new instructions for other * purpose. */ THUMB( .arm ) .macro usr_ret, reg #ifdef CONFIG_ARM_THUMB bx \reg #else mov pc, \reg #endif .endm .align 5 .globl __kuser_helper_start __kuser_helper_start: /* * Reference prototype: * * void __kernel_memory_barrier(void) * * Input: * * lr = return address * * Output: * * none * * Clobbered: * * none * * Definition and user space usage example: * * typedef void (__kernel_dmb_t)(void); * #define __kernel_dmb (*(__kernel_dmb_t *)0xffff0fa0) * * Apply any needed memory barrier to preserve consistency with data modified * manually and __kuser_cmpxchg usage. * * This could be used as follows: * * #define __kernel_dmb() \ * asm volatile ( "mov r0, #0xffff0fff; mov lr, pc; sub pc, r0, #95" \ * : : : "r0", "lr","cc" ) */ __kuser_memory_barrier: @ 0xffff0fa0 smp_dmb usr_ret lr .align 5 /* * Reference prototype: * * int __kernel_cmpxchg(int oldval, int newval, int *ptr) * * Input: * * r0 = oldval * r1 = newval * r2 = ptr * lr = return address * * Output: * * r0 = returned value (zero or non-zero) * C flag = set if r0 == 0, clear if r0 != 0 * * Clobbered: * * r3, ip, flags * * Definition and user space usage example: * * typedef int (__kernel_cmpxchg_t)(int oldval, int newval, int *ptr); * #define __kernel_cmpxchg (*(__kernel_cmpxchg_t *)0xffff0fc0) * * Atomically store newval in *ptr if *ptr is equal to oldval for user space. * Return zero if *ptr was changed or non-zero if no exchange happened. * The C flag is also set if *ptr was changed to allow for assembly * optimization in the calling code. * * Notes: * * - This routine already includes memory barriers as needed. * * For example, a user space atomic_add implementation could look like this: * * #define atomic_add(ptr, val) \ * ({ register unsigned int *__ptr asm("r2") = (ptr); \ * register unsigned int __result asm("r1"); \ * asm volatile ( \ * "1: @ atomic_add\n\t" \ * "ldr r0, [r2]\n\t" \ * "mov r3, #0xffff0fff\n\t" \ * "add lr, pc, #4\n\t" \ * "add r1, r0, %2\n\t" \ * "add pc, r3, #(0xffff0fc0 - 0xffff0fff)\n\t" \ * "bcc 1b" \ * : "=&r" (__result) \ * : "r" (__ptr), "rIL" (val) \ * : "r0","r3","ip","lr","cc","memory" ); \ * __result; }) */ __kuser_cmpxchg: @ 0xffff0fc0 #if defined(CONFIG_NEEDS_SYSCALL_FOR_CMPXCHG) /* * Poor you. No fast solution possible... * The kernel itself must perform the operation. * A special ghost syscall is used for that (see traps.c). */ stmfd sp!, {r7, lr} ldr r7, =1f @ it's 20 bits swi __ARM_NR_cmpxchg ldmfd sp!, {r7, pc} 1: .word __ARM_NR_cmpxchg #elif __LINUX_ARM_ARCH__ < 6 #ifdef CONFIG_MMU /* * The only thing that can break atomicity in this cmpxchg * implementation is either an IRQ or a data abort exception * causing another process/thread to be scheduled in the middle * of the critical sequence. To prevent this, code is added to * the IRQ and data abort exception handlers to set the pc back * to the beginning of the critical section if it is found to be * within that critical section (see kuser_cmpxchg_fixup). */ 1: ldr r3, [r2] @ load current val subs r3, r3, r0 @ compare with oldval 2: streq r1, [r2] @ store newval if eq rsbs r0, r3, #0 @ set return val and C flag usr_ret lr .text kuser_cmpxchg_fixup: @ Called from kuser_cmpxchg_check macro. @ r2 = address of interrupted insn (must be preserved). @ sp = saved regs. r7 and r8 are clobbered. @ 1b = first critical insn, 2b = last critical insn. @ If r2 >= 1b and r2 <= 2b then saved pc_usr is set to 1b. mov r7, #0xffff0fff sub r7, r7, #(0xffff0fff - (0xffff0fc0 + (1b - __kuser_cmpxchg))) subs r8, r2, r7 rsbcss r8, r8, #(2b - 1b) strcs r7, [sp, #S_PC] mov pc, lr .previous #else #warning "NPTL on non MMU needs fixing" mov r0, #-1 adds r0, r0, #0 usr_ret lr #endif #else smp_dmb 1: ldrex r3, [r2] subs r3, r3, r0 strexeq r3, r1, [r2] teqeq r3, #1 beq 1b rsbs r0, r3, #0 /* beware -- each __kuser slot must be 8 instructions max */ ALT_SMP(b __kuser_memory_barrier) ALT_UP(usr_ret lr) #endif .align 5 /* * Reference prototype: * * int __kernel_get_tls(void) * * Input: * * lr = return address * * Output: * * r0 = TLS value * * Clobbered: * * none * * Definition and user space usage example: * * typedef int (__kernel_get_tls_t)(void); * #define __kernel_get_tls (*(__kernel_get_tls_t *)0xffff0fe0) * * Get the TLS value as previously set via the __ARM_NR_set_tls syscall. * * This could be used as follows: * * #define __kernel_get_tls() \ * ({ register unsigned int __val asm("r0"); \ * asm( "mov r0, #0xffff0fff; mov lr, pc; sub pc, r0, #31" \ * : "=r" (__val) : : "lr","cc" ); \ * __val; }) */ __kuser_get_tls: @ 0xffff0fe0 ldr r0, [pc, #(16 - 8)] @ read TLS, set in kuser_get_tls_init usr_ret lr mrc p15, 0, r0, c13, c0, 3 @ 0xffff0fe8 hardware TLS code .rep 4 .word 0 @ 0xffff0ff0 software TLS value, then .endr @ pad up to __kuser_helper_version /* * Reference declaration: * * extern unsigned int __kernel_helper_version; * * Definition and user space usage example: * * #define __kernel_helper_version (*(unsigned int *)0xffff0ffc) * * User space may read this to determine the curent number of helpers * available. */ __kuser_helper_version: @ 0xffff0ffc .word ((__kuser_helper_end - __kuser_helper_start) >> 5) .globl __kuser_helper_end __kuser_helper_end: THUMB( .thumb ) /* * Vector stubs. * * This code is copied to 0xffff0200 so we can use branches in the * vectors, rather than ldr's. Note that this code must not * exceed 0x300 bytes. * * Common stub entry macro: * Enter in IRQ mode, spsr = SVC/USR CPSR, lr = SVC/USR PC * * SP points to a minimal amount of processor-private memory, the address * of which is copied into r0 for the mode specific abort handler. */ .macro vector_stub, name, mode, correction=0 .align 5 vector_\name: .if \correction sub lr, lr, #\correction .endif @ @ Save r0, lr_ (parent PC) and spsr_ @ (parent CPSR) @ stmia sp, {r0, lr} @ save r0, lr mrs lr, spsr str lr, [sp, #8] @ save spsr @ @ Prepare for SVC32 mode. IRQs remain disabled. @ mrs r0, cpsr eor r0, r0, #(\mode ^ SVC_MODE | PSR_ISETSTATE) msr spsr_cxsf, r0 @ @ the branch table must immediately follow this code @ and lr, lr, #0x0f THUMB( adr r0, 1f ) THUMB( ldr lr, [r0, lr, lsl #2] ) mov r0, sp ARM( ldr lr, [pc, lr, lsl #2] ) movs pc, lr @ branch to handler in SVC mode ENDPROC(vector_\name) .align 2 @ handler addresses follow this label 1: .endm .globl __stubs_start __stubs_start: /* * Interrupt dispatcher */ vector_stub irq, IRQ_MODE, 4 .long __irq_usr @ 0 (USR_26 / USR_32) .long __irq_invalid @ 1 (FIQ_26 / FIQ_32) .long __irq_invalid @ 2 (IRQ_26 / IRQ_32) .long __irq_svc @ 3 (SVC_26 / SVC_32) .long __irq_invalid @ 4 .long __irq_invalid @ 5 .long __irq_invalid @ 6 .long __irq_invalid @ 7 .long __irq_invalid @ 8 .long __irq_invalid @ 9 .long __irq_invalid @ a .long __irq_invalid @ b .long __irq_invalid @ c .long __irq_invalid @ d .long __irq_invalid @ e .long __irq_invalid @ f /* * Data abort dispatcher * Enter in ABT mode, spsr = USR CPSR, lr = USR PC */ vector_stub dabt, ABT_MODE, 8 .long __dabt_usr @ 0 (USR_26 / USR_32) .long __dabt_invalid @ 1 (FIQ_26 / FIQ_32) .long __dabt_invalid @ 2 (IRQ_26 / IRQ_32) .long __dabt_svc @ 3 (SVC_26 / SVC_32) .long __dabt_invalid @ 4 .long __dabt_invalid @ 5 .long __dabt_invalid @ 6 .long __dabt_invalid @ 7 .long __dabt_invalid @ 8 .long __dabt_invalid @ 9 .long __dabt_invalid @ a .long __dabt_invalid @ b .long __dabt_invalid @ c .long __dabt_invalid @ d .long __dabt_invalid @ e .long __dabt_invalid @ f /* * Prefetch abort dispatcher * Enter in ABT mode, spsr = USR CPSR, lr = USR PC */ vector_stub pabt, ABT_MODE, 4 .long __pabt_usr @ 0 (USR_26 / USR_32) .long __pabt_invalid @ 1 (FIQ_26 / FIQ_32) .long __pabt_invalid @ 2 (IRQ_26 / IRQ_32) .long __pabt_svc @ 3 (SVC_26 / SVC_32) .long __pabt_invalid @ 4 .long __pabt_invalid @ 5 .long __pabt_invalid @ 6 .long __pabt_invalid @ 7 .long __pabt_invalid @ 8 .long __pabt_invalid @ 9 .long __pabt_invalid @ a .long __pabt_invalid @ b .long __pabt_invalid @ c .long __pabt_invalid @ d .long __pabt_invalid @ e .long __pabt_invalid @ f /* * Undef instr entry dispatcher * Enter in UND mode, spsr = SVC/USR CPSR, lr = SVC/USR PC */ vector_stub und, UND_MODE .long __und_usr @ 0 (USR_26 / USR_32) .long __und_invalid @ 1 (FIQ_26 / FIQ_32) .long __und_invalid @ 2 (IRQ_26 / IRQ_32) .long __und_svc @ 3 (SVC_26 / SVC_32) .long __und_invalid @ 4 .long __und_invalid @ 5 .long __und_invalid @ 6 .long __und_invalid @ 7 .long __und_invalid @ 8 .long __und_invalid @ 9 .long __und_invalid @ a .long __und_invalid @ b .long __und_invalid @ c .long __und_invalid @ d .long __und_invalid @ e .long __und_invalid @ f .align 5 /*============================================================================= * Undefined FIQs *----------------------------------------------------------------------------- * Enter in FIQ mode, spsr = ANY CPSR, lr = ANY PC * MUST PRESERVE SVC SPSR, but need to switch to SVC mode to show our msg. * Basically to switch modes, we *HAVE* to clobber one register... brain * damage alert! I don't think that we can execute any code in here in any * other mode than FIQ... Ok you can switch to another mode, but you can't * get out of that mode without clobbering one register. */ vector_fiq: disable_fiq subs pc, lr, #4 /*============================================================================= * Address exception handler *----------------------------------------------------------------------------- * These aren't too critical. * (they're not supposed to happen, and won't happen in 32-bit data mode). */ vector_addrexcptn: b vector_addrexcptn /* * We group all the following data together to optimise * for CPUs with separate I & D caches. */ .align 5 .LCvswi: .word vector_swi .globl __stubs_end __stubs_end: .equ stubs_offset, __vectors_start + 0x200 - __stubs_start .globl __vectors_start __vectors_start: ARM( swi SYS_ERROR0 ) THUMB( svc #0 ) THUMB( nop ) W(b) vector_und + stubs_offset W(ldr) pc, .LCvswi + stubs_offset W(b) vector_pabt + stubs_offset W(b) vector_dabt + stubs_offset W(b) vector_addrexcptn + stubs_offset W(b) vector_irq + stubs_offset W(b) vector_fiq + stubs_offset .globl __vectors_end __vectors_end: .data .globl cr_alignment .globl cr_no_alignment cr_alignment: .space 4 cr_no_alignment: .space 4 #ifdef CONFIG_MULTI_IRQ_HANDLER .globl handle_arch_irq handle_arch_irq: .space 4 #endif