/* * Copyright (C) 2012 - Virtual Open Systems and Columbia University * Author: Christoffer Dall * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License, version 2, as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __ARM_KVM_MMU_H__ #define __ARM_KVM_MMU_H__ #include #include /* * We directly use the kernel VA for the HYP, as we can directly share * the mapping (HTTBR "covers" TTBR1). */ #define kern_hyp_va(kva) (kva) /* Contrary to arm64, there is no need to generate a PC-relative address */ #define hyp_symbol_addr(s) \ ({ \ typeof(s) *addr = &(s); \ addr; \ }) /* * KVM_MMU_CACHE_MIN_PAGES is the number of stage2 page table translation levels. */ #define KVM_MMU_CACHE_MIN_PAGES 2 #ifndef __ASSEMBLY__ #include #include #include #include #include #include /* Ensure compatibility with arm64 */ #define VA_BITS 32 int create_hyp_mappings(void *from, void *to, pgprot_t prot); int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size, void __iomem **kaddr, void __iomem **haddr); int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size, void **haddr); void free_hyp_pgds(void); void stage2_unmap_vm(struct kvm *kvm); int kvm_alloc_stage2_pgd(struct kvm *kvm); void kvm_free_stage2_pgd(struct kvm *kvm); int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa, phys_addr_t pa, unsigned long size, bool writable); int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run); void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu); phys_addr_t kvm_mmu_get_httbr(void); phys_addr_t kvm_get_idmap_vector(void); int kvm_mmu_init(void); void kvm_clear_hyp_idmap(void); static inline void kvm_set_pmd(pmd_t *pmd, pmd_t new_pmd) { *pmd = new_pmd; dsb(ishst); } static inline void kvm_set_pte(pte_t *pte, pte_t new_pte) { *pte = new_pte; dsb(ishst); } static inline pte_t kvm_s2pte_mkwrite(pte_t pte) { pte_val(pte) |= L_PTE_S2_RDWR; return pte; } static inline pmd_t kvm_s2pmd_mkwrite(pmd_t pmd) { pmd_val(pmd) |= L_PMD_S2_RDWR; return pmd; } static inline pte_t kvm_s2pte_mkexec(pte_t pte) { pte_val(pte) &= ~L_PTE_XN; return pte; } static inline pmd_t kvm_s2pmd_mkexec(pmd_t pmd) { pmd_val(pmd) &= ~PMD_SECT_XN; return pmd; } static inline void kvm_set_s2pte_readonly(pte_t *pte) { pte_val(*pte) = (pte_val(*pte) & ~L_PTE_S2_RDWR) | L_PTE_S2_RDONLY; } static inline bool kvm_s2pte_readonly(pte_t *pte) { return (pte_val(*pte) & L_PTE_S2_RDWR) == L_PTE_S2_RDONLY; } static inline bool kvm_s2pte_exec(pte_t *pte) { return !(pte_val(*pte) & L_PTE_XN); } static inline void kvm_set_s2pmd_readonly(pmd_t *pmd) { pmd_val(*pmd) = (pmd_val(*pmd) & ~L_PMD_S2_RDWR) | L_PMD_S2_RDONLY; } static inline bool kvm_s2pmd_readonly(pmd_t *pmd) { return (pmd_val(*pmd) & L_PMD_S2_RDWR) == L_PMD_S2_RDONLY; } static inline bool kvm_s2pmd_exec(pmd_t *pmd) { return !(pmd_val(*pmd) & PMD_SECT_XN); } static inline bool kvm_page_empty(void *ptr) { struct page *ptr_page = virt_to_page(ptr); return page_count(ptr_page) == 1; } #define kvm_pte_table_empty(kvm, ptep) kvm_page_empty(ptep) #define kvm_pmd_table_empty(kvm, pmdp) kvm_page_empty(pmdp) #define kvm_pud_table_empty(kvm, pudp) false #define hyp_pte_table_empty(ptep) kvm_page_empty(ptep) #define hyp_pmd_table_empty(pmdp) kvm_page_empty(pmdp) #define hyp_pud_table_empty(pudp) false struct kvm; #define kvm_flush_dcache_to_poc(a,l) __cpuc_flush_dcache_area((a), (l)) static inline bool vcpu_has_cache_enabled(struct kvm_vcpu *vcpu) { return (vcpu_cp15(vcpu, c1_SCTLR) & 0b101) == 0b101; } static inline void __clean_dcache_guest_page(kvm_pfn_t pfn, unsigned long size) { /* * Clean the dcache to the Point of Coherency. * * We need to do this through a kernel mapping (using the * user-space mapping has proved to be the wrong * solution). For that, we need to kmap one page at a time, * and iterate over the range. */ VM_BUG_ON(size & ~PAGE_MASK); while (size) { void *va = kmap_atomic_pfn(pfn); kvm_flush_dcache_to_poc(va, PAGE_SIZE); size -= PAGE_SIZE; pfn++; kunmap_atomic(va); } } static inline void __invalidate_icache_guest_page(kvm_pfn_t pfn, unsigned long size) { u32 iclsz; /* * If we are going to insert an instruction page and the icache is * either VIPT or PIPT, there is a potential problem where the host * (or another VM) may have used the same page as this guest, and we * read incorrect data from the icache. If we're using a PIPT cache, * we can invalidate just that page, but if we are using a VIPT cache * we need to invalidate the entire icache - damn shame - as written * in the ARM ARM (DDI 0406C.b - Page B3-1393). * * VIVT caches are tagged using both the ASID and the VMID and doesn't * need any kind of flushing (DDI 0406C.b - Page B3-1392). */ VM_BUG_ON(size & ~PAGE_MASK); if (icache_is_vivt_asid_tagged()) return; if (!icache_is_pipt()) { /* any kind of VIPT cache */ __flush_icache_all(); return; } /* * CTR IminLine contains Log2 of the number of words in the * cache line, so we can get the number of words as * 2 << (IminLine - 1). To get the number of bytes, we * multiply by 4 (the number of bytes in a 32-bit word), and * get 4 << (IminLine). */ iclsz = 4 << (read_cpuid(CPUID_CACHETYPE) & 0xf); while (size) { void *va = kmap_atomic_pfn(pfn); void *end = va + PAGE_SIZE; void *addr = va; do { write_sysreg(addr, ICIMVAU); addr += iclsz; } while (addr < end); dsb(ishst); isb(); size -= PAGE_SIZE; pfn++; kunmap_atomic(va); } /* Check if we need to invalidate the BTB */ if ((read_cpuid_ext(CPUID_EXT_MMFR1) >> 28) != 4) { write_sysreg(0, BPIALLIS); dsb(ishst); isb(); } } static inline void __kvm_flush_dcache_pte(pte_t pte) { void *va = kmap_atomic(pte_page(pte)); kvm_flush_dcache_to_poc(va, PAGE_SIZE); kunmap_atomic(va); } static inline void __kvm_flush_dcache_pmd(pmd_t pmd) { unsigned long size = PMD_SIZE; kvm_pfn_t pfn = pmd_pfn(pmd); while (size) { void *va = kmap_atomic_pfn(pfn); kvm_flush_dcache_to_poc(va, PAGE_SIZE); pfn++; size -= PAGE_SIZE; kunmap_atomic(va); } } static inline void __kvm_flush_dcache_pud(pud_t pud) { } #define kvm_virt_to_phys(x) virt_to_idmap((unsigned long)(x)) void kvm_set_way_flush(struct kvm_vcpu *vcpu); void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled); static inline bool __kvm_cpu_uses_extended_idmap(void) { return false; } static inline unsigned long __kvm_idmap_ptrs_per_pgd(void) { return PTRS_PER_PGD; } static inline void __kvm_extend_hypmap(pgd_t *boot_hyp_pgd, pgd_t *hyp_pgd, pgd_t *merged_hyp_pgd, unsigned long hyp_idmap_start) { } static inline unsigned int kvm_get_vmid_bits(void) { return 8; } static inline void *kvm_get_hyp_vector(void) { return kvm_ksym_ref(__kvm_hyp_vector); } static inline int kvm_map_vectors(void) { return 0; } #define kvm_phys_to_vttbr(addr) (addr) #endif /* !__ASSEMBLY__ */ #endif /* __ARM_KVM_MMU_H__ */