From 02f57fe448618722ed713fe1002894ead9981310 Mon Sep 17 00:00:00 2001 From: Artem Bityutskiy Date: Mon, 4 Mar 2013 14:25:41 +0200 Subject: mtd: nand: remove the rtc_from4 driver support The AG-AND support is about to be removed from MTD, because this technology is dead for long time. Thus, remove this the only AG-AND driver we have in the kernel tree. Signed-off-by: Artem Bityutskiy Acked-by: Brian Norris Signed-off-by: David Woodhouse --- drivers/mtd/nand/Kconfig | 10 - drivers/mtd/nand/Makefile | 1 - drivers/mtd/nand/rtc_from4.c | 624 ------------------------------------------- 3 files changed, 635 deletions(-) delete mode 100644 drivers/mtd/nand/rtc_from4.c (limited to 'drivers/mtd/nand') diff --git a/drivers/mtd/nand/Kconfig b/drivers/mtd/nand/Kconfig index 0f443ef0a372..a626629a2859 100644 --- a/drivers/mtd/nand/Kconfig +++ b/drivers/mtd/nand/Kconfig @@ -193,16 +193,6 @@ config MTD_NAND_BF5XX_BOOTROM_ECC If unsure, say N. -config MTD_NAND_RTC_FROM4 - tristate "Renesas Flash ROM 4-slot interface board (FROM_BOARD4)" - depends on SH_SOLUTION_ENGINE - select REED_SOLOMON - select REED_SOLOMON_DEC8 - select BITREVERSE - help - This enables the driver for the Renesas Technology AG-AND - flash interface board (FROM_BOARD4) - config MTD_NAND_PPCHAMELEONEVB tristate "NAND Flash device on PPChameleonEVB board" depends on PPCHAMELEONEVB && BROKEN diff --git a/drivers/mtd/nand/Makefile b/drivers/mtd/nand/Makefile index d76d91205691..115e0334be0c 100644 --- a/drivers/mtd/nand/Makefile +++ b/drivers/mtd/nand/Makefile @@ -22,7 +22,6 @@ obj-$(CONFIG_MTD_NAND_DISKONCHIP) += diskonchip.o obj-$(CONFIG_MTD_NAND_DOCG4) += docg4.o obj-$(CONFIG_MTD_NAND_FSMC) += fsmc_nand.o obj-$(CONFIG_MTD_NAND_H1900) += h1910.o -obj-$(CONFIG_MTD_NAND_RTC_FROM4) += rtc_from4.o obj-$(CONFIG_MTD_NAND_SHARPSL) += sharpsl.o obj-$(CONFIG_MTD_NAND_NANDSIM) += nandsim.o obj-$(CONFIG_MTD_NAND_CS553X) += cs553x_nand.o diff --git a/drivers/mtd/nand/rtc_from4.c b/drivers/mtd/nand/rtc_from4.c deleted file mode 100644 index e55b5cfbe145..000000000000 --- a/drivers/mtd/nand/rtc_from4.c +++ /dev/null @@ -1,624 +0,0 @@ -/* - * drivers/mtd/nand/rtc_from4.c - * - * Copyright (C) 2004 Red Hat, Inc. - * - * Derived from drivers/mtd/nand/spia.c - * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com) - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License version 2 as - * published by the Free Software Foundation. - * - * Overview: - * This is a device driver for the AG-AND flash device found on the - * Renesas Technology Corp. Flash ROM 4-slot interface board (FROM_BOARD4), - * which utilizes the Renesas HN29V1G91T-30 part. - * This chip is a 1 GBibit (128MiB x 8 bits) AG-AND flash device. - */ - -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include - -/* - * MTD structure for Renesas board - */ -static struct mtd_info *rtc_from4_mtd = NULL; - -#define RTC_FROM4_MAX_CHIPS 2 - -/* HS77x9 processor register defines */ -#define SH77X9_BCR1 ((volatile unsigned short *)(0xFFFFFF60)) -#define SH77X9_BCR2 ((volatile unsigned short *)(0xFFFFFF62)) -#define SH77X9_WCR1 ((volatile unsigned short *)(0xFFFFFF64)) -#define SH77X9_WCR2 ((volatile unsigned short *)(0xFFFFFF66)) -#define SH77X9_MCR ((volatile unsigned short *)(0xFFFFFF68)) -#define SH77X9_PCR ((volatile unsigned short *)(0xFFFFFF6C)) -#define SH77X9_FRQCR ((volatile unsigned short *)(0xFFFFFF80)) - -/* - * Values specific to the Renesas Technology Corp. FROM_BOARD4 (used with HS77x9 processor) - */ -/* Address where flash is mapped */ -#define RTC_FROM4_FIO_BASE 0x14000000 - -/* CLE and ALE are tied to address lines 5 & 4, respectively */ -#define RTC_FROM4_CLE (1 << 5) -#define RTC_FROM4_ALE (1 << 4) - -/* address lines A24-A22 used for chip selection */ -#define RTC_FROM4_NAND_ADDR_SLOT3 (0x00800000) -#define RTC_FROM4_NAND_ADDR_SLOT4 (0x00C00000) -#define RTC_FROM4_NAND_ADDR_FPGA (0x01000000) -/* mask address lines A24-A22 used for chip selection */ -#define RTC_FROM4_NAND_ADDR_MASK (RTC_FROM4_NAND_ADDR_SLOT3 | RTC_FROM4_NAND_ADDR_SLOT4 | RTC_FROM4_NAND_ADDR_FPGA) - -/* FPGA status register for checking device ready (bit zero) */ -#define RTC_FROM4_FPGA_SR (RTC_FROM4_NAND_ADDR_FPGA | 0x00000002) -#define RTC_FROM4_DEVICE_READY 0x0001 - -/* FPGA Reed-Solomon ECC Control register */ - -#define RTC_FROM4_RS_ECC_CTL (RTC_FROM4_NAND_ADDR_FPGA | 0x00000050) -#define RTC_FROM4_RS_ECC_CTL_CLR (1 << 7) -#define RTC_FROM4_RS_ECC_CTL_GEN (1 << 6) -#define RTC_FROM4_RS_ECC_CTL_FD_E (1 << 5) - -/* FPGA Reed-Solomon ECC code base */ -#define RTC_FROM4_RS_ECC (RTC_FROM4_NAND_ADDR_FPGA | 0x00000060) -#define RTC_FROM4_RS_ECCN (RTC_FROM4_NAND_ADDR_FPGA | 0x00000080) - -/* FPGA Reed-Solomon ECC check register */ -#define RTC_FROM4_RS_ECC_CHK (RTC_FROM4_NAND_ADDR_FPGA | 0x00000070) -#define RTC_FROM4_RS_ECC_CHK_ERROR (1 << 7) - -#define ERR_STAT_ECC_AVAILABLE 0x20 - -/* Undefine for software ECC */ -#define RTC_FROM4_HWECC 1 - -/* Define as 1 for no virtual erase blocks (in JFFS2) */ -#define RTC_FROM4_NO_VIRTBLOCKS 0 - -/* - * Module stuff - */ -static void __iomem *rtc_from4_fio_base = (void *)P2SEGADDR(RTC_FROM4_FIO_BASE); - -static const struct mtd_partition partition_info[] = { - { - .name = "Renesas flash partition 1", - .offset = 0, - .size = MTDPART_SIZ_FULL}, -}; - -#define NUM_PARTITIONS 1 - -/* - * hardware specific flash bbt decriptors - * Note: this is to allow debugging by disabling - * NAND_BBT_CREATE and/or NAND_BBT_WRITE - * - */ -static uint8_t bbt_pattern[] = { 'B', 'b', 't', '0' }; -static uint8_t mirror_pattern[] = { '1', 't', 'b', 'B' }; - -static struct nand_bbt_descr rtc_from4_bbt_main_descr = { - .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE - | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, - .offs = 40, - .len = 4, - .veroffs = 44, - .maxblocks = 4, - .pattern = bbt_pattern -}; - -static struct nand_bbt_descr rtc_from4_bbt_mirror_descr = { - .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE - | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, - .offs = 40, - .len = 4, - .veroffs = 44, - .maxblocks = 4, - .pattern = mirror_pattern -}; - -#ifdef RTC_FROM4_HWECC - -/* the Reed Solomon control structure */ -static struct rs_control *rs_decoder; - -/* - * hardware specific Out Of Band information - */ -static struct nand_ecclayout rtc_from4_nand_oobinfo = { - .eccbytes = 32, - .eccpos = { - 0, 1, 2, 3, 4, 5, 6, 7, - 8, 9, 10, 11, 12, 13, 14, 15, - 16, 17, 18, 19, 20, 21, 22, 23, - 24, 25, 26, 27, 28, 29, 30, 31}, - .oobfree = {{32, 32}} -}; - -#endif - -/* - * rtc_from4_hwcontrol - hardware specific access to control-lines - * @mtd: MTD device structure - * @cmd: hardware control command - * - * Address lines (A5 and A4) are used to control Command and Address Latch - * Enable on this board, so set the read/write address appropriately. - * - * Chip Enable is also controlled by the Chip Select (CS5) and - * Address lines (A24-A22), so no action is required here. - * - */ -static void rtc_from4_hwcontrol(struct mtd_info *mtd, int cmd, - unsigned int ctrl) -{ - struct nand_chip *chip = (mtd->priv); - - if (cmd == NAND_CMD_NONE) - return; - - if (ctrl & NAND_CLE) - writeb(cmd, chip->IO_ADDR_W | RTC_FROM4_CLE); - else - writeb(cmd, chip->IO_ADDR_W | RTC_FROM4_ALE); -} - -/* - * rtc_from4_nand_select_chip - hardware specific chip select - * @mtd: MTD device structure - * @chip: Chip to select (0 == slot 3, 1 == slot 4) - * - * The chip select is based on address lines A24-A22. - * This driver uses flash slots 3 and 4 (A23-A22). - * - */ -static void rtc_from4_nand_select_chip(struct mtd_info *mtd, int chip) -{ - struct nand_chip *this = mtd->priv; - - this->IO_ADDR_R = (void __iomem *)((unsigned long)this->IO_ADDR_R & ~RTC_FROM4_NAND_ADDR_MASK); - this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W & ~RTC_FROM4_NAND_ADDR_MASK); - - switch (chip) { - - case 0: /* select slot 3 chip */ - this->IO_ADDR_R = (void __iomem *)((unsigned long)this->IO_ADDR_R | RTC_FROM4_NAND_ADDR_SLOT3); - this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W | RTC_FROM4_NAND_ADDR_SLOT3); - break; - case 1: /* select slot 4 chip */ - this->IO_ADDR_R = (void __iomem *)((unsigned long)this->IO_ADDR_R | RTC_FROM4_NAND_ADDR_SLOT4); - this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W | RTC_FROM4_NAND_ADDR_SLOT4); - break; - - } -} - -/* - * rtc_from4_nand_device_ready - hardware specific ready/busy check - * @mtd: MTD device structure - * - * This board provides the Ready/Busy state in the status register - * of the FPGA. Bit zero indicates the RDY(1)/BSY(0) signal. - * - */ -static int rtc_from4_nand_device_ready(struct mtd_info *mtd) -{ - unsigned short status; - - status = *((volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_FPGA_SR)); - - return (status & RTC_FROM4_DEVICE_READY); - -} - -/* - * deplete - code to perform device recovery in case there was a power loss - * @mtd: MTD device structure - * @chip: Chip to select (0 == slot 3, 1 == slot 4) - * - * If there was a sudden loss of power during an erase operation, a - * "device recovery" operation must be performed when power is restored - * to ensure correct operation. This routine performs the required steps - * for the requested chip. - * - * See page 86 of the data sheet for details. - * - */ -static void deplete(struct mtd_info *mtd, int chip) -{ - struct nand_chip *this = mtd->priv; - - /* wait until device is ready */ - while (!this->dev_ready(mtd)) ; - - this->select_chip(mtd, chip); - - /* Send the commands for device recovery, phase 1 */ - this->cmdfunc(mtd, NAND_CMD_DEPLETE1, 0x0000, 0x0000); - this->cmdfunc(mtd, NAND_CMD_DEPLETE2, -1, -1); - - /* Send the commands for device recovery, phase 2 */ - this->cmdfunc(mtd, NAND_CMD_DEPLETE1, 0x0000, 0x0004); - this->cmdfunc(mtd, NAND_CMD_DEPLETE2, -1, -1); - -} - -#ifdef RTC_FROM4_HWECC -/* - * rtc_from4_enable_hwecc - hardware specific hardware ECC enable function - * @mtd: MTD device structure - * @mode: I/O mode; read or write - * - * enable hardware ECC for data read or write - * - */ -static void rtc_from4_enable_hwecc(struct mtd_info *mtd, int mode) -{ - volatile unsigned short *rs_ecc_ctl = (volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECC_CTL); - unsigned short status; - - switch (mode) { - case NAND_ECC_READ: - status = RTC_FROM4_RS_ECC_CTL_CLR | RTC_FROM4_RS_ECC_CTL_FD_E; - - *rs_ecc_ctl = status; - break; - - case NAND_ECC_READSYN: - status = 0x00; - - *rs_ecc_ctl = status; - break; - - case NAND_ECC_WRITE: - status = RTC_FROM4_RS_ECC_CTL_CLR | RTC_FROM4_RS_ECC_CTL_GEN | RTC_FROM4_RS_ECC_CTL_FD_E; - - *rs_ecc_ctl = status; - break; - - default: - BUG(); - break; - } - -} - -/* - * rtc_from4_calculate_ecc - hardware specific code to read ECC code - * @mtd: MTD device structure - * @dat: buffer containing the data to generate ECC codes - * @ecc_code ECC codes calculated - * - * The ECC code is calculated by the FPGA. All we have to do is read the values - * from the FPGA registers. - * - * Note: We read from the inverted registers, since data is inverted before - * the code is calculated. So all 0xff data (blank page) results in all 0xff rs code - * - */ -static void rtc_from4_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code) -{ - volatile unsigned short *rs_eccn = (volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECCN); - unsigned short value; - int i; - - for (i = 0; i < 8; i++) { - value = *rs_eccn; - ecc_code[i] = (unsigned char)value; - rs_eccn++; - } - ecc_code[7] |= 0x0f; /* set the last four bits (not used) */ -} - -/* - * rtc_from4_correct_data - hardware specific code to correct data using ECC code - * @mtd: MTD device structure - * @buf: buffer containing the data to generate ECC codes - * @ecc1 ECC codes read - * @ecc2 ECC codes calculated - * - * The FPGA tells us fast, if there's an error or not. If no, we go back happy - * else we read the ecc results from the fpga and call the rs library to decode - * and hopefully correct the error. - * - */ -static int rtc_from4_correct_data(struct mtd_info *mtd, const u_char *buf, u_char *ecc1, u_char *ecc2) -{ - int i, j, res; - unsigned short status; - uint16_t par[6], syn[6]; - uint8_t ecc[8]; - volatile unsigned short *rs_ecc; - - status = *((volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECC_CHK)); - - if (!(status & RTC_FROM4_RS_ECC_CHK_ERROR)) { - return 0; - } - - /* Read the syndrome pattern from the FPGA and correct the bitorder */ - rs_ecc = (volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECC); - for (i = 0; i < 8; i++) { - ecc[i] = bitrev8(*rs_ecc); - rs_ecc++; - } - - /* convert into 6 10bit syndrome fields */ - par[5] = rs_decoder->index_of[(((uint16_t) ecc[0] >> 0) & 0x0ff) | (((uint16_t) ecc[1] << 8) & 0x300)]; - par[4] = rs_decoder->index_of[(((uint16_t) ecc[1] >> 2) & 0x03f) | (((uint16_t) ecc[2] << 6) & 0x3c0)]; - par[3] = rs_decoder->index_of[(((uint16_t) ecc[2] >> 4) & 0x00f) | (((uint16_t) ecc[3] << 4) & 0x3f0)]; - par[2] = rs_decoder->index_of[(((uint16_t) ecc[3] >> 6) & 0x003) | (((uint16_t) ecc[4] << 2) & 0x3fc)]; - par[1] = rs_decoder->index_of[(((uint16_t) ecc[5] >> 0) & 0x0ff) | (((uint16_t) ecc[6] << 8) & 0x300)]; - par[0] = (((uint16_t) ecc[6] >> 2) & 0x03f) | (((uint16_t) ecc[7] << 6) & 0x3c0); - - /* Convert to computable syndrome */ - for (i = 0; i < 6; i++) { - syn[i] = par[0]; - for (j = 1; j < 6; j++) - if (par[j] != rs_decoder->nn) - syn[i] ^= rs_decoder->alpha_to[rs_modnn(rs_decoder, par[j] + i * j)]; - - /* Convert to index form */ - syn[i] = rs_decoder->index_of[syn[i]]; - } - - /* Let the library code do its magic. */ - res = decode_rs8(rs_decoder, (uint8_t *) buf, par, 512, syn, 0, NULL, 0xff, NULL); - if (res > 0) { - pr_debug("rtc_from4_correct_data: " "ECC corrected %d errors on read\n", res); - } - return res; -} - -/** - * rtc_from4_errstat - perform additional error status checks - * @mtd: MTD device structure - * @this: NAND chip structure - * @state: state or the operation - * @status: status code returned from read status - * @page: startpage inside the chip, must be called with (page & this->pagemask) - * - * Perform additional error status checks on erase and write failures - * to determine if errors are correctable. For this device, correctable - * 1-bit errors on erase and write are considered acceptable. - * - * note: see pages 34..37 of data sheet for details. - * - */ -static int rtc_from4_errstat(struct mtd_info *mtd, struct nand_chip *this, - int state, int status, int page) -{ - int er_stat = 0; - int rtn, retlen; - size_t len; - uint8_t *buf; - int i; - - this->cmdfunc(mtd, NAND_CMD_STATUS_CLEAR, -1, -1); - - if (state == FL_ERASING) { - - for (i = 0; i < 4; i++) { - if (!(status & 1 << (i + 1))) - continue; - this->cmdfunc(mtd, (NAND_CMD_STATUS_ERROR + i + 1), - -1, -1); - rtn = this->read_byte(mtd); - this->cmdfunc(mtd, NAND_CMD_STATUS_RESET, -1, -1); - - /* err_ecc_not_avail */ - if (!(rtn & ERR_STAT_ECC_AVAILABLE)) - er_stat |= 1 << (i + 1); - } - - } else if (state == FL_WRITING) { - - unsigned long corrected = mtd->ecc_stats.corrected; - - /* single bank write logic */ - this->cmdfunc(mtd, NAND_CMD_STATUS_ERROR, -1, -1); - rtn = this->read_byte(mtd); - this->cmdfunc(mtd, NAND_CMD_STATUS_RESET, -1, -1); - - if (!(rtn & ERR_STAT_ECC_AVAILABLE)) { - /* err_ecc_not_avail */ - er_stat |= 1 << 1; - goto out; - } - - len = mtd->writesize; - buf = kmalloc(len, GFP_KERNEL); - if (!buf) { - er_stat = 1; - goto out; - } - - /* recovery read */ - rtn = nand_do_read(mtd, page, len, &retlen, buf); - - /* if read failed or > 1-bit error corrected */ - if (rtn || (mtd->ecc_stats.corrected - corrected) > 1) - er_stat |= 1 << 1; - kfree(buf); - } -out: - rtn = status; - if (er_stat == 0) { /* if ECC is available */ - rtn = (status & ~NAND_STATUS_FAIL); /* clear the error bit */ - } - - return rtn; -} -#endif - -/* - * Main initialization routine - */ -static int __init rtc_from4_init(void) -{ - struct nand_chip *this; - unsigned short bcr1, bcr2, wcr2; - int i; - int ret; - - /* Allocate memory for MTD device structure and private data */ - rtc_from4_mtd = kmalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip), GFP_KERNEL); - if (!rtc_from4_mtd) { - printk("Unable to allocate Renesas NAND MTD device structure.\n"); - return -ENOMEM; - } - - /* Get pointer to private data */ - this = (struct nand_chip *)(&rtc_from4_mtd[1]); - - /* Initialize structures */ - memset(rtc_from4_mtd, 0, sizeof(struct mtd_info)); - memset(this, 0, sizeof(struct nand_chip)); - - /* Link the private data with the MTD structure */ - rtc_from4_mtd->priv = this; - rtc_from4_mtd->owner = THIS_MODULE; - - /* set area 5 as PCMCIA mode to clear the spec of tDH(Data hold time;9ns min) */ - bcr1 = *SH77X9_BCR1 & ~0x0002; - bcr1 |= 0x0002; - *SH77X9_BCR1 = bcr1; - - /* set */ - bcr2 = *SH77X9_BCR2 & ~0x0c00; - bcr2 |= 0x0800; - *SH77X9_BCR2 = bcr2; - - /* set area 5 wait states */ - wcr2 = *SH77X9_WCR2 & ~0x1c00; - wcr2 |= 0x1c00; - *SH77X9_WCR2 = wcr2; - - /* Set address of NAND IO lines */ - this->IO_ADDR_R = rtc_from4_fio_base; - this->IO_ADDR_W = rtc_from4_fio_base; - /* Set address of hardware control function */ - this->cmd_ctrl = rtc_from4_hwcontrol; - /* Set address of chip select function */ - this->select_chip = rtc_from4_nand_select_chip; - /* command delay time (in us) */ - this->chip_delay = 100; - /* return the status of the Ready/Busy line */ - this->dev_ready = rtc_from4_nand_device_ready; - -#ifdef RTC_FROM4_HWECC - printk(KERN_INFO "rtc_from4_init: using hardware ECC detection.\n"); - - this->ecc.mode = NAND_ECC_HW_SYNDROME; - this->ecc.size = 512; - this->ecc.bytes = 8; - this->ecc.strength = 3; - /* return the status of extra status and ECC checks */ - this->errstat = rtc_from4_errstat; - /* set the nand_oobinfo to support FPGA H/W error detection */ - this->ecc.layout = &rtc_from4_nand_oobinfo; - this->ecc.hwctl = rtc_from4_enable_hwecc; - this->ecc.calculate = rtc_from4_calculate_ecc; - this->ecc.correct = rtc_from4_correct_data; - - /* We could create the decoder on demand, if memory is a concern. - * This way we have it handy, if an error happens - * - * Symbolsize is 10 (bits) - * Primitve polynomial is x^10+x^3+1 - * first consecutive root is 0 - * primitve element to generate roots = 1 - * generator polinomial degree = 6 - */ - rs_decoder = init_rs(10, 0x409, 0, 1, 6); - if (!rs_decoder) { - printk(KERN_ERR "Could not create a RS decoder\n"); - ret = -ENOMEM; - goto err_1; - } -#else - printk(KERN_INFO "rtc_from4_init: using software ECC detection.\n"); - - this->ecc.mode = NAND_ECC_SOFT; -#endif - - /* set the bad block tables to support debugging */ - this->bbt_td = &rtc_from4_bbt_main_descr; - this->bbt_md = &rtc_from4_bbt_mirror_descr; - - /* Scan to find existence of the device */ - if (nand_scan(rtc_from4_mtd, RTC_FROM4_MAX_CHIPS)) { - ret = -ENXIO; - goto err_2; - } - - /* Perform 'device recovery' for each chip in case there was a power loss. */ - for (i = 0; i < this->numchips; i++) { - deplete(rtc_from4_mtd, i); - } - -#if RTC_FROM4_NO_VIRTBLOCKS - /* use a smaller erase block to minimize wasted space when a block is bad */ - /* note: this uses eight times as much RAM as using the default and makes */ - /* mounts take four times as long. */ - rtc_from4_mtd->flags |= MTD_NO_VIRTBLOCKS; -#endif - - /* Register the partitions */ - ret = mtd_device_register(rtc_from4_mtd, partition_info, - NUM_PARTITIONS); - if (ret) - goto err_3; - - /* Return happy */ - return 0; -err_3: - nand_release(rtc_from4_mtd); -err_2: - free_rs(rs_decoder); -err_1: - kfree(rtc_from4_mtd); - return ret; -} - -module_init(rtc_from4_init); - -/* - * Clean up routine - */ -static void __exit rtc_from4_cleanup(void) -{ - /* Release resource, unregister partitions */ - nand_release(rtc_from4_mtd); - - /* Free the MTD device structure */ - kfree(rtc_from4_mtd); - -#ifdef RTC_FROM4_HWECC - /* Free the reed solomon resources */ - if (rs_decoder) { - free_rs(rs_decoder); - } -#endif -} - -module_exit(rtc_from4_cleanup); - -MODULE_LICENSE("GPL"); -MODULE_AUTHOR("d.marlin