From 2e0eb483c058dd013be8e3d0ec1767be531485a2 Mon Sep 17 00:00:00 2001 From: Atish Patra Date: Wed, 15 Apr 2020 12:54:18 -0700 Subject: efi/libstub: Move arm-stub to a common file Most of the arm-stub code is written in an architecture independent manner. As a result, RISC-V can reuse most of the arm-stub code. Rename the arm-stub.c to efi-stub.c so that ARM, ARM64 and RISC-V can use it. This patch doesn't introduce any functional changes. Signed-off-by: Atish Patra Reviewed-by: Palmer Dabbelt Link: https://lore.kernel.org/r/20200415195422.19866-2-atish.patra@wdc.com Signed-off-by: Ard Biesheuvel --- drivers/firmware/efi/Kconfig | 4 +- drivers/firmware/efi/libstub/Makefile | 12 +- drivers/firmware/efi/libstub/arm-stub.c | 408 -------------------------------- drivers/firmware/efi/libstub/efi-stub.c | 408 ++++++++++++++++++++++++++++++++ 4 files changed, 416 insertions(+), 416 deletions(-) delete mode 100644 drivers/firmware/efi/libstub/arm-stub.c create mode 100644 drivers/firmware/efi/libstub/efi-stub.c (limited to 'drivers/firmware') diff --git a/drivers/firmware/efi/Kconfig b/drivers/firmware/efi/Kconfig index 613828d3f106..2a2b2b96a1dc 100644 --- a/drivers/firmware/efi/Kconfig +++ b/drivers/firmware/efi/Kconfig @@ -106,12 +106,12 @@ config EFI_PARAMS_FROM_FDT config EFI_RUNTIME_WRAPPERS bool -config EFI_ARMSTUB +config EFI_GENERIC_STUB bool config EFI_ARMSTUB_DTB_LOADER bool "Enable the DTB loader" - depends on EFI_ARMSTUB + depends on EFI_GENERIC_STUB default y help Select this config option to add support for the dtb= command diff --git a/drivers/firmware/efi/libstub/Makefile b/drivers/firmware/efi/libstub/Makefile index 094eabdecfe6..75cb2c3a1519 100644 --- a/drivers/firmware/efi/libstub/Makefile +++ b/drivers/firmware/efi/libstub/Makefile @@ -23,7 +23,7 @@ cflags-$(CONFIG_ARM) := $(subst $(CC_FLAGS_FTRACE),,$(KBUILD_CFLAGS)) \ -fno-builtin -fpic \ $(call cc-option,-mno-single-pic-base) -cflags-$(CONFIG_EFI_ARMSTUB) += -I$(srctree)/scripts/dtc/libfdt +cflags-$(CONFIG_EFI_GENERIC_STUB) += -I$(srctree)/scripts/dtc/libfdt KBUILD_CFLAGS := $(cflags-y) -DDISABLE_BRANCH_PROFILING \ -include $(srctree)/drivers/firmware/efi/libstub/hidden.h \ @@ -45,13 +45,13 @@ lib-y := efi-stub-helper.o gop.o secureboot.o tpm.o \ skip_spaces.o lib-cmdline.o lib-ctype.o # include the stub's generic dependencies from lib/ when building for ARM/arm64 -arm-deps-y := fdt_rw.c fdt_ro.c fdt_wip.c fdt.c fdt_empty_tree.c fdt_sw.c +efi-deps-y := fdt_rw.c fdt_ro.c fdt_wip.c fdt.c fdt_empty_tree.c fdt_sw.c $(obj)/lib-%.o: $(srctree)/lib/%.c FORCE $(call if_changed_rule,cc_o_c) -lib-$(CONFIG_EFI_ARMSTUB) += arm-stub.o fdt.o string.o \ - $(patsubst %.c,lib-%.o,$(arm-deps-y)) +lib-$(CONFIG_EFI_GENERIC_STUB) += efi-stub.o fdt.o string.o \ + $(patsubst %.c,lib-%.o,$(efi-deps-y)) lib-$(CONFIG_ARM) += arm32-stub.o lib-$(CONFIG_ARM64) += arm64-stub.o @@ -73,8 +73,8 @@ CFLAGS_arm64-stub.o := -DTEXT_OFFSET=$(TEXT_OFFSET) # a verification pass to see if any absolute relocations exist in any of the # object files. # -extra-$(CONFIG_EFI_ARMSTUB) := $(lib-y) -lib-$(CONFIG_EFI_ARMSTUB) := $(patsubst %.o,%.stub.o,$(lib-y)) +extra-$(CONFIG_EFI_GENERIC_STUB) := $(lib-y) +lib-$(CONFIG_EFI_GENERIC_STUB) := $(patsubst %.o,%.stub.o,$(lib-y)) STUBCOPY_FLAGS-$(CONFIG_ARM64) += --prefix-alloc-sections=.init \ --prefix-symbols=__efistub_ diff --git a/drivers/firmware/efi/libstub/arm-stub.c b/drivers/firmware/efi/libstub/arm-stub.c deleted file mode 100644 index 99a5cde7c2d8..000000000000 --- a/drivers/firmware/efi/libstub/arm-stub.c +++ /dev/null @@ -1,408 +0,0 @@ -// SPDX-License-Identifier: GPL-2.0-only -/* - * EFI stub implementation that is shared by arm and arm64 architectures. - * This should be #included by the EFI stub implementation files. - * - * Copyright (C) 2013,2014 Linaro Limited - * Roy Franz - */ - -#include -#include -#include - -#include "efistub.h" - -/* - * This is the base address at which to start allocating virtual memory ranges - * for UEFI Runtime Services. This is in the low TTBR0 range so that we can use - * any allocation we choose, and eliminate the risk of a conflict after kexec. - * The value chosen is the largest non-zero power of 2 suitable for this purpose - * both on 32-bit and 64-bit ARM CPUs, to maximize the likelihood that it can - * be mapped efficiently. - * Since 32-bit ARM could potentially execute with a 1G/3G user/kernel split, - * map everything below 1 GB. (512 MB is a reasonable upper bound for the - * entire footprint of the UEFI runtime services memory regions) - */ -#define EFI_RT_VIRTUAL_BASE SZ_512M -#define EFI_RT_VIRTUAL_SIZE SZ_512M - -#ifdef CONFIG_ARM64 -# define EFI_RT_VIRTUAL_LIMIT DEFAULT_MAP_WINDOW_64 -#else -# define EFI_RT_VIRTUAL_LIMIT TASK_SIZE -#endif - -static u64 virtmap_base = EFI_RT_VIRTUAL_BASE; -static bool __efistub_global flat_va_mapping; - -static efi_system_table_t *__efistub_global sys_table; - -__pure efi_system_table_t *efi_system_table(void) -{ - return sys_table; -} - -static struct screen_info *setup_graphics(void) -{ - efi_guid_t gop_proto = EFI_GRAPHICS_OUTPUT_PROTOCOL_GUID; - efi_status_t status; - unsigned long size; - void **gop_handle = NULL; - struct screen_info *si = NULL; - - size = 0; - status = efi_bs_call(locate_handle, EFI_LOCATE_BY_PROTOCOL, - &gop_proto, NULL, &size, gop_handle); - if (status == EFI_BUFFER_TOO_SMALL) { - si = alloc_screen_info(); - if (!si) - return NULL; - efi_setup_gop(si, &gop_proto, size); - } - return si; -} - -void install_memreserve_table(void) -{ - struct linux_efi_memreserve *rsv; - efi_guid_t memreserve_table_guid = LINUX_EFI_MEMRESERVE_TABLE_GUID; - efi_status_t status; - - status = efi_bs_call(allocate_pool, EFI_LOADER_DATA, sizeof(*rsv), - (void **)&rsv); - if (status != EFI_SUCCESS) { - pr_efi_err("Failed to allocate memreserve entry!\n"); - return; - } - - rsv->next = 0; - rsv->size = 0; - atomic_set(&rsv->count, 0); - - status = efi_bs_call(install_configuration_table, - &memreserve_table_guid, rsv); - if (status != EFI_SUCCESS) - pr_efi_err("Failed to install memreserve config table!\n"); -} - -static unsigned long get_dram_base(void) -{ - efi_status_t status; - unsigned long map_size, buff_size; - unsigned long membase = EFI_ERROR; - struct efi_memory_map map; - efi_memory_desc_t *md; - struct efi_boot_memmap boot_map; - - boot_map.map = (efi_memory_desc_t **)&map.map; - boot_map.map_size = &map_size; - boot_map.desc_size = &map.desc_size; - boot_map.desc_ver = NULL; - boot_map.key_ptr = NULL; - boot_map.buff_size = &buff_size; - - status = efi_get_memory_map(&boot_map); - if (status != EFI_SUCCESS) - return membase; - - map.map_end = map.map + map_size; - - for_each_efi_memory_desc_in_map(&map, md) { - if (md->attribute & EFI_MEMORY_WB) { - if (membase > md->phys_addr) - membase = md->phys_addr; - } - } - - efi_bs_call(free_pool, map.map); - - return membase; -} - -/* - * This function handles the architcture specific differences between arm and - * arm64 regarding where the kernel image must be loaded and any memory that - * must be reserved. On failure it is required to free all - * all allocations it has made. - */ -efi_status_t handle_kernel_image(unsigned long *image_addr, - unsigned long *image_size, - unsigned long *reserve_addr, - unsigned long *reserve_size, - unsigned long dram_base, - efi_loaded_image_t *image); - -asmlinkage void __noreturn efi_enter_kernel(unsigned long entrypoint, - unsigned long fdt_addr, - unsigned long fdt_size); - -/* - * EFI entry point for the arm/arm64 EFI stubs. This is the entrypoint - * that is described in the PE/COFF header. Most of the code is the same - * for both archictectures, with the arch-specific code provided in the - * handle_kernel_image() function. - */ -efi_status_t efi_entry(efi_handle_t handle, efi_system_table_t *sys_table_arg) -{ - efi_loaded_image_t *image; - efi_status_t status; - unsigned long image_addr; - unsigned long image_size = 0; - unsigned long dram_base; - /* addr/point and size pairs for memory management*/ - unsigned long initrd_addr = 0; - unsigned long initrd_size = 0; - unsigned long fdt_addr = 0; /* Original DTB */ - unsigned long fdt_size = 0; - char *cmdline_ptr = NULL; - int cmdline_size = 0; - efi_guid_t loaded_image_proto = LOADED_IMAGE_PROTOCOL_GUID; - unsigned long reserve_addr = 0; - unsigned long reserve_size = 0; - enum efi_secureboot_mode secure_boot; - struct screen_info *si; - efi_properties_table_t *prop_tbl; - unsigned long max_addr; - - sys_table = sys_table_arg; - - /* Check if we were booted by the EFI firmware */ - if (sys_table->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE) { - status = EFI_INVALID_PARAMETER; - goto fail; - } - - status = check_platform_features(); - if (status != EFI_SUCCESS) - goto fail; - - /* - * Get a handle to the loaded image protocol. This is used to get - * information about the running image, such as size and the command - * line. - */ - status = sys_table->boottime->handle_protocol(handle, - &loaded_image_proto, (void *)&image); - if (status != EFI_SUCCESS) { - pr_efi_err("Failed to get loaded image protocol\n"); - goto fail; - } - - dram_base = get_dram_base(); - if (dram_base == EFI_ERROR) { - pr_efi_err("Failed to find DRAM base\n"); - status = EFI_LOAD_ERROR; - goto fail; - } - - /* - * Get the command line from EFI, using the LOADED_IMAGE - * protocol. We are going to copy the command line into the - * device tree, so this can be allocated anywhere. - */ - cmdline_ptr = efi_convert_cmdline(image, &cmdline_size, ULONG_MAX); - if (!cmdline_ptr) { - pr_efi_err("getting command line via LOADED_IMAGE_PROTOCOL\n"); - status = EFI_OUT_OF_RESOURCES; - goto fail; - } - - if (IS_ENABLED(CONFIG_CMDLINE_EXTEND) || - IS_ENABLED(CONFIG_CMDLINE_FORCE) || - cmdline_size == 0) - efi_parse_options(CONFIG_CMDLINE); - - if (!IS_ENABLED(CONFIG_CMDLINE_FORCE) && cmdline_size > 0) - efi_parse_options(cmdline_ptr); - - pr_efi("Booting Linux Kernel...\n"); - - si = setup_graphics(); - - status = handle_kernel_image(&image_addr, &image_size, - &reserve_addr, - &reserve_size, - dram_base, image); - if (status != EFI_SUCCESS) { - pr_efi_err("Failed to relocate kernel\n"); - goto fail_free_cmdline; - } - - efi_retrieve_tpm2_eventlog(); - - /* Ask the firmware to clear memory on unclean shutdown */ - efi_enable_reset_attack_mitigation(); - - secure_boot = efi_get_secureboot(); - - /* - * Unauthenticated device tree data is a security hazard, so ignore - * 'dtb=' unless UEFI Secure Boot is disabled. We assume that secure - * boot is enabled if we can't determine its state. - */ - if (!IS_ENABLED(CONFIG_EFI_ARMSTUB_DTB_LOADER) || - secure_boot != efi_secureboot_mode_disabled) { - if (strstr(cmdline_ptr, "dtb=")) - pr_efi("Ignoring DTB from command line.\n"); - } else { - status = efi_load_dtb(image, &fdt_addr, &fdt_size); - - if (status != EFI_SUCCESS) { - pr_efi_err("Failed to load device tree!\n"); - goto fail_free_image; - } - } - - if (fdt_addr) { - pr_efi("Using DTB from command line\n"); - } else { - /* Look for a device tree configuration table entry. */ - fdt_addr = (uintptr_t)get_fdt(&fdt_size); - if (fdt_addr) - pr_efi("Using DTB from configuration table\n"); - } - - if (!fdt_addr) - pr_efi("Generating empty DTB\n"); - - if (!noinitrd()) { - max_addr = efi_get_max_initrd_addr(dram_base, image_addr); - status = efi_load_initrd_dev_path(&initrd_addr, &initrd_size, - max_addr); - if (status == EFI_SUCCESS) { - pr_efi("Loaded initrd from LINUX_EFI_INITRD_MEDIA_GUID device path\n"); - } else if (status == EFI_NOT_FOUND) { - status = efi_load_initrd(image, &initrd_addr, &initrd_size, - ULONG_MAX, max_addr); - if (status == EFI_SUCCESS && initrd_size > 0) - pr_efi("Loaded initrd from command line option\n"); - } - if (status != EFI_SUCCESS) - pr_efi_err("Failed to load initrd!\n"); - } - - efi_random_get_seed(); - - /* - * If the NX PE data feature is enabled in the properties table, we - * should take care not to create a virtual mapping that changes the - * relative placement of runtime services code and data regions, as - * they may belong to the same PE/COFF executable image in memory. - * The easiest way to achieve that is to simply use a 1:1 mapping. - */ - prop_tbl = get_efi_config_table(EFI_PROPERTIES_TABLE_GUID); - flat_va_mapping = prop_tbl && - (prop_tbl->memory_protection_attribute & - EFI_PROPERTIES_RUNTIME_MEMORY_PROTECTION_NON_EXECUTABLE_PE_DATA); - - /* hibernation expects the runtime regions to stay in the same place */ - if (!IS_ENABLED(CONFIG_HIBERNATION) && !nokaslr() && !flat_va_mapping) { - /* - * Randomize the base of the UEFI runtime services region. - * Preserve the 2 MB alignment of the region by taking a - * shift of 21 bit positions into account when scaling - * the headroom value using a 32-bit random value. - */ - static const u64 headroom = EFI_RT_VIRTUAL_LIMIT - - EFI_RT_VIRTUAL_BASE - - EFI_RT_VIRTUAL_SIZE; - u32 rnd; - - status = efi_get_random_bytes(sizeof(rnd), (u8 *)&rnd); - if (status == EFI_SUCCESS) { - virtmap_base = EFI_RT_VIRTUAL_BASE + - (((headroom >> 21) * rnd) >> (32 - 21)); - } - } - - install_memreserve_table(); - - status = allocate_new_fdt_and_exit_boot(handle, &fdt_addr, - efi_get_max_fdt_addr(dram_base), - initrd_addr, initrd_size, - cmdline_ptr, fdt_addr, fdt_size); - if (status != EFI_SUCCESS) - goto fail_free_initrd; - - efi_enter_kernel(image_addr, fdt_addr, fdt_totalsize((void *)fdt_addr)); - /* not reached */ - -fail_free_initrd: - pr_efi_err("Failed to update FDT and exit boot services\n"); - - efi_free(initrd_size, initrd_addr); - efi_free(fdt_size, fdt_addr); - -fail_free_image: - efi_free(image_size, image_addr); - efi_free(reserve_size, reserve_addr); -fail_free_cmdline: - free_screen_info(si); - efi_free(cmdline_size, (unsigned long)cmdline_ptr); -fail: - return status; -} - -/* - * efi_get_virtmap() - create a virtual mapping for the EFI memory map - * - * This function populates the virt_addr fields of all memory region descriptors - * in @memory_map whose EFI_MEMORY_RUNTIME attribute is set. Those descriptors - * are also copied to @runtime_map, and their total count is returned in @count. - */ -void efi_get_virtmap(efi_memory_desc_t *memory_map, unsigned long map_size, - unsigned long desc_size, efi_memory_desc_t *runtime_map, - int *count) -{ - u64 efi_virt_base = virtmap_base; - efi_memory_desc_t *in, *out = runtime_map; - int l; - - for (l = 0; l < map_size; l += desc_size) { - u64 paddr, size; - - in = (void *)memory_map + l; - if (!(in->attribute & EFI_MEMORY_RUNTIME)) - continue; - - paddr = in->phys_addr; - size = in->num_pages * EFI_PAGE_SIZE; - - in->virt_addr = in->phys_addr; - if (novamap()) { - continue; - } - - /* - * Make the mapping compatible with 64k pages: this allows - * a 4k page size kernel to kexec a 64k page size kernel and - * vice versa. - */ - if (!flat_va_mapping) { - - paddr = round_down(in->phys_addr, SZ_64K); - size += in->phys_addr - paddr; - - /* - * Avoid wasting memory on PTEs by choosing a virtual - * base that is compatible with section mappings if this - * region has the appropriate size and physical - * alignment. (Sections are 2 MB on 4k granule kernels) - */ - if (IS_ALIGNED(in->phys_addr, SZ_2M) && size >= SZ_2M) - efi_virt_base = round_up(efi_virt_base, SZ_2M); - else - efi_virt_base = round_up(efi_virt_base, SZ_64K); - - in->virt_addr += efi_virt_base - paddr; - efi_virt_base += size; - } - - memcpy(out, in, desc_size); - out = (void *)out + desc_size; - ++*count; - } -} diff --git a/drivers/firmware/efi/libstub/efi-stub.c b/drivers/firmware/efi/libstub/efi-stub.c new file mode 100644 index 000000000000..99a5cde7c2d8 --- /dev/null +++ b/drivers/firmware/efi/libstub/efi-stub.c @@ -0,0 +1,408 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * EFI stub implementation that is shared by arm and arm64 architectures. + * This should be #included by the EFI stub implementation files. + * + * Copyright (C) 2013,2014 Linaro Limited + * Roy Franz + */ + +#include +#include +#include + +#include "efistub.h" + +/* + * This is the base address at which to start allocating virtual memory ranges + * for UEFI Runtime Services. This is in the low TTBR0 range so that we can use + * any allocation we choose, and eliminate the risk of a conflict after kexec. + * The value chosen is the largest non-zero power of 2 suitable for this purpose + * both on 32-bit and 64-bit ARM CPUs, to maximize the likelihood that it can + * be mapped efficiently. + * Since 32-bit ARM could potentially execute with a 1G/3G user/kernel split, + * map everything below 1 GB. (512 MB is a reasonable upper bound for the + * entire footprint of the UEFI runtime services memory regions) + */ +#define EFI_RT_VIRTUAL_BASE SZ_512M +#define EFI_RT_VIRTUAL_SIZE SZ_512M + +#ifdef CONFIG_ARM64 +# define EFI_RT_VIRTUAL_LIMIT DEFAULT_MAP_WINDOW_64 +#else +# define EFI_RT_VIRTUAL_LIMIT TASK_SIZE +#endif + +static u64 virtmap_base = EFI_RT_VIRTUAL_BASE; +static bool __efistub_global flat_va_mapping; + +static efi_system_table_t *__efistub_global sys_table; + +__pure efi_system_table_t *efi_system_table(void) +{ + return sys_table; +} + +static struct screen_info *setup_graphics(void) +{ + efi_guid_t gop_proto = EFI_GRAPHICS_OUTPUT_PROTOCOL_GUID; + efi_status_t status; + unsigned long size; + void **gop_handle = NULL; + struct screen_info *si = NULL; + + size = 0; + status = efi_bs_call(locate_handle, EFI_LOCATE_BY_PROTOCOL, + &gop_proto, NULL, &size, gop_handle); + if (status == EFI_BUFFER_TOO_SMALL) { + si = alloc_screen_info(); + if (!si) + return NULL; + efi_setup_gop(si, &gop_proto, size); + } + return si; +} + +void install_memreserve_table(void) +{ + struct linux_efi_memreserve *rsv; + efi_guid_t memreserve_table_guid = LINUX_EFI_MEMRESERVE_TABLE_GUID; + efi_status_t status; + + status = efi_bs_call(allocate_pool, EFI_LOADER_DATA, sizeof(*rsv), + (void **)&rsv); + if (status != EFI_SUCCESS) { + pr_efi_err("Failed to allocate memreserve entry!\n"); + return; + } + + rsv->next = 0; + rsv->size = 0; + atomic_set(&rsv->count, 0); + + status = efi_bs_call(install_configuration_table, + &memreserve_table_guid, rsv); + if (status != EFI_SUCCESS) + pr_efi_err("Failed to install memreserve config table!\n"); +} + +static unsigned long get_dram_base(void) +{ + efi_status_t status; + unsigned long map_size, buff_size; + unsigned long membase = EFI_ERROR; + struct efi_memory_map map; + efi_memory_desc_t *md; + struct efi_boot_memmap boot_map; + + boot_map.map = (efi_memory_desc_t **)&map.map; + boot_map.map_size = &map_size; + boot_map.desc_size = &map.desc_size; + boot_map.desc_ver = NULL; + boot_map.key_ptr = NULL; + boot_map.buff_size = &buff_size; + + status = efi_get_memory_map(&boot_map); + if (status != EFI_SUCCESS) + return membase; + + map.map_end = map.map + map_size; + + for_each_efi_memory_desc_in_map(&map, md) { + if (md->attribute & EFI_MEMORY_WB) { + if (membase > md->phys_addr) + membase = md->phys_addr; + } + } + + efi_bs_call(free_pool, map.map); + + return membase; +} + +/* + * This function handles the architcture specific differences between arm and + * arm64 regarding where the kernel image must be loaded and any memory that + * must be reserved. On failure it is required to free all + * all allocations it has made. + */ +efi_status_t handle_kernel_image(unsigned long *image_addr, + unsigned long *image_size, + unsigned long *reserve_addr, + unsigned long *reserve_size, + unsigned long dram_base, + efi_loaded_image_t *image); + +asmlinkage void __noreturn efi_enter_kernel(unsigned long entrypoint, + unsigned long fdt_addr, + unsigned long fdt_size); + +/* + * EFI entry point for the arm/arm64 EFI stubs. This is the entrypoint + * that is described in the PE/COFF header. Most of the code is the same + * for both archictectures, with the arch-specific code provided in the + * handle_kernel_image() function. + */ +efi_status_t efi_entry(efi_handle_t handle, efi_system_table_t *sys_table_arg) +{ + efi_loaded_image_t *image; + efi_status_t status; + unsigned long image_addr; + unsigned long image_size = 0; + unsigned long dram_base; + /* addr/point and size pairs for memory management*/ + unsigned long initrd_addr = 0; + unsigned long initrd_size = 0; + unsigned long fdt_addr = 0; /* Original DTB */ + unsigned long fdt_size = 0; + char *cmdline_ptr = NULL; + int cmdline_size = 0; + efi_guid_t loaded_image_proto = LOADED_IMAGE_PROTOCOL_GUID; + unsigned long reserve_addr = 0; + unsigned long reserve_size = 0; + enum efi_secureboot_mode secure_boot; + struct screen_info *si; + efi_properties_table_t *prop_tbl; + unsigned long max_addr; + + sys_table = sys_table_arg; + + /* Check if we were booted by the EFI firmware */ + if (sys_table->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE) { + status = EFI_INVALID_PARAMETER; + goto fail; + } + + status = check_platform_features(); + if (status != EFI_SUCCESS) + goto fail; + + /* + * Get a handle to the loaded image protocol. This is used to get + * information about the running image, such as size and the command + * line. + */ + status = sys_table->boottime->handle_protocol(handle, + &loaded_image_proto, (void *)&image); + if (status != EFI_SUCCESS) { + pr_efi_err("Failed to get loaded image protocol\n"); + goto fail; + } + + dram_base = get_dram_base(); + if (dram_base == EFI_ERROR) { + pr_efi_err("Failed to find DRAM base\n"); + status = EFI_LOAD_ERROR; + goto fail; + } + + /* + * Get the command line from EFI, using the LOADED_IMAGE + * protocol. We are going to copy the command line into the + * device tree, so this can be allocated anywhere. + */ + cmdline_ptr = efi_convert_cmdline(image, &cmdline_size, ULONG_MAX); + if (!cmdline_ptr) { + pr_efi_err("getting command line via LOADED_IMAGE_PROTOCOL\n"); + status = EFI_OUT_OF_RESOURCES; + goto fail; + } + + if (IS_ENABLED(CONFIG_CMDLINE_EXTEND) || + IS_ENABLED(CONFIG_CMDLINE_FORCE) || + cmdline_size == 0) + efi_parse_options(CONFIG_CMDLINE); + + if (!IS_ENABLED(CONFIG_CMDLINE_FORCE) && cmdline_size > 0) + efi_parse_options(cmdline_ptr); + + pr_efi("Booting Linux Kernel...\n"); + + si = setup_graphics(); + + status = handle_kernel_image(&image_addr, &image_size, + &reserve_addr, + &reserve_size, + dram_base, image); + if (status != EFI_SUCCESS) { + pr_efi_err("Failed to relocate kernel\n"); + goto fail_free_cmdline; + } + + efi_retrieve_tpm2_eventlog(); + + /* Ask the firmware to clear memory on unclean shutdown */ + efi_enable_reset_attack_mitigation(); + + secure_boot = efi_get_secureboot(); + + /* + * Unauthenticated device tree data is a security hazard, so ignore + * 'dtb=' unless UEFI Secure Boot is disabled. We assume that secure + * boot is enabled if we can't determine its state. + */ + if (!IS_ENABLED(CONFIG_EFI_ARMSTUB_DTB_LOADER) || + secure_boot != efi_secureboot_mode_disabled) { + if (strstr(cmdline_ptr, "dtb=")) + pr_efi("Ignoring DTB from command line.\n"); + } else { + status = efi_load_dtb(image, &fdt_addr, &fdt_size); + + if (status != EFI_SUCCESS) { + pr_efi_err("Failed to load device tree!\n"); + goto fail_free_image; + } + } + + if (fdt_addr) { + pr_efi("Using DTB from command line\n"); + } else { + /* Look for a device tree configuration table entry. */ + fdt_addr = (uintptr_t)get_fdt(&fdt_size); + if (fdt_addr) + pr_efi("Using DTB from configuration table\n"); + } + + if (!fdt_addr) + pr_efi("Generating empty DTB\n"); + + if (!noinitrd()) { + max_addr = efi_get_max_initrd_addr(dram_base, image_addr); + status = efi_load_initrd_dev_path(&initrd_addr, &initrd_size, + max_addr); + if (status == EFI_SUCCESS) { + pr_efi("Loaded initrd from LINUX_EFI_INITRD_MEDIA_GUID device path\n"); + } else if (status == EFI_NOT_FOUND) { + status = efi_load_initrd(image, &initrd_addr, &initrd_size, + ULONG_MAX, max_addr); + if (status == EFI_SUCCESS && initrd_size > 0) + pr_efi("Loaded initrd from command line option\n"); + } + if (status != EFI_SUCCESS) + pr_efi_err("Failed to load initrd!\n"); + } + + efi_random_get_seed(); + + /* + * If the NX PE data feature is enabled in the properties table, we + * should take care not to create a virtual mapping that changes the + * relative placement of runtime services code and data regions, as + * they may belong to the same PE/COFF executable image in memory. + * The easiest way to achieve that is to simply use a 1:1 mapping. + */ + prop_tbl = get_efi_config_table(EFI_PROPERTIES_TABLE_GUID); + flat_va_mapping = prop_tbl && + (prop_tbl->memory_protection_attribute & + EFI_PROPERTIES_RUNTIME_MEMORY_PROTECTION_NON_EXECUTABLE_PE_DATA); + + /* hibernation expects the runtime regions to stay in the same place */ + if (!IS_ENABLED(CONFIG_HIBERNATION) && !nokaslr() && !flat_va_mapping) { + /* + * Randomize the base of the UEFI runtime services region. + * Preserve the 2 MB alignment of the region by taking a + * shift of 21 bit positions into account when scaling + * the headroom value using a 32-bit random value. + */ + static const u64 headroom = EFI_RT_VIRTUAL_LIMIT - + EFI_RT_VIRTUAL_BASE - + EFI_RT_VIRTUAL_SIZE; + u32 rnd; + + status = efi_get_random_bytes(sizeof(rnd), (u8 *)&rnd); + if (status == EFI_SUCCESS) { + virtmap_base = EFI_RT_VIRTUAL_BASE + + (((headroom >> 21) * rnd) >> (32 - 21)); + } + } + + install_memreserve_table(); + + status = allocate_new_fdt_and_exit_boot(handle, &fdt_addr, + efi_get_max_fdt_addr(dram_base), + initrd_addr, initrd_size, + cmdline_ptr, fdt_addr, fdt_size); + if (status != EFI_SUCCESS) + goto fail_free_initrd; + + efi_enter_kernel(image_addr, fdt_addr, fdt_totalsize((void *)fdt_addr)); + /* not reached */ + +fail_free_initrd: + pr_efi_err("Failed to update FDT and exit boot services\n"); + + efi_free(initrd_size, initrd_addr); + efi_free(fdt_size, fdt_addr); + +fail_free_image: + efi_free(image_size, image_addr); + efi_free(reserve_size, reserve_addr); +fail_free_cmdline: + free_screen_info(si); + efi_free(cmdline_size, (unsigned long)cmdline_ptr); +fail: + return status; +} + +/* + * efi_get_virtmap() - create a virtual mapping for the EFI memory map + * + * This function populates the virt_addr fields of all memory region descriptors + * in @memory_map whose EFI_MEMORY_RUNTIME attribute is set. Those descriptors + * are also copied to @runtime_map, and their total count is returned in @count. + */ +void efi_get_virtmap(efi_memory_desc_t *memory_map, unsigned long map_size, + unsigned long desc_size, efi_memory_desc_t *runtime_map, + int *count) +{ + u64 efi_virt_base = virtmap_base; + efi_memory_desc_t *in, *out = runtime_map; + int l; + + for (l = 0; l < map_size; l += desc_size) { + u64 paddr, size; + + in = (void *)memory_map + l; + if (!(in->attribute & EFI_MEMORY_RUNTIME)) + continue; + + paddr = in->phys_addr; + size = in->num_pages * EFI_PAGE_SIZE; + + in->virt_addr = in->phys_addr; + if (novamap()) { + continue; + } + + /* + * Make the mapping compatible with 64k pages: this allows + * a 4k page size kernel to kexec a 64k page size kernel and + * vice versa. + */ + if (!flat_va_mapping) { + + paddr = round_down(in->phys_addr, SZ_64K); + size += in->phys_addr - paddr; + + /* + * Avoid wasting memory on PTEs by choosing a virtual + * base that is compatible with section mappings if this + * region has the appropriate size and physical + * alignment. (Sections are 2 MB on 4k granule kernels) + */ + if (IS_ALIGNED(in->phys_addr, SZ_2M) && size >= SZ_2M) + efi_virt_base = round_up(efi_virt_base, SZ_2M); + else + efi_virt_base = round_up(efi_virt_base, SZ_64K); + + in->virt_addr += efi_virt_base - paddr; + efi_virt_base += size; + } + + memcpy(out, in, desc_size); + out = (void *)out + desc_size; + ++*count; + } +} -- cgit v1.2.3