summaryrefslogtreecommitdiff
path: root/virt/kvm/arm
AgeCommit message (Collapse)Author
2020-01-19KVM: arm64: Only sign-extend MMIO up to register widthChristoffer Dall
On AArch64 you can do a sign-extended load to either a 32-bit or 64-bit register, and we should only sign extend the register up to the width of the register as specified in the operation (by using the 32-bit Wn or 64-bit Xn register specifier). As it turns out, the architecture provides this decoding information in the SF ("Sixty-Four" -- how cute...) bit. Let's take advantage of this with the usual 32-bit/64-bit header file dance and do the right thing on AArch64 hosts. Signed-off-by: Christoffer Dall <christoffer.dall@arm.com> Signed-off-by: Marc Zyngier <maz@kernel.org> Cc: stable@vger.kernel.org Link: https://lore.kernel.org/r/20191212195055.5541-1-christoffer.dall@arm.com
2019-12-18Merge tag 'kvmarm-fixes-5.5-1' of ↵Paolo Bonzini
git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into kvm-master KVM/arm fixes for .5.5, take #1 - Fix uninitialised sysreg accessor - Fix handling of demand-paged device mappings - Stop spamming the console on IMPDEF sysregs - Relax mappings of writable memslots - Assorted cleanups
2019-12-12KVM: arm/arm64: Properly handle faulting of device mappingsMarc Zyngier
A device mapping is normally always mapped at Stage-2, since there is very little gain in having it faulted in. Nonetheless, it is possible to end-up in a situation where the device mapping has been removed from Stage-2 (userspace munmaped the VFIO region, and the MMU notifier did its job), but present in a userspace mapping (userpace has mapped it back at the same address). In such a situation, the device mapping will be demand-paged as the guest performs memory accesses. This requires to be careful when dealing with mapping size, cache management, and to handle potential execution of a device mapping. Reported-by: Alexandru Elisei <alexandru.elisei@arm.com> Signed-off-by: Marc Zyngier <maz@kernel.org> Tested-by: Alexandru Elisei <alexandru.elisei@arm.com> Reviewed-by: James Morse <james.morse@arm.com> Cc: stable@vger.kernel.org Link: https://lore.kernel.org/r/20191211165651.7889-2-maz@kernel.org
2019-12-06KVM: arm/arm64: Remove excessive permission check in ↵Jia He
kvm_arch_prepare_memory_region In kvm_arch_prepare_memory_region, arm kvm regards the memory region as writable if the flag has no KVM_MEM_READONLY, and the vm is readonly if !VM_WRITE. But there is common usage for setting kvm memory region as follows: e.g. qemu side (see the PROT_NONE flag) 1. mmap(NULL, size, PROT_NONE, MAP_ANONYMOUS | MAP_PRIVATE, -1, 0); memory_region_init_ram_ptr() 2. re mmap the above area with read/write authority. Such example is used in virtio-fs qemu codes which hasn't been upstreamed [1]. But seems we can't forbid this example. Without this patch, it will cause an EPERM during kvm_set_memory_region() and cause qemu boot crash. As told by Ard, "the underlying assumption is incorrect, i.e., that the value of vm_flags at this point in time defines how the VMA is used during its lifetime. There may be other cases where a VMA is created with VM_READ vm_flags that are changed to VM_READ|VM_WRITE later, and we are currently rejecting this use case as well." [1] https://gitlab.com/virtio-fs/qemu/blob/5a356e/hw/virtio/vhost-user-fs.c#L488 Suggested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Jia He <justin.he@arm.com> Signed-off-by: Marc Zyngier <maz@kernel.org> Reviewed-by: Christoffer Dall <christoffer.dall@arm.com> Link: https://lore.kernel.org/r/20191206020802.196108-1-justin.he@arm.com
2019-12-06KVM: arm/arm64: vgic: Use wrapper function to lock/unlock all vcpus in ↵Miaohe Lin
kvm_vgic_create() Use wrapper function lock_all_vcpus()/unlock_all_vcpus() in kvm_vgic_create() to remove duplicated code dealing with locking and unlocking all vcpus in a vm. Signed-off-by: Miaohe Lin <linmiaohe@huawei.com> Signed-off-by: Marc Zyngier <maz@kernel.org> Reviewed-by: Eric Auger <eric.auger@redhat.com> Reviewed-by: Steven Price <steven.price@arm.com> Link: https://lore.kernel.org/r/1575081918-11401-1-git-send-email-linmiaohe@huawei.com
2019-12-06KVM: arm/arm64: vgic: Fix potential double free dist->spis in ↵Miaohe Lin
__kvm_vgic_destroy() In kvm_vgic_dist_init() called from kvm_vgic_map_resources(), if dist->vgic_model is invalid, dist->spis will be freed without set dist->spis = NULL. And in vgicv2 resources clean up path, __kvm_vgic_destroy() will be called to free allocated resources. And dist->spis will be freed again in clean up chain because we forget to set dist->spis = NULL in kvm_vgic_dist_init() failed path. So double free would happen. Signed-off-by: Miaohe Lin <linmiaohe@huawei.com> Signed-off-by: Marc Zyngier <maz@kernel.org> Reviewed-by: Eric Auger <eric.auger@redhat.com> Link: https://lore.kernel.org/r/1574923128-19956-1-git-send-email-linmiaohe@huawei.com
2019-12-06KVM: arm/arm64: Get rid of unused arg in cpu_init_hyp_mode()Miaohe Lin
As arg dummy is not really needed, there's no need to pass NULL when calling cpu_init_hyp_mode(). So clean it up. Fixes: 67f691976662 ("arm64: kvm: allows kvm cpu hotplug") Reviewed-by: Steven Price <steven.price@arm.com> Signed-off-by: Miaohe Lin <linmiaohe@huawei.com> Signed-off-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/1574320559-5662-1-git-send-email-linmiaohe@huawei.com
2019-11-08Merge remote-tracking branch 'kvmarm/misc-5.5' into kvmarm/nextMarc Zyngier
2019-11-08KVM: arm64: Opportunistically turn off WFI trapping when using direct LPI ↵Marc Zyngier
injection Just like we do for WFE trapping, it can be useful to turn off WFI trapping when the physical CPU is not oversubscribed (that is, the vcpu is the only runnable process on this CPU) *and* that we're using direct injection of interrupts. The conditions are reevaluated on each vcpu_load(), ensuring that we don't switch to this mode on a busy system. On a GICv4 system, this has the effect of reducing the generation of doorbell interrupts to zero when the right conditions are met, which is a huge improvement over the current situation (where the doorbells are screaming if the CPU ever hits a blocking WFI). Signed-off-by: Marc Zyngier <maz@kernel.org> Reviewed-by: Zenghui Yu <yuzenghui@huawei.com> Reviewed-by: Christoffer Dall <christoffer.dall@arm.com> Link: https://lore.kernel.org/r/20191107160412.30301-3-maz@kernel.org
2019-11-08KVM: vgic-v4: Track the number of VLPIs per vcpuMarc Zyngier
In order to find out whether a vcpu is likely to be the target of VLPIs (and to further optimize the way we deal with those), let's track the number of VLPIs a vcpu can receive. This gets implemented with an atomic variable that gets incremented or decremented on map, unmap and move of a VLPI. Signed-off-by: Marc Zyngier <maz@kernel.org> Reviewed-by: Zenghui Yu <yuzenghui@huawei.com> Reviewed-by: Christoffer Dall <christoffer.dall@arm.com> Link: https://lore.kernel.org/r/20191107160412.30301-2-maz@kernel.org
2019-11-07KVM: arm/arm64: Let the timer expire in hardirq context on RTThomas Gleixner
The timers are canceled from an preempt-notifier which is invoked with disabled preemption which is not allowed on PREEMPT_RT. The timer callback is short so in could be invoked in hard-IRQ context on -RT. Let the timer expire on hard-IRQ context even on -RT. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Signed-off-by: Marc Zyngier <maz@kernel.org> Tested-by: Julien Grall <julien.grall@arm.com> Acked-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20191107095424.16647-1-bigeasy@linutronix.de
2019-10-29KVM: arm/arm64: vgic: Don't rely on the wrong pending tableZenghui Yu
It's possible that two LPIs locate in the same "byte_offset" but target two different vcpus, where their pending status are indicated by two different pending tables. In such a scenario, using last_byte_offset optimization will lead KVM relying on the wrong pending table entry. Let us use last_ptr instead, which can be treated as a byte index into a pending table and also, can be vcpu specific. Fixes: 280771252c1b ("KVM: arm64: vgic-v3: KVM_DEV_ARM_VGIC_SAVE_PENDING_TABLES") Cc: stable@vger.kernel.org Signed-off-by: Zenghui Yu <yuzenghui@huawei.com> Signed-off-by: Marc Zyngier <maz@kernel.org> Acked-by: Eric Auger <eric.auger@redhat.com> Link: https://lore.kernel.org/r/20191029071919.177-4-yuzenghui@huawei.com
2019-10-29KVM: arm/arm64: vgic: Fix some comments typoZenghui Yu
Fix various comments, including wrong function names, grammar mistakes and specification references. Signed-off-by: Zenghui Yu <yuzenghui@huawei.com> Signed-off-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20191029071919.177-3-yuzenghui@huawei.com
2019-10-28KVM: arm64: vgic-v4: Move the GICv4 residency flow to be driven by vcpu_load/putMarc Zyngier
When the VHE code was reworked, a lot of the vgic stuff was moved around, but the GICv4 residency code did stay untouched, meaning that we come in and out of residency on each flush/sync, which is obviously suboptimal. To address this, let's move things around a bit: - Residency entry (flush) moves to vcpu_load - Residency exit (sync) moves to vcpu_put - On blocking (entry to WFI), we "put" - On unblocking (exit from WFI), we "load" Because these can nest (load/block/put/load/unblock/put, for example), we now have per-VPE tracking of the residency state. Additionally, vgic_v4_put gains a "need doorbell" parameter, which only gets set to true when blocking because of a WFI. This allows a finer control of the doorbell, which now also gets disabled as soon as it gets signaled. Signed-off-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20191027144234.8395-2-maz@kernel.org
2019-10-24Merge remote-tracking branch 'kvmarm/kvm-arm64/stolen-time' into ↵Marc Zyngier
kvmarm-master/next
2019-10-21KVM: arm64: Provide VCPU attributes for stolen timeSteven Price
Allow user space to inform the KVM host where in the physical memory map the paravirtualized time structures should be located. User space can set an attribute on the VCPU providing the IPA base address of the stolen time structure for that VCPU. This must be repeated for every VCPU in the VM. The address is given in terms of the physical address visible to the guest and must be 64 byte aligned. The guest will discover the address via a hypercall. Signed-off-by: Steven Price <steven.price@arm.com> Signed-off-by: Marc Zyngier <maz@kernel.org>
2019-10-21KVM: arm64: Support stolen time reporting via shared structureSteven Price
Implement the service call for configuring a shared structure between a VCPU and the hypervisor in which the hypervisor can write the time stolen from the VCPU's execution time by other tasks on the host. User space allocates memory which is placed at an IPA also chosen by user space. The hypervisor then updates the shared structure using kvm_put_guest() to ensure single copy atomicity of the 64-bit value reporting the stolen time in nanoseconds. Whenever stolen time is enabled by the guest, the stolen time counter is reset. The stolen time itself is retrieved from the sched_info structure maintained by the Linux scheduler code. We enable SCHEDSTATS when selecting KVM Kconfig to ensure this value is meaningful. Signed-off-by: Steven Price <steven.price@arm.com> Signed-off-by: Marc Zyngier <maz@kernel.org>
2019-10-21KVM: arm64: Implement PV_TIME_FEATURES callSteven Price
This provides a mechanism for querying which paravirtualized time features are available in this hypervisor. Also add the header file which defines the ABI for the paravirtualized time features we're about to add. Signed-off-by: Steven Price <steven.price@arm.com> Signed-off-by: Marc Zyngier <maz@kernel.org>
2019-10-21KVM: arm/arm64: Factor out hypercall handling from PSCI codeChristoffer Dall
We currently intertwine the KVM PSCI implementation with the general dispatch of hypercall handling, which makes perfect sense because PSCI is the only category of hypercalls we support. However, as we are about to support additional hypercalls, factor out this functionality into a separate hypercall handler file. Signed-off-by: Christoffer Dall <christoffer.dall@arm.com> [steven.price@arm.com: rebased] Reviewed-by: Andrew Jones <drjones@redhat.com> Signed-off-by: Steven Price <steven.price@arm.com> Signed-off-by: Marc Zyngier <maz@kernel.org>
2019-10-21KVM: arm/arm64: Allow user injection of external data abortsChristoffer Dall
In some scenarios, such as buggy guest or incorrect configuration of the VMM and firmware description data, userspace will detect a memory access to a portion of the IPA, which is not mapped to any MMIO region. For this purpose, the appropriate action is to inject an external abort to the guest. The kernel already has functionality to inject an external abort, but we need to wire up a signal from user space that lets user space tell the kernel to do this. It turns out, we already have the set event functionality which we can perfectly reuse for this. Signed-off-by: Christoffer Dall <christoffer.dall@arm.com> Signed-off-by: Marc Zyngier <maz@kernel.org>
2019-10-21KVM: arm/arm64: Allow reporting non-ISV data aborts to userspaceChristoffer Dall
For a long time, if a guest accessed memory outside of a memslot using any of the load/store instructions in the architecture which doesn't supply decoding information in the ESR_EL2 (the ISV bit is not set), the kernel would print the following message and terminate the VM as a result of returning -ENOSYS to userspace: load/store instruction decoding not implemented The reason behind this message is that KVM assumes that all accesses outside a memslot is an MMIO access which should be handled by userspace, and we originally expected to eventually implement some sort of decoding of load/store instructions where the ISV bit was not set. However, it turns out that many of the instructions which don't provide decoding information on abort are not safe to use for MMIO accesses, and the remaining few that would potentially make sense to use on MMIO accesses, such as those with register writeback, are not used in practice. It also turns out that fetching an instruction from guest memory can be a pretty horrible affair, involving stopping all CPUs on SMP systems, handling multiple corner cases of address translation in software, and more. It doesn't appear likely that we'll ever implement this in the kernel. What is much more common is that a user has misconfigured his/her guest and is actually not accessing an MMIO region, but just hitting some random hole in the IPA space. In this scenario, the error message above is almost misleading and has led to a great deal of confusion over the years. It is, nevertheless, ABI to userspace, and we therefore need to introduce a new capability that userspace explicitly enables to change behavior. This patch introduces KVM_CAP_ARM_NISV_TO_USER (NISV meaning Non-ISV) which does exactly that, and introduces a new exit reason to report the event to userspace. User space can then emulate an exception to the guest, restart the guest, suspend the guest, or take any other appropriate action as per the policy of the running system. Reported-by: Heinrich Schuchardt <xypron.glpk@gmx.de> Signed-off-by: Christoffer Dall <christoffer.dall@arm.com> Reviewed-by: Alexander Graf <graf@amazon.com> Signed-off-by: Marc Zyngier <maz@kernel.org>
2019-10-20KVM: arm64: pmu: Reset sample period on overflow handlingMarc Zyngier
The PMU emulation code uses the perf event sample period to trigger the overflow detection. This works fine for the *first* overflow handling, but results in a huge number of interrupts on the host, unrelated to the number of interrupts handled in the guest (a x20 factor is pretty common for the cycle counter). On a slow system (such as a SW model), this can result in the guest only making forward progress at a glacial pace. It turns out that the clue is in the name. The sample period is exactly that: a period. And once the an overflow has occured, the following period should be the full width of the associated counter, instead of whatever the guest had initially programed. Reset the sample period to the architected value in the overflow handler, which now results in a number of host interrupts that is much closer to the number of interrupts in the guest. Fixes: b02386eb7dac ("arm64: KVM: Add PMU overflow interrupt routing") Reviewed-by: Andrew Murray <andrew.murray@arm.com> Signed-off-by: Marc Zyngier <maz@kernel.org>
2019-10-20KVM: arm64: pmu: Set the CHAINED attribute before creating the in-kernel eventMarc Zyngier
The current convention for KVM to request a chained event from the host PMU is to set bit[0] in attr.config1 (PERF_ATTR_CFG1_KVM_PMU_CHAINED). But as it turns out, this bit gets set *after* we create the kernel event that backs our virtual counter, meaning that we never get a 64bit counter. Moving the setting to an earlier point solves the problem. Fixes: 80f393a23be6 ("KVM: arm/arm64: Support chained PMU counters") Reviewed-by: Andrew Murray <andrew.murray@arm.com> Signed-off-by: Marc Zyngier <maz@kernel.org>
2019-10-20KVM: arm64: pmu: Fix cycle counter truncationMarc Zyngier
When a counter is disabled, its value is sampled before the event is being disabled, and the value written back in the shadow register. In that process, the value gets truncated to 32bit, which is adequate for any counter but the cycle counter (defined as a 64bit counter). This obviously results in a corrupted counter, and things like "perf record -e cycles" not working at all when run in a guest... A similar, but less critical bug exists in kvm_pmu_get_counter_value. Make the truncation conditional on the counter not being the cycle counter, which results in a minor code reorganisation. Fixes: 80f393a23be6 ("KVM: arm/arm64: Support chained PMU counters") Reviewed-by: Andrew Murray <andrew.murray@arm.com> Reported-by: Julien Thierry <julien.thierry.kdev@gmail.com> Signed-off-by: Marc Zyngier <maz@kernel.org>
2019-10-03Merge tag 'kvmarm-fixes-5.4-1' of ↵Paolo Bonzini
git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD KVM/arm fixes for 5.4, take #1 - Remove the now obsolete hyp_alternate_select construct - Fix the TRACE_INCLUDE_PATH macro in the vgic code
2019-09-18Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvmLinus Torvalds
Pull KVM updates from Paolo Bonzini: "s390: - ioctl hardening - selftests ARM: - ITS translation cache - support for 512 vCPUs - various cleanups and bugfixes PPC: - various minor fixes and preparation x86: - bugfixes all over the place (posted interrupts, SVM, emulation corner cases, blocked INIT) - some IPI optimizations" * tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (75 commits) KVM: X86: Use IPI shorthands in kvm guest when support KVM: x86: Fix INIT signal handling in various CPU states KVM: VMX: Introduce exit reason for receiving INIT signal on guest-mode KVM: VMX: Stop the preemption timer during vCPU reset KVM: LAPIC: Micro optimize IPI latency kvm: Nested KVM MMUs need PAE root too KVM: x86: set ctxt->have_exception in x86_decode_insn() KVM: x86: always stop emulation on page fault KVM: nVMX: trace nested VM-Enter failures detected by H/W KVM: nVMX: add tracepoint for failed nested VM-Enter x86: KVM: svm: Fix a check in nested_svm_vmrun() KVM: x86: Return to userspace with internal error on unexpected exit reason KVM: x86: Add kvm_emulate_{rd,wr}msr() to consolidate VXM/SVM code KVM: x86: Refactor up kvm_{g,s}et_msr() to simplify callers doc: kvm: Fix return description of KVM_SET_MSRS KVM: X86: Tune PLE Window tracepoint KVM: VMX: Change ple_window type to unsigned int KVM: X86: Remove tailing newline for tracepoints KVM: X86: Trace vcpu_id for vmexit KVM: x86: Manually calculate reserved bits when loading PDPTRS ...
2019-09-11KVM: arm/arm64: vgic: Use the appropriate TRACE_INCLUDE_PATHZenghui Yu
Commit 49dfe94fe5ad ("KVM: arm/arm64: Fix TRACE_INCLUDE_PATH") fixes TRACE_INCLUDE_PATH to the correct relative path to the define_trace.h and explains why did the old one work. The same fix should be applied to virt/kvm/arm/vgic/trace.h. Reviewed-by: Masahiro Yamada <yamada.masahiro@socionext.com> Signed-off-by: Zenghui Yu <yuzenghui@huawei.com> Signed-off-by: Marc Zyngier <maz@kernel.org>
2019-09-09KVM: arm/arm64: vgic: Allow more than 256 vcpus for KVM_IRQ_LINEMarc Zyngier
While parts of the VGIC support a large number of vcpus (we bravely allow up to 512), other parts are more limited. One of these limits is visible in the KVM_IRQ_LINE ioctl, which only allows 256 vcpus to be signalled when using the CPU or PPI types. Unfortunately, we've cornered ourselves badly by allocating all the bits in the irq field. Since the irq_type subfield (8 bit wide) is currently only taking the values 0, 1 and 2 (and we have been careful not to allow anything else), let's reduce this field to only 4 bits, and allocate the remaining 4 bits to a vcpu2_index, which acts as a multiplier: vcpu_id = 256 * vcpu2_index + vcpu_index With that, and a new capability (KVM_CAP_ARM_IRQ_LINE_LAYOUT_2) allowing this to be discovered, it becomes possible to inject PPIs to up to 4096 vcpus. But please just don't. Whilst we're there, add a clarification about the use of KVM_IRQ_LINE on arm, which is not completely conditionned by KVM_CAP_IRQCHIP. Reported-by: Zenghui Yu <yuzenghui@huawei.com> Reviewed-by: Eric Auger <eric.auger@redhat.com> Reviewed-by: Zenghui Yu <yuzenghui@huawei.com> Signed-off-by: Marc Zyngier <maz@kernel.org>
2019-08-28Merge tag 'arm64-fixes' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux Pull arm64 fixes from Will Deacon: "Hot on the heels of our last set of fixes are a few more for -rc7. Two of them are fixing issues with our virtual interrupt controller implementation in KVM/arm, while the other is a longstanding but straightforward kallsyms fix which was been acked by Masami and resolves an initialisation failure in kprobes observed on arm64. - Fix GICv2 emulation bug (KVM) - Fix deadlock in virtual GIC interrupt injection code (KVM) - Fix kprobes blacklist init failure due to broken kallsyms lookup" * tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: KVM: arm/arm64: vgic-v2: Handle SGI bits in GICD_I{S,C}PENDR0 as WI KVM: arm/arm64: vgic: Fix potential deadlock when ap_list is long kallsyms: Don't let kallsyms_lookup_size_offset() fail on retrieving the first symbol
2019-08-28KVM: arm/arm64: vgic-v2: Handle SGI bits in GICD_I{S,C}PENDR0 as WIMarc Zyngier
A guest is not allowed to inject a SGI (or clear its pending state) by writing to GICD_ISPENDR0 (resp. GICD_ICPENDR0), as these bits are defined as WI (as per ARM IHI 0048B 4.3.7 and 4.3.8). Make sure we correctly emulate the architecture. Fixes: 96b298000db4 ("KVM: arm/arm64: vgic-new: Add PENDING registers handlers") Cc: stable@vger.kernel.org # 4.7+ Reported-by: Andre Przywara <andre.przywara@arm.com> Signed-off-by: Marc Zyngier <maz@kernel.org> Signed-off-by: Will Deacon <will@kernel.org>
2019-08-27KVM: arm/arm64: vgic: Fix potential deadlock when ap_list is longHeyi Guo
If the ap_list is longer than 256 entries, merge_final() in list_sort() will call the comparison callback with the same element twice, causing a deadlock in vgic_irq_cmp(). Fix it by returning early when irqa == irqb. Cc: stable@vger.kernel.org # 4.7+ Fixes: 8e4447457965 ("KVM: arm/arm64: vgic-new: Add IRQ sorting") Signed-off-by: Zenghui Yu <yuzenghui@huawei.com> Signed-off-by: Heyi Guo <guoheyi@huawei.com> [maz: massaged commit log and patch, added Fixes and Cc-stable] Signed-off-by: Marc Zyngier <maz@kernel.org> Signed-off-by: Will Deacon <will@kernel.org>
2019-08-25KVM: arm/arm64: vgic: Use a single IO device per redistributorEric Auger
At the moment we use 2 IO devices per GICv3 redistributor: one one for the RD_base frame and one for the SGI_base frame. Instead we can use a single IO device per redistributor (the 2 frames are contiguous). This saves slots on the KVM_MMIO_BUS which is currently limited to NR_IOBUS_DEVS (1000). This change allows to instantiate up to 512 redistributors and may speed the guest boot with a large number of VCPUs. Signed-off-by: Eric Auger <eric.auger@redhat.com> Signed-off-by: Marc Zyngier <maz@kernel.org>
2019-08-25KVM: arm/arm64: vgic: Remove spurious semicolonsMarc Zyngier
Detected by Coccinelle (and Will Deacon) using scripts/coccinelle/misc/semicolon.cocci. Reported-by: Will Deacon <will@kernel.org> Signed-off-by: Marc Zyngier <maz@kernel.org>
2019-08-24Merge tag 'kvmarm-fixes-for-5.3-3' of ↵Will Deacon
git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into kvm/fixes Pull KVM/arm fixes from Marc Zyngier as per Paulo's request at: https://lkml.kernel.org/r/21ae69a2-2546-29d0-bff6-2ea825e3d968@redhat.com "One (hopefully last) set of fixes for KVM/arm for 5.3: an embarassing MMIO emulation regression, and a UBSAN splat. Oh well... - Don't overskip instructions on MMIO emulation - Fix UBSAN splat when initializing PPI priorities" * tag 'kvmarm-fixes-for-5.3-3' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm: KVM: arm/arm64: VGIC: Properly initialise private IRQ affinity KVM: arm/arm64: Only skip MMIO insn once
2019-08-23KVM: arm/arm64: VGIC: Properly initialise private IRQ affinityAndre Przywara
At the moment we initialise the target *mask* of a virtual IRQ to the VCPU it belongs to, even though this mask is only defined for GICv2 and quickly runs out of bits for many GICv3 guests. This behaviour triggers an UBSAN complaint for more than 32 VCPUs: ------ [ 5659.462377] UBSAN: Undefined behaviour in virt/kvm/arm/vgic/vgic-init.c:223:21 [ 5659.471689] shift exponent 32 is too large for 32-bit type 'unsigned int' ------ Also for GICv3 guests the reporting of TARGET in the "vgic-state" debugfs dump is wrong, due to this very same problem. Because there is no requirement to create the VGIC device before the VCPUs (and QEMU actually does it the other way round), we can't safely initialise mpidr or targets in kvm_vgic_vcpu_init(). But since we touch every private IRQ for each VCPU anyway later (in vgic_init()), we can just move the initialisation of those fields into there, where we definitely know the VGIC type. On the way make sure we really have either a VGICv2 or a VGICv3 device, since the existing code is just checking for "VGICv3 or not", silently ignoring the uninitialised case. Signed-off-by: Andre Przywara <andre.przywara@arm.com> Reported-by: Dave Martin <dave.martin@arm.com> Tested-by: Julien Grall <julien.grall@arm.com> Signed-off-by: Marc Zyngier <maz@kernel.org>
2019-08-22KVM: arm/arm64: Only skip MMIO insn onceAndrew Jones
If after an MMIO exit to userspace a VCPU is immediately run with an immediate_exit request, such as when a signal is delivered or an MMIO emulation completion is needed, then the VCPU completes the MMIO emulation and immediately returns to userspace. As the exit_reason does not get changed from KVM_EXIT_MMIO in these cases we have to be careful not to complete the MMIO emulation again, when the VCPU is eventually run again, because the emulation does an instruction skip (and doing too many skips would be a waste of guest code :-) We need to use additional VCPU state to track if the emulation is complete. As luck would have it, we already have 'mmio_needed', which even appears to be used in this way by other architectures already. Fixes: 0d640732dbeb ("arm64: KVM: Skip MMIO insn after emulation") Acked-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Andrew Jones <drjones@redhat.com> Signed-off-by: Marc Zyngier <maz@kernel.org>
2019-08-18KVM: arm/arm64: vgic: Make function comments match function declarationsAlexandru Elisei
Since commit 503a62862e8f ("KVM: arm/arm64: vgic: Rely on the GIC driver to parse the firmware tables"), the vgic_v{2,3}_probe functions stopped using a DT node. Commit 909777324588 ("KVM: arm/arm64: vgic-new: vgic_init: implement kvm_vgic_hyp_init") changed the functions again, and now they require exactly one argument, a struct gic_kvm_info populated by the GIC driver. Unfortunately the comments regressed and state that a DT node is used instead. Change the function comments to reflect the current prototypes. Signed-off-by: Alexandru Elisei <alexandru.elisei@arm.com> Signed-off-by: Marc Zyngier <maz@kernel.org>
2019-08-18KVM: arm/arm64: vgic-irqfd: Implement kvm_arch_set_irq_inatomicMarc Zyngier
Now that we have a cache of MSI->LPI translations, it is pretty easy to implement kvm_arch_set_irq_inatomic (this cache can be parsed without sleeping). Hopefully, this will improve some LPI-heavy workloads. Tested-by: Andre Przywara <andre.przywara@arm.com> Reviewed-by: Eric Auger <eric.auger@redhat.com> Signed-off-by: Marc Zyngier <maz@kernel.org>
2019-08-18KVM: arm/arm64: vgic-its: Check the LPI translation cache on MSI injectionMarc Zyngier
When performing an MSI injection, let's first check if the translation is already in the cache. If so, let's inject it quickly without going through the whole translation process. Tested-by: Andre Przywara <andre.przywara@arm.com> Reviewed-by: Eric Auger <eric.auger@redhat.com> Signed-off-by: Marc Zyngier <maz@kernel.org>
2019-08-18KVM: arm/arm64: vgic-its: Cache successful MSI->LPI translationMarc Zyngier
On a successful translation, preserve the parameters in the LPI translation cache. Each translation is reusing the last slot in the list, naturally evicting the least recently used entry. Tested-by: Andre Przywara <andre.przywara@arm.com> Reviewed-by: Eric Auger <eric.auger@redhat.com> Signed-off-by: Marc Zyngier <maz@kernel.org>
2019-08-18KVM: arm/arm64: vgic-its: Invalidate MSI-LPI translation cache on vgic teardownMarc Zyngier
In order to avoid leaking vgic_irq structures on teardown, we need to drop all references to LPIs before deallocating the cache itself. This is done by invalidating the cache on vgic teardown. Tested-by: Andre Przywara <andre.przywara@arm.com> Reviewed-by: Eric Auger <eric.auger@redhat.com> Signed-off-by: Marc Zyngier <maz@kernel.org>
2019-08-18KVM: arm/arm64: vgic-its: Invalidate MSI-LPI translation cache on ITS disableMarc Zyngier
If an ITS gets disabled, we need to make sure that further interrupts won't hit in the cache. For that, we invalidate the translation cache when the ITS is disabled. Tested-by: Andre Przywara <andre.przywara@arm.com> Reviewed-by: Eric Auger <eric.auger@redhat.com> Signed-off-by: Marc Zyngier <maz@kernel.org>
2019-08-18KVM: arm/arm64: vgic-its: Invalidate MSI-LPI translation cache on disabling LPIsMarc Zyngier
If a vcpu disables LPIs at its redistributor level, we need to make sure we won't pend more interrupts. For this, we need to invalidate the LPI translation cache. Tested-by: Andre Przywara <andre.przywara@arm.com> Reviewed-by: Eric Auger <eric.auger@redhat.com> Signed-off-by: Marc Zyngier <maz@kernel.org>
2019-08-18KVM: arm/arm64: vgic-its: Invalidate MSI-LPI translation cache on specific ↵Marc Zyngier
commands The LPI translation cache needs to be discarded when an ITS command may affect the translation of an LPI (DISCARD, MAPC and MAPD with V=0) or the routing of an LPI to a redistributor with disabled LPIs (MOVI, MOVALL). We decide to perform a full invalidation of the cache, irrespective of the LPI that is affected. Commands are supposed to be rare enough that it doesn't matter. Tested-by: Andre Przywara <andre.przywara@arm.com> Reviewed-by: Eric Auger <eric.auger@redhat.com> Signed-off-by: Marc Zyngier <maz@kernel.org>
2019-08-18KVM: arm/arm64: vgic-its: Add MSI-LPI translation cache invalidationMarc Zyngier
There's a number of cases where we need to invalidate the caching of translations, so let's add basic support for that. Tested-by: Andre Przywara <andre.przywara@arm.com> Reviewed-by: Eric Auger <eric.auger@redhat.com> Signed-off-by: Marc Zyngier <maz@kernel.org>
2019-08-18KVM: arm/arm64: vgic: Add __vgic_put_lpi_locked primitiveMarc Zyngier
Our LPI translation cache needs to be able to drop the refcount on an LPI whilst already holding the lpi_list_lock. Let's add a new primitive for this. Tested-by: Andre Przywara <andre.przywara@arm.com> Reviewed-by: Eric Auger <eric.auger@redhat.com> Signed-off-by: Marc Zyngier <maz@kernel.org>
2019-08-18KVM: arm/arm64: vgic: Add LPI translation cache definitionMarc Zyngier
Add the basic data structure that expresses an MSI to LPI translation as well as the allocation/release hooks. The size of the cache is arbitrarily defined as 16*nr_vcpus. Tested-by: Andre Przywara <andre.przywara@arm.com> Reviewed-by: Eric Auger <eric.auger@redhat.com> Signed-off-by: Marc Zyngier <maz@kernel.org>
2019-08-09Merge tag 'kvmarm-fixes-for-5.3-2' of ↵Paolo Bonzini
git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD KVM/arm fixes for 5.3, take #2 - Fix our system register reset so that we stop writing non-sensical values to them, and track which registers get reset instead. - Sync VMCR back from the GIC on WFI so that KVM has an exact vue of PMR. - Reevaluate state of HW-mapped, level triggered interrupts on enable.
2019-08-09Merge tag 'kvmarm-fixes-for-5.3' of ↵Paolo Bonzini
git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD KVM/arm fixes for 5.3 - A bunch of switch/case fall-through annotation, fixing one actual bug - Fix PMU reset bug - Add missing exception class debug strings
2019-08-09KVM: arm/arm64: vgic: Reevaluate level sensitive interrupts on enableAlexandru Elisei
A HW mapped level sensitive interrupt asserted by a device will not be put into the ap_list if it is disabled at the VGIC level. When it is enabled again, it will be inserted into the ap_list and written to a list register on guest entry regardless of the state of the device. We could argue that this can also happen on real hardware, when the command to enable the interrupt reached the GIC before the device had the chance to de-assert the interrupt signal; however, we emulate the distributor and redistributors in software and we can do better than that. Signed-off-by: Alexandru Elisei <alexandru.elisei@arm.com> Signed-off-by: Marc Zyngier <maz@kernel.org>