Age | Commit message (Collapse) | Author |
|
rxrpc_local objects cannot be disposed of until all the connections that
point to them have been RCU'd as a connection object holds refcount on the
local endpoint it is communicating through. Currently, this can cause an
assertion failure to occur when a network namespace is destroyed as there's
no check that the RCU destructors for the connections have been run before
we start trying to destroy local endpoints.
The kernel reports:
rxrpc: AF_RXRPC: Leaked local 0000000036a41bc1 {5}
------------[ cut here ]------------
kernel BUG at ../net/rxrpc/local_object.c:439!
Fix this by keeping a count of the live connections and waiting for it to
go to zero at the end of rxrpc_destroy_all_connections().
Fixes: dee46364ce6f ("rxrpc: Add RCU destruction for connections and calls")
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
Fix various issues detected by checker.
Errors:
(*) rxrpc_discard_prealloc() should be using rcu_assign_pointer to set
call->socket.
Warnings:
(*) rxrpc_service_connection_reaper() should be passing NULL rather than 0 to
trace_rxrpc_conn() as the where argument.
(*) rxrpc_disconnect_client_call() should get its net pointer via the
call->conn rather than call->sock to avoid a warning about accessing
an RCU pointer without protection.
(*) Proc seq start/stop functions need annotation as they pass locks
between the functions.
False positives:
(*) Checker doesn't correctly handle of seq-retry lock context balance in
rxrpc_find_service_conn_rcu().
(*) Checker thinks execution may proceed past the BUG() in
rxrpc_publish_service_conn().
(*) Variable length array warnings from SKCIPHER_REQUEST_ON_STACK() in
rxkad.c.
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
AF_RXRPC is incorrectly sending back to the server any abort it receives
for a client connection. This is due to the final-ACK offload to the
connection event processor patch. The abort code is copied into the
last-call information on the connection channel and then the event
processor is set.
Instead, the following should be done:
(1) In the case of a final-ACK for a successful call, the ACK should be
scheduled as before.
(2) In the case of a locally generated ABORT, the ABORT details should be
cached for sending in response to further packets related to that
call and no further action scheduled at call disconnect time.
(3) In the case of an ACK received from the peer, the call should be
considered dead, no ABORT should be transmitted at this time. In
response to further non-ABORT packets from the peer relating to this
call, an RX_USER_ABORT ABORT should be transmitted.
(4) In the case of a call killed due to network error, an RX_USER_ABORT
ABORT should be cached for transmission in response to further
packets, but no ABORT should be sent at this time.
Fixes: 3136ef49a14c ("rxrpc: Delay terminal ACK transmission on a client call")
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Fix the rxrpc connection expiry timers so that connections for closed
AF_RXRPC sockets get deleted in a more timely fashion, freeing up the
transport UDP port much more quickly.
(1) Replace the delayed work items with work items plus timers so that
timer_reduce() can be used to shorten them and so that the timer
doesn't requeue the work item if the net namespace is dead.
(2) Don't use queue_delayed_work() as that won't alter the timeout if the
timer is already running.
(3) Don't rearm the timers if the network namespace is dead.
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
RxRPC service endpoints expire like they're supposed to by the following
means:
(1) Mark dead rxrpc_net structs (with ->live) rather than twiddling the
global service conn timeout, otherwise the first rxrpc_net struct to
die will cause connections on all others to expire immediately from
then on.
(2) Mark local service endpoints for which the socket has been closed
(->service_closed) so that the expiration timeout can be much
shortened for service and client connections going through that
endpoint.
(3) rxrpc_put_service_conn() needs to schedule the reaper when the usage
count reaches 1, not 0, as idle conns have a 1 count.
(4) The accumulator for the earliest time we might want to schedule for
should be initialised to jiffies + MAX_JIFFY_OFFSET, not ULONG_MAX as
the comparison functions use signed arithmetic.
(5) Simplify the expiration handling, adding the expiration value to the
idle timestamp each time rather than keeping track of the time in the
past before which the idle timestamp must go to be expired. This is
much easier to read.
(6) Ignore the timeouts if the net namespace is dead.
(7) Restart the service reaper work item rather the client reaper.
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
Fix the rxrpc call expiration timeouts and make them settable from
userspace. By analogy with other rx implementations, there should be three
timeouts:
(1) "Normal timeout"
This is set for all calls and is triggered if we haven't received any
packets from the peer in a while. It is measured from the last time
we received any packet on that call. This is not reset by any
connection packets (such as CHALLENGE/RESPONSE packets).
If a service operation takes a long time, the server should generate
PING ACKs at a duration that's substantially less than the normal
timeout so is to keep both sides alive. This is set at 1/6 of normal
timeout.
(2) "Idle timeout"
This is set only for a service call and is triggered if we stop
receiving the DATA packets that comprise the request data. It is
measured from the last time we received a DATA packet.
(3) "Hard timeout"
This can be set for a call and specified the maximum lifetime of that
call. It should not be specified by default. Some operations (such
as volume transfer) take a long time.
Allow userspace to set/change the timeouts on a call with sendmsg, using a
control message:
RXRPC_SET_CALL_TIMEOUTS
The data to the message is a number of 32-bit words, not all of which need
be given:
u32 hard_timeout; /* sec from first packet */
u32 idle_timeout; /* msec from packet Rx */
u32 normal_timeout; /* msec from data Rx */
This can be set in combination with any other sendmsg() that affects a
call.
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
Delay terminal ACK transmission on a client call by deferring it to the
connection processor. This allows it to be skipped if we can send the next
call instead, the first DATA packet of which will implicitly ack this call.
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
Allow a client call that failed on network error to be retried, provided
that the Tx queue still holds DATA packet 1. This allows an operation to
be submitted to another server or another address for the same server
without having to repackage and re-encrypt the data so far processed.
Two new functions are provided:
(1) rxrpc_kernel_check_call() - This is used to find out the completion
state of a call to guess whether it can be retried and whether it
should be retried.
(2) rxrpc_kernel_retry_call() - Disconnect the call from its current
connection, reset the state and submit it as a new client call to a
new address. The new address need not match the previous address.
A call may be retried even if all the data hasn't been loaded into it yet;
a partially constructed will be retained at the same point it was at when
an error condition was detected. msg_data_left() can be used to find out
how much data was packaged before the error occurred.
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
Cache the congestion window setting that was determined during a call's
transmission phase when it finishes so that it can be used by the next call
to the same peer, thereby shortcutting the slow-start algorithm.
The value is stored in the rxrpc_peer struct and is accessed without
locking. Each call takes the value that happens to be there when it starts
and just overwrites the value when it finishes.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Make it possible for a client to use AuriStor's service upgrade facility.
The client does this by adding an RXRPC_UPGRADE_SERVICE control message to
the first sendmsg() of a call. This takes no parameters.
When recvmsg() starts returning data from the call, the service ID field in
the returned msg_name will reflect the result of the upgrade attempt. If
the upgrade was ignored, srx_service will match what was set in the
sendmsg(); if the upgrade happened the srx_service will be altered to
indicate the service the server upgraded to.
Note that:
(1) The choice of upgrade service is up to the server
(2) Further client calls to the same server that would share a connection
are blocked if an upgrade probe is in progress.
(3) This should only be used to probe the service. Clients should then
use the returned service ID in all subsequent communications with that
server (and not set the upgrade). Note that the kernel will not
retain this information should the connection expire from its cache.
(4) If a server that supports upgrading is replaced by one that doesn't,
whilst a connection is live, and if the replacement is running, say,
OpenAFS 1.6.4 or older or an older IBM AFS, then the replacement
server will not respond to packets sent to the upgraded connection.
At this point, calls will time out and the server must be reprobed.
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
Keep the rxrpc_connection struct's idea of the service ID that is exposed
in the protocol separate from the service ID that's used as a lookup key.
This allows the protocol service ID on a client connection to get upgraded
without making the connection unfindable for other client calls that also
would like to use the upgraded connection.
The connection's actual service ID is then returned through recvmsg() by
way of msg_name.
Whilst we're at it, we get rid of the last_service_id field from each
channel. The service ID is per-connection, not per-call and an entire
connection is upgraded in one go.
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
Support network namespacing in AF_RXRPC with the following changes:
(1) All the local endpoint, peer and call lists, locks, counters, etc. are
moved into the per-namespace record.
(2) All the connection tracking is moved into the per-namespace record
with the exception of the client connection ID tree, which is kept
global so that connection IDs are kept unique per-machine.
(3) Each namespace gets its own epoch. This allows each network namespace
to pretend to be a separate client machine.
(4) The /proc/net/rxrpc_xxx files are now called /proc/net/rxrpc/xxx and
the contents reflect the namespace.
fs/afs/ should be okay with this patch as it explicitly requires the current
net namespace to be init_net to permit a mount to proceed at the moment. It
will, however, need updating so that cells, IP addresses and DNS records are
per-namespace also.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Add a tracepoint (rxrpc_connect_call) to log the combination of rxrpc_call
pointer, afs_call pointer/user data and wire call parameters to make it
easier to match the tracebuffer contents to captured network packets.
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
<linux/sched.h> into <linux/sched/signal.h>
Fix up affected files that include this signal functionality via sched.h.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Fix the way enum values are translated into strings in AF_RXRPC
tracepoints. The problem with just doing a lookup in a normal flat array
of strings or chars is that external tracing infrastructure can't find it.
Rather, TRACE_DEFINE_ENUM must be used.
Also sort the enums and string tables to make it easier to keep them in
order so that a future patch to __print_symbolic() can be optimised to try
a direct lookup into the table first before iterating over it.
A couple of _proto() macro calls are removed because they refered to tables
that got moved to the tracing infrastructure. The relevant data can be
found by way of tracing.
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
Add idr_get_cursor() / idr_set_cursor() APIs, and remove the reference
to IDR_SIZE.
Link: http://lkml.kernel.org/r/1480369871-5271-65-git-send-email-mawilcox@linuxonhyperv.com
Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com>
Reviewed-by: David Howells <dhowells@redhat.com>
Tested-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
In rxrpc_activate_channels(), the connection cache state is checked outside
of the lock, which means it can change whilst we're waking calls up,
thereby changing whether or not we're allowed to wake calls up.
Fix this by moving the check inside the locked region. The check to see if
all the channels are currently busy can stay outside of the locked region.
Whilst we're at it:
(1) Split the locked section out into its own function so that we can call
it from other places in a later patch.
(2) Determine the mask of channels dependent on the state as we're going
to add another state in a later patch that will restrict the number of
simultaneous calls to 1 on a connection.
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
Exclusive connections are currently reusable (which they shouldn't be)
because rxrpc_alloc_client_connection() checks the exclusive flag in the
rxrpc_connection struct before it's initialised from the function
parameters. This means that the DONT_REUSE flag doesn't get set.
Fix this by checking the function parameters for the exclusive flag.
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
Add a pair of tracepoints, one to track rxrpc_connection struct ref
counting and the other to track the client connection cache state.
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
If the last call on a client connection is release after the connection has
had a bunch of calls allocated but before any DATA packets are sent (so
that it's not yet marked RXRPC_CONN_EXPOSED), an assertion will happen in
rxrpc_disconnect_client_call().
af_rxrpc: Assertion failed - 1(0x1) >= 2(0x2) is false
------------[ cut here ]------------
kernel BUG at ../net/rxrpc/conn_client.c:753!
This is because it's expecting the conn to have been exposed and to have 2
or more refs - but this isn't necessarily the case.
Simply remove the assertion. This allows the conn to be moved into the
inactive state and deleted if it isn't resurrected before the final put is
called.
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
In rxrpc_put_one_client_conn(), if a connection has RXRPC_CONN_COUNTED set
on it, then it's accounted for in rxrpc_nr_client_conns and may be on
various lists - and this is cleaned up correctly.
However, if the connection doesn't have RXRPC_CONN_COUNTED set on it, then
the put routine returns rather than just skipping the extra bit of cleanup.
Fix this by making the extra bit of clean up conditional instead and always
killing off the connection.
This manifests itself as connections with a zero usage count hanging around
in /proc/net/rxrpc_conns because the connection allocated, but discarded,
due to a race with another process that set up a parallel connection, which
was then shared instead.
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
Cache the security index in the rxrpc_call struct so that we can get at it
even when the call has been disconnected and the connection pointer
cleared.
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
It seems the local epoch should only be changed on boot, so remove the code
that changes it for client connections.
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
We must set the client call state to RXRPC_CALL_CLIENT_SEND_REQUEST before
attaching the call to the connection struct, not after, as it's liable to
receive errors and conn aborts as soon as the assignment is made - and
these will cause its state to be changed outside of the initiating thread's
control.
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
Add a trace event for debuging rxrpc_call struct usage.
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
Condense the terminal states of a call state machine to a single state,
plus a separate completion type value. The value is then set, along with
error and abort code values, only when the call is transitioned to the
completion state.
Helpers are provided to simplify this.
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
Improve the management and caching of client rxrpc connection objects.
From this point, client connections will be managed separately from service
connections because AF_RXRPC controls the creation and re-use of client
connections but doesn't have that luxury with service connections.
Further, there will be limits on the numbers of client connections that may
be live on a machine. No direct restriction will be placed on the number
of client calls, excepting that each client connection can support a
maximum of four concurrent calls.
Note that, for a number of reasons, we don't want to simply discard a
client connection as soon as the last call is apparently finished:
(1) Security is negotiated per-connection and the context is then shared
between all calls on that connection. The context can be negotiated
again if the connection lapses, but that involves holding up calls
whilst at least two packets are exchanged and various crypto bits are
performed - so we'd ideally like to cache it for a little while at
least.
(2) If a packet goes astray, we will need to retransmit a final ACK or
ABORT packet. To make this work, we need to keep around the
connection details for a little while.
(3) The locally held structures represent some amount of setup time, to be
weighed against their occupation of memory when idle.
To this end, the client connection cache is managed by a state machine on
each connection. There are five states:
(1) INACTIVE - The connection is not held in any list and may not have
been exposed to the world. If it has been previously exposed, it was
discarded from the idle list after expiring.
(2) WAITING - The connection is waiting for the number of client conns to
drop below the maximum capacity. Calls may be in progress upon it
from when it was active and got culled.
The connection is on the rxrpc_waiting_client_conns list which is kept
in to-be-granted order. Culled conns with waiters go to the back of
the queue just like new conns.
(3) ACTIVE - The connection has at least one call in progress upon it, it
may freely grant available channels to new calls and calls may be
waiting on it for channels to become available.
The connection is on the rxrpc_active_client_conns list which is kept
in activation order for culling purposes.
(4) CULLED - The connection got summarily culled to try and free up
capacity. Calls currently in progress on the connection are allowed
to continue, but new calls will have to wait. There can be no waiters
in this state - the conn would have to go to the WAITING state
instead.
(5) IDLE - The connection has no calls in progress upon it and must have
been exposed to the world (ie. the EXPOSED flag must be set). When it
expires, the EXPOSED flag is cleared and the connection transitions to
the INACTIVE state.
The connection is on the rxrpc_idle_client_conns list which is kept in
order of how soon they'll expire.
A connection in the ACTIVE or CULLED state must have at least one active
call upon it; if in the WAITING state it may have active calls upon it;
other states may not have active calls.
As long as a connection remains active and doesn't get culled, it may
continue to process calls - even if there are connections on the wait
queue. This simplifies things a bit and reduces the amount of checking we
need do.
There are a couple flags of relevance to the cache:
(1) EXPOSED - The connection ID got exposed to the world. If this flag is
set, an extra ref is added to the connection preventing it from being
reaped when it has no calls outstanding. This flag is cleared and the
ref dropped when a conn is discarded from the idle list.
(2) DONT_REUSE - The connection should be discarded as soon as possible and
should not be reused.
This commit also provides a number of new settings:
(*) /proc/net/rxrpc/max_client_conns
The maximum number of live client connections. Above this number, new
connections get added to the wait list and must wait for an active
conn to be culled. Culled connections can be reused, but they will go
to the back of the wait list and have to wait.
(*) /proc/net/rxrpc/reap_client_conns
If the number of desired connections exceeds the maximum above, the
active connection list will be culled until there are only this many
left in it.
(*) /proc/net/rxrpc/idle_conn_expiry
The normal expiry time for a client connection, provided there are
fewer than reap_client_conns of them around.
(*) /proc/net/rxrpc/idle_conn_fast_expiry
The expedited expiry time, used when there are more than
reap_client_conns of them around.
Note that I combined the Tx wait queue with the channel grant wait queue to
save space as only one of these should be in use at once.
Note also that, for the moment, the service connection cache still uses the
old connection management code.
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
The main connection list is used for two independent purposes: primarily it
is used to find connections to reap and secondarily it is used to list
connections in procfs.
Split the procfs list out from the reap list. This allows us to stop using
the reap list for client connections when they acquire a separate
management strategy from service collections.
The client connections will not be on a management single list, and sometimes
won't be on a management list at all. This doesn't leave them floating,
however, as they will also be on an rb-tree rooted on the socket so that the
socket can find them to dispatch calls.
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
Make /proc/net/rxrpc_calls safer by stashing a copy of the peer pointer in
the rxrpc_call struct and checking in the show routine that the peer
pointer, the socket pointer and the local pointer obtained from the socket
pointer aren't NULL before we use them.
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
Drop the channel number (channel) field from the rxrpc_call struct to
reduce the size of the call struct. The field is redundant: if the call is
attached to a connection, the channel can be obtained from there by AND'ing
with RXRPC_CHANNELMASK.
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
Do a little tidying of the rxrpc_call struct:
(1) in_clientflag is no longer compared against the value that's in the
packet, so keeping it in this form isn't necessary. Use a flag in
flags instead and provide a pair of wrapper functions.
(2) We don't read the epoch value, so that can go.
(3) Move what remains of the data that were used for hashing up in the
struct to be with the channel number.
(4) Get rid of the local pointer. We can get at this via the socket
struct and we only use this in the procfs viewer.
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
Move to using RCU access to a peer's service connection tree when routing
an incoming packet. This is done using a seqlock to trigger retrying of
the tree walk if a change happened.
Further, we no longer get a ref on the connection looked up in the
data_ready handler unless we queue the connection's work item - and then
only if the refcount > 0.
Note that I'm avoiding the use of a hash table for service connections
because each service connection is addressed by a 62-bit number
(constructed from epoch and connection ID >> 2) that would allow the client
to engage in bucket stuffing, given knowledge of the hash algorithm.
Peers, however, are hashed as the network address is less controllable by
the client. The total number of peers will also be limited in a future
commit.
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
Prune the contents of the rxrpc_conn_proto struct. Most of the fields aren't
used anymore.
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
Overhaul the usage count accounting for the rxrpc_connection struct to make
it easier to implement RCU access from the data_ready handler.
The problem is that currently we're using a lock to prevent the garbage
collector from trying to clean up a connection that we're contemplating
unidling. We could just stick incoming packets on the connection we find,
but we've then got a problem that we may race when dispatching a work item
to process it as we need to give that a ref to prevent the rxrpc_connection
struct from disappearing in the meantime.
Further, incoming packets may get discarded if attached to an
rxrpc_connection struct that is going away. Whilst this is not a total
disaster - the client will presumably resend - it would delay processing of
the call. This would affect the AFS client filesystem's service manager
operation.
To this end:
(1) We now maintain an extra count on the connection usage count whilst it
is on the connection list. This mean it is not in use when its
refcount is 1.
(2) When trying to reuse an old connection, we only increment the refcount
if it is greater than 0. If it is 0, we replace it in the tree with a
new candidate connection.
(3) Two connection flags are added to indicate whether or not a connection
is in the local's client connection tree (used by sendmsg) or the
peer's service connection tree (used by data_ready). This makes sure
that we don't try and remove a connection if it got replaced.
The flags are tested under lock with the removal operation to prevent
the reaper from killing the rxrpc_connection struct whilst someone
else is trying to effect a replacement.
This could probably be alleviated by using memory barriers between the
flag set/test and the rb_tree ops. The rb_tree op would still need to
be under the lock, however.
(4) When trying to reap an old connection, we try to flip the usage count
from 1 to 0. If it's not 1 at that point, then it must've come back
to life temporarily and we ignore it.
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
Split the client-specific connection code out into its own file. It will
behave somewhat differently from the service-specific connection code, so
it makes sense to separate them.
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
Check that the client conns cache is empty before module removal and bug if
not, listing any offending connections that are still present. Unfortunately,
if there are connections still around, then the transport socket is still
unexpectedly open and active, so we can't just unallocate the connections.
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
Kill off the concept of maintaining a bundle of connections to a particular
target service to increase the number of call slots available for any
beyond four for that service (there are four call slots per connection).
This will make cleaning up the connection handling code easier and
facilitate removal of the rxrpc_transport struct. Bundling can be
reintroduced later if necessary.
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
Use the IDR facility to allocate client connection IDs on a machine-wide
basis so that each client connection has a unique identifier. When the
connection ID space wraps, we advance the epoch by 1, thereby effectively
having a 62-bit ID space. The IDR facility is then used to look up client
connections during incoming packet routing instead of using an rbtree
rooted on the transport.
This change allows for the removal of the transport in the future and also
means that client connections can be looked up directly in the data-ready
handler by connection ID.
The ID management code is placed in a new file, conn-client.c, to which all
the client connection-specific code will eventually move.
Note that the IDR tree gets very expensive on memory if the connection IDs
are widely scattered throughout the number space, so we shall need to
retire connections that have, say, an ID more than four times the maximum
number of client conns away from the current allocation point to try and
keep the IDs concentrated. We will also need to retire connections from an
old epoch.
Also note that, for the moment, a pointer to the transport has to be passed
through into the ID allocation function so that we can take a BH lock to
prevent a locking issue against in-BH lookup of client connections. This
will go away later when RCU is used for server connections also.
Signed-off-by: David Howells <dhowells@redhat.com>
|