Age | Commit message (Collapse) | Author |
|
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
This adds support for NFC-DEP protocol in initiator mode for NFC-A and
NFC-F technologies.
When a target is detected, the process flow is as follow:
For NFC-A technology:
1 - The digital stack receives a SEL_RES as the reply of the SEL_REQ
command.
2 - If b7 of SEL_RES is set, the peer device is configure for NFC-DEP
protocol. NFC core is notified through nfc_targets_found().
Execution continues at step 4.
3 - Otherwise, it's a tag and the NFC core is notified. Detection
ends.
4 - The digital stacks sends an ATR_REQ command containing a randomly
generated NFCID3 and the general bytes obtained from the LLCP layer
of NFC core.
For NFC-F technology:
1 - The digital stack receives a SENSF_RES as the reply of the
SENSF_REQ command.
2 - If B1 and B2 of NFCID2 are 0x01 and 0xFE respectively, the peer
device is configured for NFC-DEP protocol. NFC core is notified
through nfc_targets_found(). Execution continues at step 4.
3 - Otherwise it's a type 3 tag. NFC core is notified. Detection
ends.
4 - The digital stacks sends an ATR_REQ command containing the NFC-F
NFCID2 as NFCID3 and the general bytes obtained from the LLCP layer
of NFC core.
For both technologies:
5 - The digital stacks receives the ATR_RES response containing the
NFCID3 and the general bytes of the peer device.
6 - The digital stack notifies NFC core that the DEP link is up through
nfc_dep_link_up().
7 - The NFC core performs data exchange through tm_transceive().
8 - The digital stack sends a DEP_REQ command containing an I PDU with
the data from NFC core.
9 - The digital stack receives a DEP_RES command
10 - If the DEP_RES response contains a supervisor PDU with timeout
extension request (RTOX) the digital stack sends a DEP_REQ
command containing a supervisor PDU acknowledging the RTOX
request. The execution continues at step 9.
11 - If the DEP_RES response contains an I PDU, the response data is
passed back to NFC core through the response callback. The
execution continues at step 8.
Signed-off-by: Thierry Escande <thierry.escande@linux.intel.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
|
|
This implements the mechanism used to send commands to the driver in
initiator mode through in_send_cmd().
Commands are serialized and sent to the driver by using a work item
on the system workqueue. Responses are handled asynchronously by
another work item. Once the digital stack receives the response through
the command_complete callback, the next command is sent to the driver.
This also implements the polling mechanism. It's handled by a work item
cycling on all supported protocols. The start poll command for a given
protocol is sent to the driver using the mechanism described above.
The process continues until a peer is discovered or stop_poll is
called. This patch implements the poll function for NFC-A that sends a
SENS_REQ command and waits for the SENS_RES response.
Signed-off-by: Thierry Escande <thierry.escande@linux.intel.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
|
|
This is the initial commit of the NFC Digital Protocol stack
implementation.
It offers an interface for devices that don't have an embedded NFC
Digital protocol stack. The driver instantiates the digital stack by
calling nfc_digital_allocate_device(). Within the nfc_digital_ops
structure, the driver specifies a set of function pointers for driver
operations. These functions must be implemented by the driver and are:
in_configure_hw:
Hardware configuration for RF technology and communication framing in
initiator mode. This is a synchronous function.
in_send_cmd:
Initiator mode data exchange using RF technology and framing previously
set with in_configure_hw. The peer response is returned through
callback cb. If an io error occurs or the peer didn't reply within the
specified timeout (ms), the error code is passed back through the resp
pointer. This is an asynchronous function.
tg_configure_hw:
Hardware configuration for RF technology and communication framing in
target mode. This is a synchronous function.
tg_send_cmd:
Target mode data exchange using RF technology and framing previously
set with tg_configure_hw. The peer next command is returned through
callback cb. If an io error occurs or the peer didn't reply within the
specified timeout (ms), the error code is passed back through the resp
pointer. This is an asynchronous function.
tg_listen:
Put the device in listen mode waiting for data from the peer device.
This is an asynchronous function.
tg_listen_mdaa:
If supported, put the device in automatic listen mode with mode
detection and automatic anti-collision. In this mode, the device
automatically detects the RF technology and executes the
anti-collision detection using the command responses specified in
mdaa_params. The mdaa_params structure contains SENS_RES, NFCID1, and
SEL_RES for 106A RF tech. NFCID2 and system code (sc) for 212F and
424F. The driver returns the NFC-DEP ATR_REQ command through cb. The
digital stack deducts the RF tech by analyzing the SoD of the frame
containing the ATR_REQ command. This is an asynchronous function.
switch_rf:
Turns device radio on or off. The stack does not call explicitly
switch_rf to turn the radio on. A call to in|tg_configure_hw must turn
the device radio on.
abort_cmd:
Discard the last sent command.
Then the driver registers itself against the digital stack by using
nfc_digital_register_device() which in turn registers the digital stack
against the NFC core layer. The digital stack implements common NFC
operations like dev_up(), dev_down(), start_poll(), stop_poll(), etc.
This patch is only a skeleton and NFC operations are just stubs.
Signed-off-by: Thierry Escande <thierry.escande@linux.intel.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
|
|
The Kconfig symbol NFC_LLCP was removed in commit 30cc458765 ("NFC: Move
LLCP code to the NFC top level diirectory"). But the reference to its
macro in this Makefile was only commented out. Remove it now.
Signed-off-by: Paul Bolle <pebolle@tiscali.nl>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
|
|
And stop making it optional. LLCP is a fundamental part of the NFC
specifications and making it optional does not make much sense.
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
|
|
This is an implementation of ETSI TS 102 622 specification.
Many NFC chipsets use HCI as the host <-> target protocol on top of a
serial link like i2c.
Signed-off-by: Eric Lapuyade <eric.lapuyade@intel.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
|
|
This patch is an initial implementation for the NFC Logical Link Control
protocol. It's also known as NFC peer to peer mode.
This is a basic implementation as it lacks SDP (services Discovery
Protocol), frames aggregation support, and frame rejecion parsing.
Follow up patches will implement those missing features.
This code has been tested against a Nexus S phone implementing LLCP 1.0.
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
|
|
The NFC Controller Interface (NCI) is a standard
communication protocol between an NFC Controller (NFCC)
and a Device Host (DH), defined by the NFC Forum.
Signed-off-by: Ilan Elias <ilane@ti.com>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
|
|
This socket protocol is used to perform data exchange with NFC
targets.
Signed-off-by: Lauro Ramos Venancio <lauro.venancio@openbossa.org>
Signed-off-by: Aloisio Almeida Jr <aloisio.almeida@openbossa.org>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
|
|
Signed-off-by: Lauro Ramos Venancio <lauro.venancio@openbossa.org>
Signed-off-by: Aloisio Almeida Jr <aloisio.almeida@openbossa.org>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
|
|
The NFC generic netlink interface exports the NFC control operations
to the user space.
Signed-off-by: Lauro Ramos Venancio <lauro.venancio@openbossa.org>
Signed-off-by: Aloisio Almeida Jr <aloisio.almeida@openbossa.org>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
Reviewed-by: Johannes Berg <johannes@sipsolutions.net>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
|
|
The NFC subsystem core is responsible for providing the device driver
interface. It is also responsible for providing an interface to the control
operations and data exchange.
Signed-off-by: Lauro Ramos Venancio <lauro.venancio@openbossa.org>
Signed-off-by: Aloisio Almeida Jr <aloisio.almeida@openbossa.org>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
|