summaryrefslogtreecommitdiff
path: root/net/ipv4/tcp_output.c
AgeCommit message (Collapse)Author
2017-01-25net/tcp-fastopen: refactor cookie check logicWei Wang
Refactor the cookie check logic in tcp_send_syn_data() into a function. This function will be called else where in later changes. Signed-off-by: Wei Wang <weiwan@google.com> Acked-by: Eric Dumazet <edumazet@google.com> Acked-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-01-13tcp: remove early retransmitYuchung Cheng
This patch removes the support of RFC5827 early retransmit (i.e., fast recovery on small inflight with <3 dupacks) because it is subsumed by the new RACK loss detection. More specifically when RACK receives DUPACKs, it'll arm a reordering timer to start fast recovery after a quarter of (min)RTT, hence it covers the early retransmit except RACK does not limit itself to specific inflight or dupack numbers. Signed-off-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: Neal Cardwell <ncardwell@google.com> Acked-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-01-13tcp: remove forward retransmit featureYuchung Cheng
Forward retransmit is an esoteric feature in RFC3517 (condition(3) in the NextSeg()). Basically if a packet is not considered lost by the current criteria (# of dupacks etc), but the congestion window has room for more packets, then retransmit this packet. However it actually conflicts with the rest of recovery design. For example, when reordering is detected we want to be conservative in retransmitting packets but forward-retransmit feature would break that to force more retransmission. Also the implementation is fairly complicated inside the retransmission logic inducing extra iterations in the write queue. With RACK losses are being detected timely and this heuristic is no longer necessary. There this patch removes the feature. Signed-off-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: Neal Cardwell <ncardwell@google.com> Acked-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-01-13tcp: add reordering timer in RACK loss detectionYuchung Cheng
This patch makes RACK install a reordering timer when it suspects some packets might be lost, but wants to delay the decision a little bit to accomodate reordering. It does not create a new timer but instead repurposes the existing RTO timer, because both are meant to retransmit packets. Specifically it arms a timer ICSK_TIME_REO_TIMEOUT when the RACK timing check fails. The wait time is set to RACK.RTT + RACK.reo_wnd - (NOW - Packet.xmit_time) + fudge This translates to expecting a packet (Packet) should take (RACK.RTT + RACK.reo_wnd + fudge) to deliver after it was sent. When there are multiple packets that need a timer, we use one timer with the maximum timeout. Therefore the timer conservatively uses the maximum window to expire N packets by one timeout, instead of N timeouts to expire N packets sent at different times. The fudge factor is 2 jiffies to ensure when the timer fires, all the suspected packets would exceed the deadline and be marked lost by tcp_rack_detect_loss(). It has to be at least 1 jiffy because the clock may tick between calling icsk_reset_xmit_timer(timeout) and actually hang the timer. The next jiffy is to lower-bound the timeout to 2 jiffies when reo_wnd is < 1ms. When the reordering timer fires (tcp_rack_reo_timeout): If we aren't in Recovery we'll enter fast recovery and force fast retransmit. This is very similar to the early retransmit (RFC5827) except RACK is not constrained to only enter recovery for small outstanding flights. Signed-off-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: Neal Cardwell <ncardwell@google.com> Acked-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-12-25ktime: Get rid of the unionThomas Gleixner
ktime is a union because the initial implementation stored the time in scalar nanoseconds on 64 bit machine and in a endianess optimized timespec variant for 32bit machines. The Y2038 cleanup removed the timespec variant and switched everything to scalar nanoseconds. The union remained, but become completely pointless. Get rid of the union and just keep ktime_t as simple typedef of type s64. The conversion was done with coccinelle and some manual mopping up. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org>
2016-12-21tcp: add a missing barrier in tcp_tasklet_func()Eric Dumazet
Madalin reported crashes happening in tcp_tasklet_func() on powerpc64 Before TSQ_QUEUED bit is cleared, we must ensure the changes done by list_del(&tp->tsq_node); are committed to memory, otherwise corruption might happen, as an other cpu could catch TSQ_QUEUED clearance too soon. We can notice that old kernels were immune to this bug, because TSQ_QUEUED was cleared after a bh_lock_sock(sk)/bh_unlock_sock(sk) section, but they could have missed a kick to write additional bytes, when NIC interrupts for a given flow are spread to multiple cpus. Affected TCP flows would need an incoming ACK or RTO timer to add more packets to the pipe. So overall situation should be better now. Fixes: b223feb9de2a ("tcp: tsq: add shortcut in tcp_tasklet_func()") Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: Madalin Bucur <madalin.bucur@nxp.com> Tested-by: Madalin Bucur <madalin.bucur@nxp.com> Tested-by: Xing Lei <xing.lei@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-12-05tcp: tsq: move tsq_flags close to sk_wmem_allocEric Dumazet
tsq_flags being in the same cache line than sk_wmem_alloc makes a lot of sense. Both fields are changed from tcp_wfree() and more generally by various TSQ related functions. Prior patch made room in struct sock and added sk_tsq_flags, this patch deletes tsq_flags from struct tcp_sock. Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-12-05tcp: tcp_mtu_probe() is likely to exit earlyEric Dumazet
Adding a likely() in tcp_mtu_probe() moves its code which used to be inlined in front of tcp_write_xmit() We still have a cache line miss to access icsk->icsk_mtup.enabled, we will probably have to reorganize fields to help data locality. Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-12-05tcp: tsq: add a shortcut in tcp_small_queue_check()Eric Dumazet
Always allow the two first skbs in write queue to be sent, regardless of sk_wmem_alloc/sk_pacing_rate values. This helps a lot in situations where TX completions are delayed either because of driver latencies or softirq latencies. Test is done with no cache line misses. Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-12-05tcp: tsq: avoid one atomic in tcp_wfree()Eric Dumazet
Under high load, tcp_wfree() has an atomic operation trying to schedule a tasklet over and over. We can schedule it only if our per cpu list was empty. Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-12-05tcp: tsq: add shortcut in tcp_tasklet_func()Eric Dumazet
Under high stress, I've seen tcp_tasklet_func() consuming ~700 usec, handling ~150 tcp sockets. By setting TCP_TSQ_DEFERRED in tcp_wfree(), we give a chance for other cpus/threads entering tcp_write_xmit() to grab it, allowing tcp_tasklet_func() to skip sockets that already did an xmit cycle. In the future, we might give to ACK processing an increased budget to reduce even more tcp_tasklet_func() amount of work. Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-12-05tcp: tsq: remove one locked operation in tcp_wfree()Eric Dumazet
Instead of atomically clear TSQ_THROTTLED and atomically set TSQ_QUEUED bits, use one cmpxchg() to perform a single locked operation. Since the following patch will also set TCP_TSQ_DEFERRED here, this cmpxchg() will make this addition free. Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-12-05tcp: tsq: add tsq_flags / tsq_enumEric Dumazet
This is a cleanup, to ease code review of following patches. Old 'enum tsq_flags' is renamed, and a new enumeration is added with the flags used in cmpxchg() operations as opposed to single bit operations. Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-12-02tcp: randomize tcp timestamp offsets for each connectionFlorian Westphal
jiffies based timestamps allow for easy inference of number of devices behind NAT translators and also makes tracking of hosts simpler. commit ceaa1fef65a7c2e ("tcp: adding a per-socket timestamp offset") added the main infrastructure that is needed for per-connection ts randomization, in particular writing/reading the on-wire tcp header format takes the offset into account so rest of stack can use normal tcp_time_stamp (jiffies). So only two items are left: - add a tsoffset for request sockets - extend the tcp isn generator to also return another 32bit number in addition to the ISN. Re-use of ISN generator also means timestamps are still monotonically increasing for same connection quadruple, i.e. PAWS will still work. Includes fixes from Eric Dumazet. Signed-off-by: Florian Westphal <fw@strlen.de> Acked-by: Eric Dumazet <edumazet@google.com> Acked-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-11-30tcp: instrument how long TCP is limited by insufficient send bufferFrancis Yan
This patch measures the amount of time when TCP runs out of new data to send to the network due to insufficient send buffer, while TCP is still busy delivering (i.e. write queue is not empty). The goal is to indicate either the send buffer autotuning or user SO_SNDBUF setting has resulted network under-utilization. The measurement starts conservatively by checking various conditions to minimize false claims (i.e. under-estimation is more likely). The measurement stops when the SOCK_NOSPACE flag is cleared. But it does not account the time elapsed till the next application write. Also the measurement only starts if the sender is still busy sending data, s.t. the limit accounted is part of the total busy time. Signed-off-by: Francis Yan <francisyyan@gmail.com> Signed-off-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: Soheil Hassas Yeganeh <soheil@google.com> Acked-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-11-30tcp: instrument how long TCP is limited by receive windowFrancis Yan
This patch measures the total time when the TCP stops sending because the receiver's advertised window is not large enough. Note that once the limit is lifted we are likely in the busy status if we have data pending. Signed-off-by: Francis Yan <francisyyan@gmail.com> Signed-off-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: Soheil Hassas Yeganeh <soheil@google.com> Acked-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-11-30tcp: instrument how long TCP is busy sendingFrancis Yan
This patch measures TCP busy time, which is defined as the period of time when sender has data (or FIN) to send. The time starts when data is buffered and stops when the write queue is flushed by ACKs or error events. Note the busy time does not include SYN time, unless data is included in SYN (i.e. Fast Open). It does include FIN time even if the FIN carries no payload. Excluding pure FIN is possible but would incur one additional test in the fast path, which may not be worth it. Signed-off-by: Francis Yan <francisyyan@gmail.com> Signed-off-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: Soheil Hassas Yeganeh <soheil@google.com> Acked-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-11-30tcp: instrument tcp sender limits chronographsFrancis Yan
This patch implements the skeleton of the TCP chronograph instrumentation on sender side limits: 1) idle (unspec) 2) busy sending data other than 3-4 below 3) rwnd-limited 4) sndbuf-limited The limits are enumerated 'tcp_chrono'. Since a connection in theory can idle forever, we do not track the actual length of this uninteresting idle period. For the rest we track how long the sender spends in each limit. At any point during the life time of a connection, the sender must be in one of the four states. If there are multiple conditions worthy of tracking in a chronograph then the highest priority enum takes precedence over the other conditions. So that if something "more interesting" starts happening, stop the previous chrono and start a new one. The time unit is jiffy(u32) in order to save space in tcp_sock. This implies application must sample the stats no longer than every 49 days of 1ms jiffy. Signed-off-by: Francis Yan <francisyyan@gmail.com> Signed-off-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: Soheil Hassas Yeganeh <soheil@google.com> Acked-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-11-24tcp: enhance tcp_collapse_retrans() with skb_shift()Eric Dumazet
In commit 2331ccc5b323 ("tcp: enhance tcp collapsing"), we made a first step allowing copying right skb to left skb head. Since all skbs in socket write queue are headless (but possibly the very first one), this strategy often does not work. This patch extends tcp_collapse_retrans() to perform frag shifting, thanks to skb_shift() helper. This helper needs to not BUG on non headless skbs, as callers are ok with that. Tested: Following packetdrill test now passes : 0.000 socket(..., SOCK_STREAM, IPPROTO_TCP) = 3 +0 setsockopt(3, SOL_SOCKET, SO_REUSEADDR, [1], 4) = 0 +0 bind(3, ..., ...) = 0 +0 listen(3, 1) = 0 +0 < S 0:0(0) win 32792 <mss 1460,sackOK,nop,nop,nop,wscale 8> +0 > S. 0:0(0) ack 1 <mss 1460,nop,nop,sackOK,nop,wscale 8> +.100 < . 1:1(0) ack 1 win 257 +0 accept(3, ..., ...) = 4 +0 setsockopt(4, SOL_TCP, TCP_NODELAY, [1], 4) = 0 +0 write(4, ..., 200) = 200 +0 > P. 1:201(200) ack 1 +.001 write(4, ..., 200) = 200 +0 > P. 201:401(200) ack 1 +.001 write(4, ..., 200) = 200 +0 > P. 401:601(200) ack 1 +.001 write(4, ..., 200) = 200 +0 > P. 601:801(200) ack 1 +.001 write(4, ..., 200) = 200 +0 > P. 801:1001(200) ack 1 +.001 write(4, ..., 100) = 100 +0 > P. 1001:1101(100) ack 1 +.001 write(4, ..., 100) = 100 +0 > P. 1101:1201(100) ack 1 +.001 write(4, ..., 100) = 100 +0 > P. 1201:1301(100) ack 1 +.001 write(4, ..., 100) = 100 +0 > P. 1301:1401(100) ack 1 +.099 < . 1:1(0) ack 201 win 257 +.001 < . 1:1(0) ack 201 win 257 <nop,nop,sack 1001:1401> +0 > P. 201:1001(800) ack 1 Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Neal Cardwell <ncardwell@google.com> Cc: Yuchung Cheng <ycheng@google.com> Acked-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-11-02tcp: enhance tcp collapsingEric Dumazet
As Ilya Lesokhin suggested, we can collapse two skbs at retransmit time even if the skb at the right has fragments. We simply have to use more generic skb_copy_bits() instead of skb_copy_from_linear_data() in tcp_collapse_retrans() Also need to guard this skb_copy_bits() in case there is nothing to copy, otherwise skb_put() could panic if left skb has frags. Tested: Used following packetdrill test // Establish a connection. 0.000 socket(..., SOCK_STREAM, IPPROTO_TCP) = 3 +0 setsockopt(3, SOL_SOCKET, SO_REUSEADDR, [1], 4) = 0 +0 bind(3, ..., ...) = 0 +0 listen(3, 1) = 0 +0 < S 0:0(0) win 32792 <mss 1460,sackOK,nop,nop,nop,wscale 8> +0 > S. 0:0(0) ack 1 <mss 1460,nop,nop,sackOK,nop,wscale 8> +.100 < . 1:1(0) ack 1 win 257 +0 accept(3, ..., ...) = 4 +0 setsockopt(4, SOL_TCP, TCP_NODELAY, [1], 4) = 0 +0 write(4, ..., 200) = 200 +0 > P. 1:201(200) ack 1 +.001 write(4, ..., 200) = 200 +0 > P. 201:401(200) ack 1 +.001 write(4, ..., 200) = 200 +0 > P. 401:601(200) ack 1 +.001 write(4, ..., 200) = 200 +0 > P. 601:801(200) ack 1 +.001 write(4, ..., 200) = 200 +0 > P. 801:1001(200) ack 1 +.001 write(4, ..., 100) = 100 +0 > P. 1001:1101(100) ack 1 +.001 write(4, ..., 100) = 100 +0 > P. 1101:1201(100) ack 1 +.001 write(4, ..., 100) = 100 +0 > P. 1201:1301(100) ack 1 +.001 write(4, ..., 100) = 100 +0 > P. 1301:1401(100) ack 1 +.100 < . 1:1(0) ack 1 win 257 <nop,nop,sack 1001:1401> // Check that TCP collapse works : +0 > P. 1:1001(1000) ack 1 Reported-by: Ilya Lesokhin <ilyal@mellanox.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Neal Cardwell <ncardwell@google.com> Cc: Yuchung Cheng <ycheng@google.com> Cc: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Acked-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-10-02Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/netDavid S. Miller
Three sets of overlapping changes. Nothing serious. Signed-off-by: David S. Miller <davem@davemloft.net>
2016-09-23tcp: fix wrong checksum calculation on MTU probingDouglas Caetano dos Santos
With TCP MTU probing enabled and offload TX checksumming disabled, tcp_mtu_probe() calculated the wrong checksum when a fragment being copied into the probe's SKB had an odd length. This was caused by the direct use of skb_copy_and_csum_bits() to calculate the checksum, as it pads the fragment being copied, if needed. When this fragment was not the last, a subsequent call used the previous checksum without considering this padding. The effect was a stale connection in one way, as even retransmissions wouldn't solve the problem, because the checksum was never recalculated for the full SKB length. Signed-off-by: Douglas Caetano dos Santos <douglascs@taghos.com.br> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-09-23Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/netDavid S. Miller
2016-09-22tcp: properly account Fast Open SYN-ACK retransYuchung Cheng
Since the TFO socket is accepted right off SYN-data, the socket owner can call getsockopt(TCP_INFO) to collect ongoing SYN-ACK retransmission or timeout stats (i.e., tcpi_total_retrans, tcpi_retransmits). Currently those stats are only updated upon handshake completes. This patch fixes it. Signed-off-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: Soheil Hassas Yeganeh <soheil@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-09-22tcp: fix under-accounting retransmit SNMP countersYuchung Cheng
This patch fixes these under-accounting SNMP rtx stats LINUX_MIB_TCPFORWARDRETRANS LINUX_MIB_TCPFASTRETRANS LINUX_MIB_TCPSLOWSTARTRETRANS when retransmitting TSO packets Fixes: 10d3be569243 ("tcp-tso: do not split TSO packets at retransmit time") Signed-off-by: Yuchung Cheng <ycheng@google.com> Acked-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-09-22tcp: implement TSQ for retransmitsEric Dumazet
We saw sch_fq drops caused by the per flow limit of 100 packets and TCP when dealing with large cwnd and bursts of retransmits. Even after increasing the limit to 1000, and even after commit 10d3be569243 ("tcp-tso: do not split TSO packets at retransmit time"), we can still have these drops. Under certain conditions, TCP can spend a considerable amount of time queuing thousands of skbs in a single tcp_xmit_retransmit_queue() invocation, incurring latency spikes and stalls of other softirq handlers. This patch implements TSQ for retransmits, limiting number of packets and giving more chance for scheduling packets in both ways. Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-09-21tcp: export tcp_mss_to_mtu() for congestion control modulesNeal Cardwell
Export tcp_mss_to_mtu(), so that congestion control modules can use this to help calculate a pacing rate. Signed-off-by: Van Jacobson <vanj@google.com> Signed-off-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: Nandita Dukkipati <nanditad@google.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: Soheil Hassas Yeganeh <soheil@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-09-21tcp: export tcp_tso_autosize() and parameterize minimum number of TSO segmentsNeal Cardwell
To allow congestion control modules to use the default TSO auto-sizing algorithm as one of the ingredients in their own decision about TSO sizing: 1) Export tcp_tso_autosize() so that CC modules can use it. 2) Change tcp_tso_autosize() to allow callers to specify a minimum number of segments per TSO skb, in case the congestion control module has a different notion of the best floor for TSO skbs for the connection right now. For very low-rate paths or policed connections it can be appropriate to use smaller TSO skbs. Signed-off-by: Van Jacobson <vanj@google.com> Signed-off-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: Nandita Dukkipati <nanditad@google.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: Soheil Hassas Yeganeh <soheil@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-09-21tcp: allow congestion control module to request TSO skb segment countNeal Cardwell
Add the tso_segs_goal() function in tcp_congestion_ops to allow the congestion control module to specify the number of segments that should be in a TSO skb sent by tcp_write_xmit() and tcp_xmit_retransmit_queue(). The congestion control module can either request a particular number of segments in TSO skb that we transmit, or return 0 if it doesn't care. This allows the upcoming BBR congestion control module to select small TSO skb sizes if the module detects that the bottleneck bandwidth is very low, or that the connection is policed to a low rate. Signed-off-by: Van Jacobson <vanj@google.com> Signed-off-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: Nandita Dukkipati <nanditad@google.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: Soheil Hassas Yeganeh <soheil@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-09-21tcp: track data delivery rate for a TCP connectionYuchung Cheng
This patch generates data delivery rate (throughput) samples on a per-ACK basis. These rate samples can be used by congestion control modules, and specifically will be used by TCP BBR in later patches in this series. Key state: tp->delivered: Tracks the total number of data packets (original or not) delivered so far. This is an already-existing field. tp->delivered_mstamp: the last time tp->delivered was updated. Algorithm: A rate sample is calculated as (d1 - d0)/(t1 - t0) on a per-ACK basis: d1: the current tp->delivered after processing the ACK t1: the current time after processing the ACK d0: the prior tp->delivered when the acked skb was transmitted t0: the prior tp->delivered_mstamp when the acked skb was transmitted When an skb is transmitted, we snapshot d0 and t0 in its control block in tcp_rate_skb_sent(). When an ACK arrives, it may SACK and ACK some skbs. For each SACKed or ACKed skb, tcp_rate_skb_delivered() updates the rate_sample struct to reflect the latest (d0, t0). Finally, tcp_rate_gen() generates a rate sample by storing (d1 - d0) in rs->delivered and (t1 - t0) in rs->interval_us. One caveat: if an skb was sent with no packets in flight, then tp->delivered_mstamp may be either invalid (if the connection is starting) or outdated (if the connection was idle). In that case, we'll re-stamp tp->delivered_mstamp. At first glance it seems t0 should always be the time when an skb was transmitted, but actually this could over-estimate the rate due to phase mismatch between transmit and ACK events. To track the delivery rate, we ensure that if packets are in flight then t0 and and t1 are times at which packets were marked delivered. If the initial and final RTTs are different then one may be corrupted by some sort of noise. The noise we see most often is sending gaps caused by delayed, compressed, or stretched acks. This either affects both RTTs equally or artificially reduces the final RTT. We approach this by recording the info we need to compute the initial RTT (duration of the "send phase" of the window) when we recorded the associated inflight. Then, for a filter to avoid bandwidth overestimates, we generalize the per-sample bandwidth computation from: bw = delivered / ack_phase_rtt to the following: bw = delivered / max(send_phase_rtt, ack_phase_rtt) In large-scale experiments, this filtering approach incorporating send_phase_rtt is effective at avoiding bandwidth overestimates due to ACK compression or stretched ACKs. Signed-off-by: Van Jacobson <vanj@google.com> Signed-off-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: Nandita Dukkipati <nanditad@google.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: Soheil Hassas Yeganeh <soheil@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-09-17tcp: fix overflow in __tcp_retransmit_skb()Eric Dumazet
If a TCP socket gets a large write queue, an overflow can happen in a test in __tcp_retransmit_skb() preventing all retransmits. The flow then stalls and resets after timeouts. Tested: sysctl -w net.core.wmem_max=1000000000 netperf -H dest -- -s 1000000000 Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-18tcp: defer sacked assignmentEric Dumazet
While chasing tcp_xmit_retransmit_queue() kasan issue, I found that we could avoid reading sacked field of skb that we wont send, possibly removing one cache line miss. Very minor change in slow path, but why not ? ;) Signed-off-by: Eric Dumazet <edumazet@google.com> Acked-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-07-30tcp: consider recv buf for the initial window scaleSoheil Hassas Yeganeh
tcp_select_initial_window() intends to advertise a window scaling for the maximum possible window size. To do so, it considers the maximum of net.ipv4.tcp_rmem[2] and net.core.rmem_max as the only possible upper-bounds. However, users with CAP_NET_ADMIN can use SO_RCVBUFFORCE to set the socket's receive buffer size to values larger than net.ipv4.tcp_rmem[2] and net.core.rmem_max. Thus, SO_RCVBUFFORCE is effectively ignored by tcp_select_initial_window(). To fix this, consider the maximum of net.ipv4.tcp_rmem[2], net.core.rmem_max and socket's initial buffer space. Fixes: b0573dea1fb3 ("[NET]: Introduce SO_{SND,RCV}BUFFORCE socket options") Signed-off-by: Soheil Hassas Yeganeh <soheil@google.com> Suggested-by: Neal Cardwell <ncardwell@google.com> Acked-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-06-30Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/netDavid S. Miller
Several cases of overlapping changes, except the packet scheduler conflicts which deal with the addition of the free list parameter to qdisc_enqueue(). Signed-off-by: David S. Miller <davem@davemloft.net>
2016-06-29tcp: do not send too big packets at retransmit timeEric Dumazet
Arjun reported a bug in TCP stack and bisected it to a recent commit. In case where we process SACK, we can coalesce multiple skbs into fat ones (tcp_shift_skb_data()), to lower write queue overhead, because we do not expect to retransmit these packets. However, SACK reneging can happen, forcing the sender to retransmit all these packets. If skb->len is above 64KB, we then send buggy IP packets that could hang TSO engine on cxgb4. Neal suggested to use tcp_tso_autosize() instead of tp->gso_segs so that we cook packets of optimal size vs TCP/pacing. Thanks to Arjun for reporting the bug and running the tests ! Fixes: 10d3be569243 ("tcp-tso: do not split TSO packets at retransmit time") Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: Arjun V <arjun@chelsio.com> Tested-by: Arjun V <arjun@chelsio.com> Acked-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-06-10tcp: add in_flight to tcp_skb_cbLawrence Brakmo
Add in_flight (bytes in flight when packet was sent) field to tx component of tcp_skb_cb and make it available to congestion modules' pkts_acked() function through the ack_sample function argument. Signed-off-by: Lawrence Brakmo <brakmo@fb.com> Acked-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-05-16tcp: minor optimizations around tcp_hdr() usageEric Dumazet
tcp_hdr() is slightly more expensive than using skb->data in contexts where we know they point to the same byte. In receive path, tcp_v4_rcv() and tcp_v6_rcv() are in this situation, as tcp header has not been pulled yet. In output path, the same can be said when we just pushed the tcp header in the skb, in tcp_transmit_skb() and tcp_make_synack() Also factorize the two checks for tcb->tcp_flags & TCPHDR_SYN in tcp_transmit_skb() and pass tcp header pointer to tcp_ecn_send(), so that compiler can further optimize and avoid a reload. Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-05-15Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/netDavid S. Miller
The nf_conntrack_core.c fix in 'net' is not relevant in 'net-next' because we no longer have a per-netns conntrack hash. The ip_gre.c conflict as well as the iwlwifi ones were cases of overlapping changes. Conflicts: drivers/net/wireless/intel/iwlwifi/mvm/tx.c net/ipv4/ip_gre.c net/netfilter/nf_conntrack_core.c Signed-off-by: David S. Miller <davem@davemloft.net>
2016-05-10tcp: refresh skb timestamp at retransmit timeEric Dumazet
In the very unlikely case __tcp_retransmit_skb() can not use the cloning done in tcp_transmit_skb(), we need to refresh skb_mstamp before doing the copy and transmit, otherwise TCP TS val will be an exact copy of original transmit. Fixes: 7faee5c0d514 ("tcp: remove TCP_SKB_CB(skb)->when") Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Yuchung Cheng <ycheng@google.com> Acked-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-05-03net: add __sock_wfree() helperEric Dumazet
Hosts sending lot of ACK packets exhibit high sock_wfree() cost because of cache line miss to test SOCK_USE_WRITE_QUEUE We could move this flag close to sk_wmem_alloc but it is better to perform the atomic_sub_and_test() on a clean cache line, as it avoid one extra bus transaction. skb_orphan_partial() can also have a fast track for packets that either are TCP acks, or already went through another skb_orphan_partial() Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-05-02tcp: do not assume TCP code is non preemptibleEric Dumazet
We want to to make TCP stack preemptible, as draining prequeue and backlog queues can take lot of time. Many SNMP updates were assuming that BH (and preemption) was disabled. Need to convert some __NET_INC_STATS() calls to NET_INC_STATS() and some __TCP_INC_STATS() to TCP_INC_STATS() Before using this_cpu_ptr(net->ipv4.tcp_sk) in tcp_v4_send_reset() and tcp_v4_send_ack(), we add an explicit preempt disabled section. Signed-off-by: Eric Dumazet <edumazet@google.com> Acked-by: Soheil Hassas Yeganeh <soheil@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-04-28tcp: Handle eor bit when fragmenting a skbMartin KaFai Lau
When fragmenting a skb, the next_skb should carry the eor from prev_skb. The eor of prev_skb should also be reset. Packetdrill script for testing: ~~~~~~ +0 `sysctl -q -w net.ipv4.tcp_min_tso_segs=10` +0 `sysctl -q -w net.ipv4.tcp_no_metrics_save=1` +0 socket(..., SOCK_STREAM, IPPROTO_TCP) = 3 +0 setsockopt(3, SOL_SOCKET, SO_REUSEADDR, [1], 4) = 0 +0 bind(3, ..., ...) = 0 +0 listen(3, 1) = 0 0.100 < S 0:0(0) win 32792 <mss 1460,sackOK,nop,nop,nop,wscale 7> 0.100 > S. 0:0(0) ack 1 <mss 1460,nop,nop,sackOK,nop,wscale 7> 0.200 < . 1:1(0) ack 1 win 257 0.200 accept(3, ..., ...) = 4 +0 setsockopt(4, SOL_TCP, TCP_NODELAY, [1], 4) = 0 0.200 sendto(4, ..., 15330, MSG_EOR, ..., ...) = 15330 0.200 sendto(4, ..., 730, 0, ..., ...) = 730 0.200 > . 1:7301(7300) ack 1 0.200 > . 7301:14601(7300) ack 1 0.300 < . 1:1(0) ack 14601 win 257 0.300 > P. 14601:15331(730) ack 1 0.300 > P. 15331:16061(730) ack 1 0.400 < . 1:1(0) ack 16061 win 257 0.400 close(4) = 0 0.400 > F. 16061:16061(0) ack 1 0.400 < F. 1:1(0) ack 16062 win 257 0.400 > . 16062:16062(0) ack 2 Signed-off-by: Martin KaFai Lau <kafai@fb.com> Cc: Eric Dumazet <edumazet@google.com> Cc: Neal Cardwell <ncardwell@google.com> Cc: Soheil Hassas Yeganeh <soheil@google.com> Cc: Willem de Bruijn <willemb@google.com> Cc: Yuchung Cheng <ycheng@google.com> Acked-by: Eric Dumazet <edumazet@google.com> Acked-by: Soheil Hassas Yeganeh <soheil@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-04-28tcp: Handle eor bit when coalescing skbMartin KaFai Lau
This patch: 1. Prevent next_skb from coalescing to the prev_skb if TCP_SKB_CB(prev_skb)->eor is set 2. Update the TCP_SKB_CB(prev_skb)->eor if coalescing is allowed Packetdrill script for testing: ~~~~~~ +0 `sysctl -q -w net.ipv4.tcp_min_tso_segs=10` +0 `sysctl -q -w net.ipv4.tcp_no_metrics_save=1` +0 socket(..., SOCK_STREAM, IPPROTO_TCP) = 3 +0 setsockopt(3, SOL_SOCKET, SO_REUSEADDR, [1], 4) = 0 +0 bind(3, ..., ...) = 0 +0 listen(3, 1) = 0 0.100 < S 0:0(0) win 32792 <mss 1460,sackOK,nop,nop,nop,wscale 7> 0.100 > S. 0:0(0) ack 1 <mss 1460,nop,nop,sackOK,nop,wscale 7> 0.200 < . 1:1(0) ack 1 win 257 0.200 accept(3, ..., ...) = 4 +0 setsockopt(4, SOL_TCP, TCP_NODELAY, [1], 4) = 0 0.200 sendto(4, ..., 730, MSG_EOR, ..., ...) = 730 0.200 sendto(4, ..., 730, MSG_EOR, ..., ...) = 730 0.200 write(4, ..., 11680) = 11680 0.200 > P. 1:731(730) ack 1 0.200 > P. 731:1461(730) ack 1 0.200 > . 1461:8761(7300) ack 1 0.200 > P. 8761:13141(4380) ack 1 0.300 < . 1:1(0) ack 1 win 257 <sack 1461:13141,nop,nop> 0.300 > P. 1:731(730) ack 1 0.300 > P. 731:1461(730) ack 1 0.400 < . 1:1(0) ack 13141 win 257 0.400 close(4) = 0 0.400 > F. 13141:13141(0) ack 1 0.500 < F. 1:1(0) ack 13142 win 257 0.500 > . 13142:13142(0) ack 2 Signed-off-by: Martin KaFai Lau <kafai@fb.com> Cc: Eric Dumazet <edumazet@google.com> Cc: Neal Cardwell <ncardwell@google.com> Cc: Soheil Hassas Yeganeh <soheil@google.com> Cc: Willem de Bruijn <willemb@google.com> Cc: Yuchung Cheng <ycheng@google.com> Acked-by: Eric Dumazet <edumazet@google.com> Acked-by: Soheil Hassas Yeganeh <soheil@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-04-28tcp: remove SKBTX_ACK_TSTAMP since it is redundantSoheil Hassas Yeganeh
The SKBTX_ACK_TSTAMP flag is set in skb_shinfo->tx_flags when the timestamp of the TCP acknowledgement should be reported on error queue. Since accessing skb_shinfo is likely to incur a cache-line miss at the time of receiving the ack, the txstamp_ack bit was added in tcp_skb_cb, which is set iff the SKBTX_ACK_TSTAMP flag is set for an skb. This makes SKBTX_ACK_TSTAMP flag redundant. Remove the SKBTX_ACK_TSTAMP and instead use the txstamp_ack bit everywhere. Note that this frees one bit in shinfo->tx_flags. Signed-off-by: Soheil Hassas Yeganeh <soheil@google.com> Acked-by: Martin KaFai Lau <kafai@fb.com> Suggested-by: Willem de Bruijn <willemb@google.com> Acked-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-04-27net: rename NET_{ADD|INC}_STATS_BH()Eric Dumazet
Rename NET_INC_STATS_BH() to __NET_INC_STATS() and NET_ADD_STATS_BH() to __NET_ADD_STATS() Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-04-27net: tcp: rename TCP_INC_STATS_BHEric Dumazet
Rename TCP_INC_STATS_BH() to __TCP_INC_STATS() Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-04-24tcp-tso: do not split TSO packets at retransmit timeEric Dumazet
Linux TCP stack painfully segments all TSO/GSO packets before retransmits. This was fine back in the days when TSO/GSO were emerging, with their bugs, but we believe the dark age is over. Keeping big packets in write queues, but also in stack traversal has a lot of benefits. - Less memory overhead, because write queues have less skbs - Less cpu overhead at ACK processing. - Better SACK processing, as lot of studies mentioned how awful linux was at this ;) - Less cpu overhead to send the rtx packets (IP stack traversal, netfilter traversal, drivers...) - Better latencies in presence of losses. - Smaller spikes in fq like packet schedulers, as retransmits are not constrained by TCP Small Queues. 1 % packet losses are common today, and at 100Gbit speeds, this translates to ~80,000 losses per second. Losses are often correlated, and we see many retransmit events leading to 1-MSS train of packets, at the time hosts are already under stress. Signed-off-by: Eric Dumazet <edumazet@google.com> Acked-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-04-24tcp: Merge txstamp_ack in tcp_skb_collapse_tstampMartin KaFai Lau
When collapsing skbs, txstamp_ack also needs to be merged. Retrans Collapse Test: ~~~~~~ 0.200 accept(3, ..., ...) = 4 +0 setsockopt(4, SOL_TCP, TCP_NODELAY, [1], 4) = 0 0.200 write(4, ..., 730) = 730 +0 setsockopt(4, SOL_SOCKET, 37, [2688], 4) = 0 0.200 write(4, ..., 730) = 730 +0 setsockopt(4, SOL_SOCKET, 37, [2176], 4) = 0 0.200 write(4, ..., 11680) = 11680 0.200 > P. 1:731(730) ack 1 0.200 > P. 731:1461(730) ack 1 0.200 > . 1461:8761(7300) ack 1 0.200 > P. 8761:13141(4380) ack 1 0.300 < . 1:1(0) ack 1 win 257 <sack 1461:2921,nop,nop> 0.300 < . 1:1(0) ack 1 win 257 <sack 1461:4381,nop,nop> 0.300 < . 1:1(0) ack 1 win 257 <sack 1461:5841,nop,nop> 0.300 > P. 1:1461(1460) ack 1 0.400 < . 1:1(0) ack 13141 win 257 BPF Output Before: ~~~~~ <No output due to missing SCM_TSTAMP_ACK timestamp> BPF Output After: ~~~~~ <...>-2027 [007] d.s. 79.765921: : ee_data:1459 Sacks Collapse Test: ~~~~~ 0.200 accept(3, ..., ...) = 4 +0 setsockopt(4, SOL_TCP, TCP_NODELAY, [1], 4) = 0 0.200 write(4, ..., 1460) = 1460 +0 setsockopt(4, SOL_SOCKET, 37, [2688], 4) = 0 0.200 write(4, ..., 13140) = 13140 +0 setsockopt(4, SOL_SOCKET, 37, [2176], 4) = 0 0.200 > P. 1:1461(1460) ack 1 0.200 > . 1461:8761(7300) ack 1 0.200 > P. 8761:14601(5840) ack 1 0.300 < . 1:1(0) ack 1 win 257 <sack 1461:14601,nop,nop> 0.300 > P. 1:1461(1460) ack 1 0.400 < . 1:1(0) ack 14601 win 257 BPF Output Before: ~~~~~ <No output due to missing SCM_TSTAMP_ACK timestamp> BPF Output After: ~~~~~ <...>-2049 [007] d.s. 89.185538: : ee_data:14599 Signed-off-by: Martin KaFai Lau <kafai@fb.com> Cc: Eric Dumazet <edumazet@google.com> Cc: Neal Cardwell <ncardwell@google.com> Cc: Soheil Hassas Yeganeh <soheil@google.com> Cc: Willem de Bruijn <willemb@google.com> Cc: Yuchung Cheng <ycheng@google.com> Acked-by: Soheil Hassas Yeganeh <soheil@google.com> Tested-by: Soheil Hassas Yeganeh <soheil@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-04-24tcp: Carry txstamp_ack in tcp_fragment_tstampMartin KaFai Lau
When a tcp skb is sliced into two smaller skbs (e.g. in tcp_fragment() and tso_fragment()), it does not carry the txstamp_ack bit to the newly created skb if it is needed. The end result is a timestamping event (SCM_TSTAMP_ACK) will be missing from the sk->sk_error_queue. This patch carries this bit to the new skb2 in tcp_fragment_tstamp(). BPF Output Before: ~~~~~~ <No output due to missing SCM_TSTAMP_ACK timestamp> BPF Output After: ~~~~~~ <...>-2050 [000] d.s. 100.928763: : ee_data:14599 Packetdrill Script: ~~~~~~ +0 `sysctl -q -w net.ipv4.tcp_min_tso_segs=10` +0 `sysctl -q -w net.ipv4.tcp_no_metrics_save=1` +0 socket(..., SOCK_STREAM, IPPROTO_TCP) = 3 +0 setsockopt(3, SOL_SOCKET, SO_REUSEADDR, [1], 4) = 0 +0 bind(3, ..., ...) = 0 +0 listen(3, 1) = 0 0.100 < S 0:0(0) win 32792 <mss 1460,sackOK,nop,nop,nop,wscale 7> 0.100 > S. 0:0(0) ack 1 <mss 1460,nop,nop,sackOK,nop,wscale 7> 0.200 < . 1:1(0) ack 1 win 257 0.200 accept(3, ..., ...) = 4 +0 setsockopt(4, SOL_TCP, TCP_NODELAY, [1], 4) = 0 +0 setsockopt(4, SOL_SOCKET, 37, [2688], 4) = 0 0.200 write(4, ..., 14600) = 14600 +0 setsockopt(4, SOL_SOCKET, 37, [2176], 4) = 0 0.200 > . 1:7301(7300) ack 1 0.200 > P. 7301:14601(7300) ack 1 0.300 < . 1:1(0) ack 14601 win 257 0.300 close(4) = 0 0.300 > F. 14601:14601(0) ack 1 0.400 < F. 1:1(0) ack 16062 win 257 0.400 > . 14602:14602(0) ack 2 Signed-off-by: Martin KaFai Lau <kafai@fb.com> Cc: Eric Dumazet <edumazet@google.com> Cc: Neal Cardwell <ncardwell@google.com> Cc: Soheil Hassas Yeganeh <soheil@google.com> Cc: Willem de Bruijn <willemb@google.com> Cc: Yuchung Cheng <ycheng@google.com> Acked-by: Soheil Hassas Yeganeh <soheil@google.com> Tested-by: Soheil Hassas Yeganeh <soheil@google.com> Acked-by: Willem de Bruijn <willemb@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-04-23Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/netDavid S. Miller
Conflicts were two cases of simple overlapping changes, nothing serious. In the UDP case, we need to add a hlist_add_tail_rcu() to linux/rculist.h, because we've moved UDP socket handling away from using nulls lists. Signed-off-by: David S. Miller <davem@davemloft.net>