summaryrefslogtreecommitdiff
path: root/net/ipv4/tcp_minisocks.c
AgeCommit message (Collapse)Author
2018-02-14tcp: try to keep packet if SYN_RCV race is lostEric Dumazet
배석진 reported that in some situations, packets for a given 5-tuple end up being processed by different CPUS. This involves RPS, and fragmentation. 배석진 is seeing packet drops when a SYN_RECV request socket is moved into ESTABLISH state. Other states are protected by socket lock. This is caused by a CPU losing the race, and simply not caring enough. Since this seems to occur frequently, we can do better and perform a second lookup. Note that all needed memory barriers are already in the existing code, thanks to the spin_lock()/spin_unlock() pair in inet_ehash_insert() and reqsk_put(). The second lookup must find the new socket, unless it has already been accepted and closed by another cpu. Note that the fragmentation could be avoided in the first place by use of a correct TCP MSS option in the SYN{ACK} packet, but this does not mean we can not be more robust. Many thanks to 배석진 for a very detailed analysis. Reported-by: 배석진 <soukjin.bae@samsung.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-12-13tcp/dccp: avoid one atomic operation for timewait hashdanceEric Dumazet
First, rename __inet_twsk_hashdance() to inet_twsk_hashdance() Then, remove one inet_twsk_put() by setting tw_refcnt to 3 instead of 4, but adding a fat warning that we do not have the right to access tw anymore after inet_twsk_hashdance() Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-12-01tcp/dccp: block bh before arming time_wait timerEric Dumazet
Maciej Żenczykowski reported some panics in tcp_twsk_destructor() that might be caused by the following bug. timewait timer is pinned to the cpu, because we want to transition timwewait refcount from 0 to 4 in one go, once everything has been initialized. At the time commit ed2e92394589 ("tcp/dccp: fix timewait races in timer handling") was merged, TCP was always running from BH habdler. After commit 5413d1babe8f ("net: do not block BH while processing socket backlog") we definitely can run tcp_time_wait() from process context. We need to block BH in the critical section so that the pinned timer has still its purpose. This bug is more likely to happen under stress and when very small RTO are used in datacenter flows. Fixes: 5413d1babe8f ("net: do not block BH while processing socket backlog") Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: Maciej Żenczykowski <maze@google.com> Acked-by: Maciej Żenczykowski <maze@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-11-11tcp: use sequence distance to detect reorderingYuchung Cheng
Replace the reordering distance measurement in packet unit with sequence based approach. Previously it trackes the number of "packets" toward the forward ACK (i.e. highest sacked sequence)in a state variable "fackets_out". Precisely measuring reordering degree on packet distance has not much benefit, as the degree constantly changes by factors like path, load, and congestion window. It is also complicated and prone to arcane bugs. This patch replaces with sequence-based approach that's much simpler. Signed-off-by: Yuchung Cheng <ycheng@google.com> Reviewed-by: Eric Dumazet <edumazet@google.com> Reviewed-by: Neal Cardwell <ncardwell@google.com> Reviewed-by: Soheil Hassas Yeganeh <soheil@google.com> Reviewed-by: Priyaranjan Jha <priyarjha@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-11-11tcp: retire FACK loss detectionYuchung Cheng
FACK loss detection has been disabled by default and the successor RACK subsumed FACK and can handle reordering better. This patch removes FACK to simplify TCP loss recovery. Signed-off-by: Yuchung Cheng <ycheng@google.com> Reviewed-by: Eric Dumazet <edumazet@google.com> Reviewed-by: Neal Cardwell <ncardwell@google.com> Reviewed-by: Soheil Hassas Yeganeh <soheil@google.com> Reviewed-by: Priyaranjan Jha <priyarjha@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-11-05tcp: higher throughput under reordering with adaptive RACK reordering wndPriyaranjan Jha
Currently TCP RACK loss detection does not work well if packets are being reordered beyond its static reordering window (min_rtt/4).Under such reordering it may falsely trigger loss recoveries and reduce TCP throughput significantly. This patch improves that by increasing and reducing the reordering window based on DSACK, which is now supported in major TCP implementations. It makes RACK's reo_wnd adaptive based on DSACK and no. of recoveries. - If DSACK is received, increment reo_wnd by min_rtt/4 (upper bounded by srtt), since there is possibility that spurious retransmission was due to reordering delay longer than reo_wnd. - Persist the current reo_wnd value for TCP_RACK_RECOVERY_THRESH (16) no. of successful recoveries (accounts for full DSACK-based loss recovery undo). After that, reset it to default (min_rtt/4). - At max, reo_wnd is incremented only once per rtt. So that the new DSACK on which we are reacting, is due to the spurious retx (approx) after the reo_wnd has been updated last time. - reo_wnd is tracked in terms of steps (of min_rtt/4), rather than absolute value to account for change in rtt. In our internal testing, we observed significant increase in throughput, in scenarios where reordering exceeds min_rtt/4 (previous static value). Signed-off-by: Priyaranjan Jha <priyarjha@google.com> Signed-off-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-28tcp: Namespace-ify sysctl_tcp_workaround_signed_windowsEric Dumazet
Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-27tcp: Namespace-ify sysctl_tcp_fackEric Dumazet
Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-27tcp: Namespace-ify sysctl_tcp_abort_on_overflowEric Dumazet
Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-27tcp: Namespace-ify sysctl_tcp_rfc1337Eric Dumazet
Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-26tcp: TCP experimental option for SMCUrsula Braun
The SMC protocol [1] relies on the use of a new TCP experimental option [2, 3]. With this option, SMC capabilities are exchanged between peers during the TCP three way handshake. This patch adds support for this experimental option to TCP. References: [1] SMC-R Informational RFC: http://www.rfc-editor.org/info/rfc7609 [2] Shared Use of TCP Experimental Options RFC 6994: https://tools.ietf.org/rfc/rfc6994.txt [3] IANA ExID SMCR: http://www.iana.org/assignments/tcp-parameters/tcp-parameters.xhtml#tcp-exids Signed-off-by: Ursula Braun <ubraun@linux.vnet.ibm.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-24ipv4: tcp_minisocks: use BUG_ON instead of if condition followed by BUGGustavo A. R. Silva
Use BUG_ON instead of if condition followed by BUG in tcp_time_wait. This issue was detected with the help of Coccinelle. Signed-off-by: Gustavo A. R. Silva <garsilva@embeddedor.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-05tcp: new list for sent but unacked skbs for RACK recoveryEric Dumazet
This patch adds a new queue (list) that tracks the sent but not yet acked or SACKed skbs for a TCP connection. The list is chronologically ordered by skb->skb_mstamp (the head is the oldest sent skb). This list will be used to optimize TCP Rack recovery, which checks an skb's timestamp to judge if it has been lost and needs to be retransmitted. Since TCP write queue is ordered by sequence instead of sent time, RACK has to scan over the write queue to catch all eligible packets to detect lost retransmission, and iterates through SACKed skbs repeatedly. Special cares for rare events: 1. TCP repair fakes skb transmission so the send queue needs adjusted 2. SACK reneging would require re-inserting SACKed skbs into the send queue. For now I believe it's not worth the complexity to make RACK work perfectly on SACK reneging, so we do nothing here. 3. Fast Open: currently for non-TFO, send-queue correctly queues the pure SYN packet. For TFO which queues a pure SYN and then a data packet, send-queue only queues the data packet but not the pure SYN due to the structure of TFO code. This is okay because the SYN receiver would never respond with a SACK on a missing SYN (i.e. SYN is never fast-retransmitted by SACK/RACK). In order to not grow sk_buff, we use an union for the new list and _skb_refdst/destructor fields. This is a bit complicated because we need to make sure _skb_refdst and destructor are properly zeroed before skb is cloned/copied at transmit, and before being freed. Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-08-30tcp: Revert "tcp: remove header prediction"Florian Westphal
This reverts commit 45f119bf936b1f9f546a0b139c5b56f9bb2bdc78. Eric Dumazet says: We found at Google a significant regression caused by 45f119bf936b1f9f546a0b139c5b56f9bb2bdc78 tcp: remove header prediction In typical RPC (TCP_RR), when a TCP socket receives data, we now call tcp_ack() while we used to not call it. This touches enough cache lines to cause a slowdown. so problem does not seem to be HP removal itself but the tcp_ack() call. Therefore, it might be possible to remove HP after all, provided one finds a way to elide tcp_ack for most cases. Reported-by: Eric Dumazet <edumazet@google.com> Signed-off-by: Florian Westphal <fw@strlen.de> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-31tcp: remove header predictionFlorian Westphal
Like prequeue, I am not sure this is overly useful nowadays. If we receive a train of packets, GRO will aggregate them if the headers are the same (HP predates GRO by several years) so we don't get a per-packet benefit, only a per-aggregated-packet one. Signed-off-by: Florian Westphal <fw@strlen.de> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-31tcp: remove prequeue supportFlorian Westphal
prequeue is a tcp receive optimization that moves part of rx processing from bh to process context. This only works if the socket being processed belongs to a process that is blocked in recv on that socket. In practice, this doesn't happen anymore that often because nowadays servers tend to use an event driven (epoll) model. Even normal client applications (web browsers) commonly use many tcp connections in parallel. This has measureable impact only in netperf (which uses plain recv and thus allows prequeue use) from host to locally running vm (~4%), however, there were no changes when using netperf between two physical hosts with ixgbe interfaces. Signed-off-by: Florian Westphal <fw@strlen.de> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-01bpf: Support for setting initial receive windowLawrence Brakmo
This patch adds suppport for setting the initial advertized window from within a BPF_SOCK_OPS program. This can be used to support larger initial cwnd values in environments where it is known to be safe. Signed-off-by: Lawrence Brakmo <brakmo@fb.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-06-08tcp: add a struct net parameter to tcp_parse_options()Eric Dumazet
We want to move some TCP sysctls to net namespaces in the future. tcp_window_scaling, tcp_sack and tcp_timestamps being fetched from tcp_parse_options(), we need to pass an extra parameter. Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-05-17tcp: switch TCP TS option (RFC 7323) to 1ms clockEric Dumazet
TCP Timestamps option is defined in RFC 7323 Traditionally on linux, it has been tied to the internal 'jiffies' variable, because it had been a cheap and good enough generator. For TCP flows on the Internet, 1 ms resolution would be much better than 4ms or 10ms (HZ=250 or HZ=100 respectively) For TCP flows in the DC, Google has used usec resolution for more than two years with great success [1] Receive size autotuning (DRS) is indeed more precise and converges faster to optimal window size. This patch converts tp->tcp_mstamp to a plain u64 value storing a 1 usec TCP clock. This choice will allow us to upstream the 1 usec TS option as discussed in IETF 97. [1] https://www.ietf.org/proceedings/97/slides/slides-97-tcpm-tcp-options-for-low-latency-00.pdf Signed-off-by: Eric Dumazet <edumazet@google.com> Acked-by: Soheil Hassas Yeganeh <soheil@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-05-17tcp: replace misc tcp_time_stamp to tcp_jiffies32Eric Dumazet
After this patch, all uses of tcp_time_stamp will require a change when we introduce 1 ms and/or 1 us TCP TS option. Signed-off-by: Eric Dumazet <edumazet@google.com> Acked-by: Soheil Hassas Yeganeh <soheil@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-05-17tcp: use tcp_jiffies32 for rcv_tstamp and lrcvtimeEric Dumazet
Use tcp_jiffies32 instead of tcp_time_stamp, since tcp_time_stamp will soon be only used for TCP TS option. Signed-off-by: Eric Dumazet <edumazet@google.com> Acked-by: Soheil Hassas Yeganeh <soheil@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-05-04tcp: do not inherit fastopen_req from parentEric Dumazet
Under fuzzer stress, it is possible that a child gets a non NULL fastopen_req pointer from its parent at accept() time, when/if parent morphs from listener to active session. We need to make sure this can not happen, by clearing the field after socket cloning. BUG: Double free or freeing an invalid pointer Unexpected shadow byte: 0xFB CPU: 3 PID: 20933 Comm: syz-executor3 Not tainted 4.11.0+ #306 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Bochs 01/01/2011 Call Trace: <IRQ> __dump_stack lib/dump_stack.c:16 [inline] dump_stack+0x292/0x395 lib/dump_stack.c:52 kasan_object_err+0x1c/0x70 mm/kasan/report.c:164 kasan_report_double_free+0x5c/0x70 mm/kasan/report.c:185 kasan_slab_free+0x9d/0xc0 mm/kasan/kasan.c:580 slab_free_hook mm/slub.c:1357 [inline] slab_free_freelist_hook mm/slub.c:1379 [inline] slab_free mm/slub.c:2961 [inline] kfree+0xe8/0x2b0 mm/slub.c:3882 tcp_free_fastopen_req net/ipv4/tcp.c:1077 [inline] tcp_disconnect+0xc15/0x13e0 net/ipv4/tcp.c:2328 inet_child_forget+0xb8/0x600 net/ipv4/inet_connection_sock.c:898 inet_csk_reqsk_queue_add+0x1e7/0x250 net/ipv4/inet_connection_sock.c:928 tcp_get_cookie_sock+0x21a/0x510 net/ipv4/syncookies.c:217 cookie_v4_check+0x1a19/0x28b0 net/ipv4/syncookies.c:384 tcp_v4_cookie_check net/ipv4/tcp_ipv4.c:1384 [inline] tcp_v4_do_rcv+0x731/0x940 net/ipv4/tcp_ipv4.c:1421 tcp_v4_rcv+0x2dc0/0x31c0 net/ipv4/tcp_ipv4.c:1715 ip_local_deliver_finish+0x4cc/0xc20 net/ipv4/ip_input.c:216 NF_HOOK include/linux/netfilter.h:257 [inline] ip_local_deliver+0x1ce/0x700 net/ipv4/ip_input.c:257 dst_input include/net/dst.h:492 [inline] ip_rcv_finish+0xb1d/0x20b0 net/ipv4/ip_input.c:396 NF_HOOK include/linux/netfilter.h:257 [inline] ip_rcv+0xd8c/0x19c0 net/ipv4/ip_input.c:487 __netif_receive_skb_core+0x1ad1/0x3400 net/core/dev.c:4210 __netif_receive_skb+0x2a/0x1a0 net/core/dev.c:4248 process_backlog+0xe5/0x6c0 net/core/dev.c:4868 napi_poll net/core/dev.c:5270 [inline] net_rx_action+0xe70/0x18e0 net/core/dev.c:5335 __do_softirq+0x2fb/0xb99 kernel/softirq.c:284 do_softirq_own_stack+0x1c/0x30 arch/x86/entry/entry_64.S:899 </IRQ> do_softirq.part.17+0x1e8/0x230 kernel/softirq.c:328 do_softirq kernel/softirq.c:176 [inline] __local_bh_enable_ip+0x1cf/0x1e0 kernel/softirq.c:181 local_bh_enable include/linux/bottom_half.h:31 [inline] rcu_read_unlock_bh include/linux/rcupdate.h:931 [inline] ip_finish_output2+0x9ab/0x15e0 net/ipv4/ip_output.c:230 ip_finish_output+0xa35/0xdf0 net/ipv4/ip_output.c:316 NF_HOOK_COND include/linux/netfilter.h:246 [inline] ip_output+0x1f6/0x7b0 net/ipv4/ip_output.c:404 dst_output include/net/dst.h:486 [inline] ip_local_out+0x95/0x160 net/ipv4/ip_output.c:124 ip_queue_xmit+0x9a8/0x1a10 net/ipv4/ip_output.c:503 tcp_transmit_skb+0x1ade/0x3470 net/ipv4/tcp_output.c:1057 tcp_write_xmit+0x79e/0x55b0 net/ipv4/tcp_output.c:2265 __tcp_push_pending_frames+0xfa/0x3a0 net/ipv4/tcp_output.c:2450 tcp_push+0x4ee/0x780 net/ipv4/tcp.c:683 tcp_sendmsg+0x128d/0x39b0 net/ipv4/tcp.c:1342 inet_sendmsg+0x164/0x5b0 net/ipv4/af_inet.c:762 sock_sendmsg_nosec net/socket.c:633 [inline] sock_sendmsg+0xca/0x110 net/socket.c:643 SYSC_sendto+0x660/0x810 net/socket.c:1696 SyS_sendto+0x40/0x50 net/socket.c:1664 entry_SYSCALL_64_fastpath+0x1f/0xbe RIP: 0033:0x446059 RSP: 002b:00007faa6761fb58 EFLAGS: 00000282 ORIG_RAX: 000000000000002c RAX: ffffffffffffffda RBX: 0000000000000017 RCX: 0000000000446059 RDX: 0000000000000001 RSI: 0000000020ba3fcd RDI: 0000000000000017 RBP: 00000000006e40a0 R08: 0000000020ba4ff0 R09: 0000000000000010 R10: 0000000020000000 R11: 0000000000000282 R12: 0000000000708150 R13: 0000000000000000 R14: 00007faa676209c0 R15: 00007faa67620700 Object at ffff88003b5bbcb8, in cache kmalloc-64 size: 64 Allocated: PID = 20909 save_stack_trace+0x16/0x20 arch/x86/kernel/stacktrace.c:59 save_stack+0x43/0xd0 mm/kasan/kasan.c:513 set_track mm/kasan/kasan.c:525 [inline] kasan_kmalloc+0xad/0xe0 mm/kasan/kasan.c:616 kmem_cache_alloc_trace+0x82/0x270 mm/slub.c:2745 kmalloc include/linux/slab.h:490 [inline] kzalloc include/linux/slab.h:663 [inline] tcp_sendmsg_fastopen net/ipv4/tcp.c:1094 [inline] tcp_sendmsg+0x221a/0x39b0 net/ipv4/tcp.c:1139 inet_sendmsg+0x164/0x5b0 net/ipv4/af_inet.c:762 sock_sendmsg_nosec net/socket.c:633 [inline] sock_sendmsg+0xca/0x110 net/socket.c:643 SYSC_sendto+0x660/0x810 net/socket.c:1696 SyS_sendto+0x40/0x50 net/socket.c:1664 entry_SYSCALL_64_fastpath+0x1f/0xbe Freed: PID = 20909 save_stack_trace+0x16/0x20 arch/x86/kernel/stacktrace.c:59 save_stack+0x43/0xd0 mm/kasan/kasan.c:513 set_track mm/kasan/kasan.c:525 [inline] kasan_slab_free+0x73/0xc0 mm/kasan/kasan.c:589 slab_free_hook mm/slub.c:1357 [inline] slab_free_freelist_hook mm/slub.c:1379 [inline] slab_free mm/slub.c:2961 [inline] kfree+0xe8/0x2b0 mm/slub.c:3882 tcp_free_fastopen_req net/ipv4/tcp.c:1077 [inline] tcp_disconnect+0xc15/0x13e0 net/ipv4/tcp.c:2328 __inet_stream_connect+0x20c/0xf90 net/ipv4/af_inet.c:593 tcp_sendmsg_fastopen net/ipv4/tcp.c:1111 [inline] tcp_sendmsg+0x23a8/0x39b0 net/ipv4/tcp.c:1139 inet_sendmsg+0x164/0x5b0 net/ipv4/af_inet.c:762 sock_sendmsg_nosec net/socket.c:633 [inline] sock_sendmsg+0xca/0x110 net/socket.c:643 SYSC_sendto+0x660/0x810 net/socket.c:1696 SyS_sendto+0x40/0x50 net/socket.c:1664 entry_SYSCALL_64_fastpath+0x1f/0xbe Fixes: e994b2f0fb92 ("tcp: do not lock listener to process SYN packets") Fixes: 7db92362d2fe ("tcp: fix potential double free issue for fastopen_req") Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: Andrey Konovalov <andreyknvl@google.com> Acked-by: Wei Wang <weiwan@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-03-24tcp: Record Rx hash and NAPI ID in tcp_child_processAlexander Duyck
While working on some recent busy poll changes we found that child sockets were being instantiated without NAPI ID being set. In our first attempt to fix it, it was suggested that we should just pull programming the NAPI ID into the function itself since all callers will need to have it set. In addition to the NAPI ID change I have dropped the code that was populating the Rx hash since it was actually being populated in tcp_get_cookie_sock. Reported-by: Sridhar Samudrala <sridhar.samudrala@intel.com> Signed-off-by: Alexander Duyck <alexander.h.duyck@intel.com> Acked-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-03-23Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/netDavid S. Miller
Conflicts: drivers/net/ethernet/broadcom/genet/bcmmii.c drivers/net/hyperv/netvsc.c kernel/bpf/hashtab.c Almost entirely overlapping changes. Signed-off-by: David S. Miller <davem@davemloft.net>
2017-03-22tcp: initialize icsk_ack.lrcvtime at session start timeEric Dumazet
icsk_ack.lrcvtime has a 0 value at socket creation time. tcpi_last_data_recv can have bogus value if no payload is ever received. This patch initializes icsk_ack.lrcvtime for active sessions in tcp_finish_connect(), and for passive sessions in tcp_create_openreq_child() Signed-off-by: Eric Dumazet <edumazet@google.com> Acked-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-03-16tcp: remove per-destination timestamp cacheSoheil Hassas Yeganeh
Commit 8a5bd45f6616 (tcp: randomize tcp timestamp offsets for each connection) randomizes TCP timestamps per connection. After this commit, there is no guarantee that the timestamps received from the same destination are monotonically increasing. As a result, the per-destination timestamp cache in TCP metrics (i.e., tcpm_ts in struct tcp_metrics_block) is broken and cannot be relied upon. Remove the per-destination timestamp cache and all related code paths. Note that this cache was already broken for caching timestamps of multiple machines behind a NAT sharing the same address. Signed-off-by: Soheil Hassas Yeganeh <soheil@google.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: Yuchung Cheng <ycheng@google.com> Cc: Lutz Vieweg <lvml@5t9.de> Cc: Florian Westphal <fw@strlen.de> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-02-22tcp: account for ts offset only if tsecr not zeroAlexey Kodanev
We can get SYN with zero tsecr, don't apply offset in this case. Fixes: ee684b6f2830 ("tcp: send packets with a socket timestamp") Signed-off-by: Alexey Kodanev <alexey.kodanev@oracle.com> Acked-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-02-03tcp: add tcp_mss_clamp() helperEric Dumazet
Small cleanup factorizing code doing the TCP_MAXSEG clamping. Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-01-13tcp: remove early retransmitYuchung Cheng
This patch removes the support of RFC5827 early retransmit (i.e., fast recovery on small inflight with <3 dupacks) because it is subsumed by the new RACK loss detection. More specifically when RACK receives DUPACKs, it'll arm a reordering timer to start fast recovery after a quarter of (min)RTT, hence it covers the early retransmit except RACK does not limit itself to specific inflight or dupack numbers. Signed-off-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: Neal Cardwell <ncardwell@google.com> Acked-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-12-29ipv4: Namespaceify tcp_tw_recycle and tcp_max_tw_buckets knobHaishuang Yan
Different namespace application might require fast recycling TIME-WAIT sockets independently of the host. Signed-off-by: Haishuang Yan <yanhaishuang@cmss.chinamobile.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-12-02tcp: randomize tcp timestamp offsets for each connectionFlorian Westphal
jiffies based timestamps allow for easy inference of number of devices behind NAT translators and also makes tracking of hosts simpler. commit ceaa1fef65a7c2e ("tcp: adding a per-socket timestamp offset") added the main infrastructure that is needed for per-connection ts randomization, in particular writing/reading the on-wire tcp header format takes the offset into account so rest of stack can use normal tcp_time_stamp (jiffies). So only two items are left: - add a tsoffset for request sockets - extend the tcp isn generator to also return another 32bit number in addition to the ISN. Re-use of ISN generator also means timestamps are still monotonically increasing for same connection quadruple, i.e. PAWS will still work. Includes fixes from Eric Dumazet. Signed-off-by: Florian Westphal <fw@strlen.de> Acked-by: Eric Dumazet <edumazet@google.com> Acked-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-09-21tcp: track application-limited rate samplesSoheil Hassas Yeganeh
This commit adds code to track whether the delivery rate represented by each rate_sample was limited by the application. Upon each transmit, we store in the is_app_limited field in the skb a boolean bit indicating whether there is a known "bubble in the pipe": a point in the rate sample interval where the sender was application-limited, and did not transmit even though the cwnd and pacing rate allowed it. This logic marks the flow app-limited on a write if *all* of the following are true: 1) There is less than 1 MSS of unsent data in the write queue available to transmit. 2) There is no packet in the sender's queues (e.g. in fq or the NIC tx queue). 3) The connection is not limited by cwnd. 4) There are no lost packets to retransmit. The tcp_rate_check_app_limited() code in tcp_rate.c determines whether the connection is application-limited at the moment. If the flow is application-limited, it sets the tp->app_limited field. If the flow is application-limited then that means there is effectively a "bubble" of silence in the pipe now, and this silence will be reflected in a lower bandwidth sample for any rate samples from now until we get an ACK indicating this bubble has exited the pipe: specifically, until we get an ACK for the next packet we transmit. When we send every skb we record in scb->tx.is_app_limited whether the resulting rate sample will be application-limited. The code in tcp_rate_gen() checks to see when it is safe to mark all known application-limited bubbles of silence as having exited the pipe. It does this by checking to see when the delivered count moves past the tp->app_limited marker. At this point it zeroes the tp->app_limited marker, as all known bubbles are out of the pipe. We make room for the tx.is_app_limited bit in the skb by borrowing a bit from the in_flight field used by NV to record the number of bytes in flight. The receive window in the TCP header is 16 bits, and the max receive window scaling shift factor is 14 (RFC 1323). So the max receive window offered by the TCP protocol is 2^(16+14) = 2^30. So we only need 30 bits for the tx.in_flight used by NV. Signed-off-by: Van Jacobson <vanj@google.com> Signed-off-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: Nandita Dukkipati <nanditad@google.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: Soheil Hassas Yeganeh <soheil@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-09-21tcp: use windowed min filter library for TCP min_rtt estimationNeal Cardwell
Refactor the TCP min_rtt code to reuse the new win_minmax library in lib/win_minmax.c to simplify the TCP code. This is a pure refactor: the functionality is exactly the same. We just moved the windowed min code to make TCP easier to read and maintain, and to allow other parts of the kernel to use the windowed min/max filter code. Signed-off-by: Van Jacobson <vanj@google.com> Signed-off-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: Nandita Dukkipati <nanditad@google.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: Soheil Hassas Yeganeh <soheil@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-09-08tcp: use an RB tree for ooo receive queueYaogong Wang
Over the years, TCP BDP has increased by several orders of magnitude, and some people are considering to reach the 2 Gbytes limit. Even with current window scale limit of 14, ~1 Gbytes maps to ~740,000 MSS. In presence of packet losses (or reorders), TCP stores incoming packets into an out of order queue, and number of skbs sitting there waiting for the missing packets to be received can be in the 10^5 range. Most packets are appended to the tail of this queue, and when packets can finally be transferred to receive queue, we scan the queue from its head. However, in presence of heavy losses, we might have to find an arbitrary point in this queue, involving a linear scan for every incoming packet, throwing away cpu caches. This patch converts it to a RB tree, to get bounded latencies. Yaogong wrote a preliminary patch about 2 years ago. Eric did the rebase, added ofo_last_skb cache, polishing and tests. Tested with network dropping between 1 and 10 % packets, with good success (about 30 % increase of throughput in stress tests) Next step would be to also use an RB tree for the write queue at sender side ;) Signed-off-by: Yaogong Wang <wygivan@google.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Yuchung Cheng <ycheng@google.com> Cc: Neal Cardwell <ncardwell@google.com> Cc: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Acked-By: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-05-02tcp: do not assume TCP code is non preemptibleEric Dumazet
We want to to make TCP stack preemptible, as draining prequeue and backlog queues can take lot of time. Many SNMP updates were assuming that BH (and preemption) was disabled. Need to convert some __NET_INC_STATS() calls to NET_INC_STATS() and some __TCP_INC_STATS() to TCP_INC_STATS() Before using this_cpu_ptr(net->ipv4.tcp_sk) in tcp_v4_send_reset() and tcp_v4_send_ack(), we add an explicit preempt disabled section. Signed-off-by: Eric Dumazet <edumazet@google.com> Acked-by: Soheil Hassas Yeganeh <soheil@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-04-27net: rename NET_{ADD|INC}_STATS_BH()Eric Dumazet
Rename NET_INC_STATS_BH() to __NET_INC_STATS() and NET_ADD_STATS_BH() to __NET_ADD_STATS() Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-04-27net: tcp: rename TCP_INC_STATS_BHEric Dumazet
Rename TCP_INC_STATS_BH() to __TCP_INC_STATS() Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-04-04tcp: rate limit ACK sent by SYN_RECV request socketsEric Dumazet
Attackers like to use SYNFLOOD targeting one 5-tuple, as they hit a single RX queue (and cpu) on the victim. If they use random sequence numbers in their SYN, we detect they do not match the expected window and send back an ACK. This patch adds a rate limitation, so that the effect of such attacks is limited to ingress only. We roughly double our ability to absorb such attacks. Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Willem de Bruijn <willemb@google.com> Cc: Neal Cardwell <ncardwell@google.com> Cc: Maciej Żenczykowski <maze@google.com> Acked-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-03-14tcp: Add RFC4898 tcpEStatsPerfDataSegsOut/InMartin KaFai Lau
Per RFC4898, they count segments sent/received containing a positive length data segment (that includes retransmission segments carrying data). Unlike tcpi_segs_out/in, tcpi_data_segs_out/in excludes segments carrying no data (e.g. pure ack). The patch also updates the segs_in in tcp_fastopen_add_skb() so that segs_in >= data_segs_in property is kept. Together with retransmission data, tcpi_data_segs_out gives a better signal on the rxmit rate. v6: Rebase on the latest net-next v5: Eric pointed out that checking skb->len is still needed in tcp_fastopen_add_skb() because skb can carry a FIN without data. Hence, instead of open coding segs_in and data_segs_in, tcp_segs_in() helper is used. Comment is added to the fastopen case to explain why segs_in has to be reset and tcp_segs_in() has to be called before __skb_pull(). v4: Add comment to the changes in tcp_fastopen_add_skb() and also add remark on this case in the commit message. v3: Add const modifier to the skb parameter in tcp_segs_in() v2: Rework based on recent fix by Eric: commit a9d99ce28ed3 ("tcp: fix tcpi_segs_in after connection establishment") Signed-off-by: Martin KaFai Lau <kafai@fb.com> Cc: Chris Rapier <rapier@psc.edu> Cc: Eric Dumazet <edumazet@google.com> Cc: Marcelo Ricardo Leitner <mleitner@redhat.com> Cc: Neal Cardwell <ncardwell@google.com> Cc: Yuchung Cheng <ycheng@google.com> Acked-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-03-08Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/netDavid S. Miller
Several cases of overlapping changes, as well as one instance (vxlan) of a bug fix in 'net' overlapping with code movement in 'net-next'. Signed-off-by: David S. Miller <davem@davemloft.net>
2016-03-07tcp: fix tcpi_segs_in after connection establishmentEric Dumazet
If final packet (ACK) of 3WHS is lost, it appears we do not properly account the following incoming segment into tcpi_segs_in While we are at it, starts segs_in with one, to count the SYN packet. We do not yet count number of SYN we received for a request sock, we might add this someday. packetdrill script showing proper behavior after fix : // Tests tcpi_segs_in when 3rd packet (ACK) of 3WHS is lost 0.000 socket(..., SOCK_STREAM, IPPROTO_TCP) = 3 +0 setsockopt(3, SOL_SOCKET, SO_REUSEADDR, [1], 4) = 0 +0 bind(3, ..., ...) = 0 +0 listen(3, 1) = 0 +0 < S 0:0(0) win 32792 <mss 1000,sackOK,nop,nop> +0 > S. 0:0(0) ack 1 <mss 1460,nop,nop,sackOK> +.020 < P. 1:1001(1000) ack 1 win 32792 +0 accept(3, ..., ...) = 4 +.000 %{ assert tcpi_segs_in == 2, 'tcpi_segs_in=%d' % tcpi_segs_in }% Fixes: 2efd055c53c06 ("tcp: add tcpi_segs_in and tcpi_segs_out to tcp_info") Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-02-07ipv4: Namespaceify tcp syncookies sysctl knobNikolay Borisov
Signed-off-by: Nikolay Borisov <kernel@kyup.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-12-22tcp: honour SO_BINDTODEVICE for TW_RST case tooFlorian Westphal
Hannes points out that when we generate tcp reset for timewait sockets we pretend we found no socket and pass NULL sk to tcp_vX_send_reset(). Make it cope with inet tw sockets and then provide tw sk. This makes RSTs appear on correct interface when SO_BINDTODEVICE is used. Packetdrill test case: // want default route to be used, we rely on BINDTODEVICE `ip route del 192.0.2.0/24 via 192.168.0.2 dev tun0` 0.000 socket(..., SOCK_STREAM, IPPROTO_TCP) = 3 // test case still works due to BINDTODEVICE 0.001 setsockopt(3, SOL_SOCKET, SO_BINDTODEVICE, "tun0", 4) = 0 0.100...0.200 connect(3, ..., ...) = 0 0.100 > S 0:0(0) <mss 1460,sackOK,nop,nop> 0.200 < S. 0:0(0) ack 1 win 32792 <mss 1460,sackOK,nop,nop> 0.200 > . 1:1(0) ack 1 0.210 close(3) = 0 0.210 > F. 1:1(0) ack 1 win 29200 0.300 < . 1:1(0) ack 2 win 46 // more data while in FIN_WAIT2, expect RST 1.300 < P. 1:1001(1000) ack 1 win 46 // fails without this change -- default route is used 1.301 > R 1:1(0) win 0 Reported-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: Florian Westphal <fw@strlen.de> Acked-by: Eric Dumazet <edumazet@google.com> Acked-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-11-05tcp: fix req->saved_syn raceEric Dumazet
For the reasons explained in commit ce1050089c96 ("tcp/dccp: fix ireq->pktopts race"), we need to make sure we do not access req->saved_syn unless we own the request sock. This fixes races for listeners using TCP_SAVE_SYN option. Fixes: e994b2f0fb92 ("tcp: do not lock listener to process SYN packets") Fixes: 079096f103fa ("tcp/dccp: install syn_recv requests into ehash table") Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: Ying Cai <ycai@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-10-23tcp/dccp: fix hashdance race for passive sessionsEric Dumazet
Multiple cpus can process duplicates of incoming ACK messages matching a SYN_RECV request socket. This is a rare event under normal operations, but definitely can happen. Only one must win the race, otherwise corruption would occur. To fix this without adding new atomic ops, we use logic in inet_ehash_nolisten() to detect the request was present in the same ehash bucket where we try to insert the new child. If request socket was not found, we have to undo the child creation. This actually removes a spin_lock()/spin_unlock() pair in reqsk_queue_unlink() for the fast path. Fixes: e994b2f0fb92 ("tcp: do not lock listener to process SYN packets") Fixes: 079096f103fa ("tcp/dccp: install syn_recv requests into ehash table") Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-10-21tcp: track the packet timings in RACKYuchung Cheng
This patch is the first half of the RACK loss recovery. RACK loss recovery uses the notion of time instead of packet sequence (FACK) or counts (dupthresh). It's inspired by the previous FACK heuristic in tcp_mark_lost_retrans(): when a limited transmit (new data packet) is sacked, then current retransmitted sequence below the newly sacked sequence must been lost, since at least one round trip time has elapsed. But it has several limitations: 1) can't detect tail drops since it depends on limited transmit 2) is disabled upon reordering (assumes no reordering) 3) only enabled in fast recovery ut not timeout recovery RACK (Recently ACK) addresses these limitations with the notion of time instead: a packet P1 is lost if a later packet P2 is s/acked, as at least one round trip has passed. Since RACK cares about the time sequence instead of the data sequence of packets, it can detect tail drops when later retransmission is s/acked while FACK or dupthresh can't. For reordering RACK uses a dynamically adjusted reordering window ("reo_wnd") to reduce false positives on ever (small) degree of reordering. This patch implements tcp_advanced_rack() which tracks the most recent transmission time among the packets that have been delivered (ACKed or SACKed) in tp->rack.mstamp. This timestamp is the key to determine which packet has been lost. Consider an example that the sender sends six packets: T1: P1 (lost) T2: P2 T3: P3 T4: P4 T100: sack of P2. rack.mstamp = T2 T101: retransmit P1 T102: sack of P2,P3,P4. rack.mstamp = T4 T205: ACK of P4 since the hole is repaired. rack.mstamp = T101 We need to be careful about spurious retransmission because it may falsely advance tp->rack.mstamp by an RTT or an RTO, causing RACK to falsely mark all packets lost, just like a spurious timeout. We identify spurious retransmission by the ACK's TS echo value. If TS option is not applicable but the retransmission is acknowledged less than min-RTT ago, it is likely to be spurious. We refrain from using the transmission time of these spurious retransmissions. The second half is implemented in the next patch that marks packet lost using RACK timestamp. Signed-off-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-10-21tcp: track min RTT using windowed min-filterYuchung Cheng
Kathleen Nichols' algorithm for tracking the minimum RTT of a data stream over some measurement window. It uses constant space and constant time per update. Yet it almost always delivers the same minimum as an implementation that has to keep all the data in the window. The measurement window is tunable via sysctl.net.ipv4.tcp_min_rtt_wlen with a default value of 5 minutes. The algorithm keeps track of the best, 2nd best & 3rd best min values, maintaining an invariant that the measurement time of the n'th best >= n-1'th best. It also makes sure that the three values are widely separated in the time window since that bounds the worse case error when that data is monotonically increasing over the window. Upon getting a new min, we can forget everything earlier because it has no value - the new min is less than everything else in the window by definition and it's the most recent. So we restart fresh on every new min and overwrites the 2nd & 3rd choices. The same property holds for the 2nd & 3rd best. Therefore we have to maintain two invariants to maximize the information in the samples, one on values (1st.v <= 2nd.v <= 3rd.v) and the other on times (now-win <=1st.t <= 2nd.t <= 3rd.t <= now). These invariants determine the structure of the code The RTT input to the windowed filter is the minimum RTT measured from ACK or SACK, or as the last resort from TCP timestamps. The accessor tcp_min_rtt() returns the minimum RTT seen in the window. ~0U indicates it is not available. The minimum is 1usec even if the true RTT is below that. Signed-off-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-10-12net: shrink struct sock and request_sock by 8 bytesEric Dumazet
One 32bit hole is following skc_refcnt, use it. skc_incoming_cpu can also be an union for request_sock rcv_wnd. Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-10-11tcp: fix RFS vs lockless listenersEric Dumazet
Before recent TCP listener patches, we were updating listener sk->sk_rxhash before the cloning of master socket. children sk_rxhash was therefore correct after the normal 3WHS. But with lockless listener, we no longer dirty/change listener sk_rxhash as it would be racy. We need to correctly update the child sk_rxhash, otherwise first data packet wont hit correct cpu if RFS is used. Fixes: 079096f103fa ("tcp/dccp: install syn_recv requests into ehash table") Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: Willem de Bruijn <willemb@google.com> Cc: Tom Herbert <tom@herbertland.com> Acked-by: Tom Herbert <tom@herbertland.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-10-03tcp: remove BUG_ON() in tcp_check_req()Eric Dumazet
Once listener is lockless, its sk_state can change anytime. Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>