summaryrefslogtreecommitdiff
path: root/net/ipv4/ip_fragment.c
AgeCommit message (Collapse)Author
2018-12-15net: ipv4: do not handle duplicate fragments as overlappingMichal Kubecek
Since commit 7969e5c40dfd ("ip: discard IPv4 datagrams with overlapping segments.") IPv4 reassembly code drops the whole queue whenever an overlapping fragment is received. However, the test is written in a way which detects duplicate fragments as overlapping so that in environments with many duplicate packets, fragmented packets may be undeliverable. Add an extra test and for (potentially) duplicate fragment, only drop the new fragment rather than the whole queue. Only starting offset and length are checked, not the contents of the fragments as that would be too expensive. For similar reason, linear list ("run") of a rbtree node is not iterated, we only check if the new fragment is a subset of the interval covered by existing consecutive fragments. v2: instead of an exact check iterating through linear list of an rbtree node, only check if the new fragment is subset of the "run" (suggested by Eric Dumazet) Fixes: 7969e5c40dfd ("ip: discard IPv4 datagrams with overlapping segments.") Signed-off-by: Michal Kubecek <mkubecek@suse.cz> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-12-05ipv4: ipv6: netfilter: Adjust the frag mem limit when truesize changesJiri Wiesner
The *_frag_reasm() functions are susceptible to miscalculating the byte count of packet fragments in case the truesize of a head buffer changes. The truesize member may be changed by the call to skb_unclone(), leaving the fragment memory limit counter unbalanced even if all fragments are processed. This miscalculation goes unnoticed as long as the network namespace which holds the counter is not destroyed. Should an attempt be made to destroy a network namespace that holds an unbalanced fragment memory limit counter the cleanup of the namespace never finishes. The thread handling the cleanup gets stuck in inet_frags_exit_net() waiting for the percpu counter to reach zero. The thread is usually in running state with a stacktrace similar to: PID: 1073 TASK: ffff880626711440 CPU: 1 COMMAND: "kworker/u48:4" #5 [ffff880621563d48] _raw_spin_lock at ffffffff815f5480 #6 [ffff880621563d48] inet_evict_bucket at ffffffff8158020b #7 [ffff880621563d80] inet_frags_exit_net at ffffffff8158051c #8 [ffff880621563db0] ops_exit_list at ffffffff814f5856 #9 [ffff880621563dd8] cleanup_net at ffffffff814f67c0 #10 [ffff880621563e38] process_one_work at ffffffff81096f14 It is not possible to create new network namespaces, and processes that call unshare() end up being stuck in uninterruptible sleep state waiting to acquire the net_mutex. The bug was observed in the IPv6 netfilter code by Per Sundstrom. I thank him for his analysis of the problem. The parts of this patch that apply to IPv4 and IPv6 fragment reassembly are preemptive measures. Signed-off-by: Jiri Wiesner <jwiesner@suse.com> Reported-by: Per Sundstrom <per.sundstrom@redqube.se> Acked-by: Peter Oskolkov <posk@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-11-01net: drop skb on failure in ip_check_defrag()Cong Wang
Most callers of pskb_trim_rcsum() simply drop the skb when it fails, however, ip_check_defrag() still continues to pass the skb up to stack. This is suspicious. In ip_check_defrag(), after we learn the skb is an IP fragment, passing the skb to callers makes no sense, because callers expect fragments are defrag'ed on success. So, dropping the skb when we can't defrag it is reasonable. Note, prior to commit 88078d98d1bb, this is not a big problem as checksum will be fixed up anyway. After it, the checksum is not correct on failure. Found this during code review. Fixes: 88078d98d1bb ("net: pskb_trim_rcsum() and CHECKSUM_COMPLETE are friends") Cc: Eric Dumazet <edumazet@google.com> Signed-off-by: Cong Wang <xiyou.wangcong@gmail.com> Reviewed-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-21net/ipfrag: let ip[6]frag_high_thresh in ns be higher than in init_netPeter Oskolkov
Currently, ip[6]frag_high_thresh sysctl values in new namespaces are hard-limited to those of the root/init ns. There are at least two use cases when it would be desirable to set the high_thresh values higher in a child namespace vs the global hard limit: - a security/ddos protection policy may lower the thresholds in the root/init ns but allow for a special exception in a child namespace - testing: a test running in a namespace may want to set these thresholds higher in its namespace than what is in the root/init ns The new behavior: # ip netns add testns # ip netns exec testns bash # sysctl -w net.ipv4.ipfrag_high_thresh=9000000 net.ipv4.ipfrag_high_thresh = 9000000 # sysctl net.ipv4.ipfrag_high_thresh net.ipv4.ipfrag_high_thresh = 9000000 # sysctl -w net.ipv6.ip6frag_high_thresh=9000000 net.ipv6.ip6frag_high_thresh = 9000000 # sysctl net.ipv6.ip6frag_high_thresh net.ipv6.ip6frag_high_thresh = 9000000 The old behavior: # ip netns add testns # ip netns exec testns bash # sysctl -w net.ipv4.ipfrag_high_thresh=9000000 net.ipv4.ipfrag_high_thresh = 9000000 # sysctl net.ipv4.ipfrag_high_thresh net.ipv4.ipfrag_high_thresh = 4194304 # sysctl -w net.ipv6.ip6frag_high_thresh=9000000 net.ipv6.ip6frag_high_thresh = 9000000 # sysctl net.ipv6.ip6frag_high_thresh net.ipv6.ip6frag_high_thresh = 4194304 Signed-off-by: Peter Oskolkov <posk@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-21ipv4: remove redundant null pointer check before kfree_skbzhong jiang
kfree_skb has taken the null pointer into account. hence it is safe to remove the redundant null pointer check before kfree_skb. Signed-off-by: zhong jiang <zhongjiang@huawei.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-12Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/netDavid S. Miller
2018-09-10net: Add and use skb_mark_not_on_list().David S. Miller
An SKB is not on a list if skb->next is NULL. Codify this convention into a helper function and use it where we are dequeueing an SKB and need to mark it as such. Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-09ip: frags: fix crash in ip_do_fragment()Taehee Yoo
A kernel crash occurrs when defragmented packet is fragmented in ip_do_fragment(). In defragment routine, skb_orphan() is called and skb->ip_defrag_offset is set. but skb->sk and skb->ip_defrag_offset are same union member. so that frag->sk is not NULL. Hence crash occurrs in skb->sk check routine in ip_do_fragment() when defragmented packet is fragmented. test commands: %iptables -t nat -I POSTROUTING -j MASQUERADE %hping3 192.168.4.2 -s 1000 -p 2000 -d 60000 splat looks like: [ 261.069429] kernel BUG at net/ipv4/ip_output.c:636! [ 261.075753] invalid opcode: 0000 [#1] SMP DEBUG_PAGEALLOC KASAN PTI [ 261.083854] CPU: 1 PID: 1349 Comm: hping3 Not tainted 4.19.0-rc2+ #3 [ 261.100977] RIP: 0010:ip_do_fragment+0x1613/0x2600 [ 261.106945] Code: e8 e2 38 e3 fe 4c 8b 44 24 18 48 8b 74 24 08 e9 92 f6 ff ff 80 3c 02 00 0f 85 da 07 00 00 48 8b b5 d0 00 00 00 e9 25 f6 ff ff <0f> 0b 0f 0b 44 8b 54 24 58 4c 8b 4c 24 18 4c 8b 5c 24 60 4c 8b 6c [ 261.127015] RSP: 0018:ffff8801031cf2c0 EFLAGS: 00010202 [ 261.134156] RAX: 1ffff1002297537b RBX: ffffed0020639e6e RCX: 0000000000000004 [ 261.142156] RDX: 0000000000000000 RSI: 0000000000000000 RDI: ffff880114ba9bd8 [ 261.150157] RBP: ffff880114ba8a40 R08: ffffed0022975395 R09: ffffed0022975395 [ 261.158157] R10: 0000000000000001 R11: ffffed0022975394 R12: ffff880114ba9ca4 [ 261.166159] R13: 0000000000000010 R14: ffff880114ba9bc0 R15: dffffc0000000000 [ 261.174169] FS: 00007fbae2199700(0000) GS:ffff88011b400000(0000) knlGS:0000000000000000 [ 261.183012] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 261.189013] CR2: 00005579244fe000 CR3: 0000000119bf4000 CR4: 00000000001006e0 [ 261.198158] Call Trace: [ 261.199018] ? dst_output+0x180/0x180 [ 261.205011] ? save_trace+0x300/0x300 [ 261.209018] ? ip_copy_metadata+0xb00/0xb00 [ 261.213034] ? sched_clock_local+0xd4/0x140 [ 261.218158] ? kill_l4proto+0x120/0x120 [nf_conntrack] [ 261.223014] ? rt_cpu_seq_stop+0x10/0x10 [ 261.227014] ? find_held_lock+0x39/0x1c0 [ 261.233008] ip_finish_output+0x51d/0xb50 [ 261.237006] ? ip_fragment.constprop.56+0x220/0x220 [ 261.243011] ? nf_ct_l4proto_register_one+0x5b0/0x5b0 [nf_conntrack] [ 261.250152] ? rcu_is_watching+0x77/0x120 [ 261.255010] ? nf_nat_ipv4_out+0x1e/0x2b0 [nf_nat_ipv4] [ 261.261033] ? nf_hook_slow+0xb1/0x160 [ 261.265007] ip_output+0x1c7/0x710 [ 261.269005] ? ip_mc_output+0x13f0/0x13f0 [ 261.273002] ? __local_bh_enable_ip+0xe9/0x1b0 [ 261.278152] ? ip_fragment.constprop.56+0x220/0x220 [ 261.282996] ? nf_hook_slow+0xb1/0x160 [ 261.287007] raw_sendmsg+0x21f9/0x4420 [ 261.291008] ? dst_output+0x180/0x180 [ 261.297003] ? sched_clock_cpu+0x126/0x170 [ 261.301003] ? find_held_lock+0x39/0x1c0 [ 261.306155] ? stop_critical_timings+0x420/0x420 [ 261.311004] ? check_flags.part.36+0x450/0x450 [ 261.315005] ? _raw_spin_unlock_irq+0x29/0x40 [ 261.320995] ? _raw_spin_unlock_irq+0x29/0x40 [ 261.326142] ? cyc2ns_read_end+0x10/0x10 [ 261.330139] ? raw_bind+0x280/0x280 [ 261.334138] ? sched_clock_cpu+0x126/0x170 [ 261.338995] ? check_flags.part.36+0x450/0x450 [ 261.342991] ? __lock_acquire+0x4500/0x4500 [ 261.348994] ? inet_sendmsg+0x11c/0x500 [ 261.352989] ? dst_output+0x180/0x180 [ 261.357012] inet_sendmsg+0x11c/0x500 [ ... ] v2: - clear skb->sk at reassembly routine.(Eric Dumarzet) Fixes: fa0f527358bd ("ip: use rb trees for IP frag queue.") Suggested-by: Eric Dumazet <edumazet@google.com> Signed-off-by: Taehee Yoo <ap420073@gmail.com> Reviewed-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-08-29ip: fail fast on IP defrag errorsPeter Oskolkov
The current behavior of IP defragmentation is inconsistent: - some overlapping/wrong length fragments are dropped without affecting the queue; - most overlapping fragments cause the whole frag queue to be dropped. This patch brings consistency: if a bad fragment is detected, the whole frag queue is dropped. Two major benefits: - fail fast: corrupted frag queues are cleared immediately, instead of by timeout; - testing of overlapping fragments is now much easier: any kind of random fragment length mutation now leads to the frag queue being discarded (IP packet dropped); before this patch, some overlaps were "corrected", with tests not seeing expected packet drops. Note that in one case (see "if (end&7)" conditional) the current behavior is preserved as there are concerns that this could be legitimate padding. Signed-off-by: Peter Oskolkov <posk@google.com> Reviewed-by: Eric Dumazet <edumazet@google.com> Reviewed-by: Willem de Bruijn <willemb@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-08-11ip: process in-order fragments efficientlyPeter Oskolkov
This patch changes the runtime behavior of IP defrag queue: incoming in-order fragments are added to the end of the current list/"run" of in-order fragments at the tail. On some workloads, UDP stream performance is substantially improved: RX: ./udp_stream -F 10 -T 2 -l 60 TX: ./udp_stream -c -H <host> -F 10 -T 5 -l 60 with this patchset applied on a 10Gbps receiver: throughput=9524.18 throughput_units=Mbit/s upstream (net-next): throughput=4608.93 throughput_units=Mbit/s Reported-by: Willem de Bruijn <willemb@google.com> Signed-off-by: Peter Oskolkov <posk@google.com> Cc: Eric Dumazet <edumazet@google.com> Cc: Florian Westphal <fw@strlen.de> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-08-11ip: add helpers to process in-order fragments faster.Peter Oskolkov
This patch introduces several helper functions/macros that will be used in the follow-up patch. No runtime changes yet. The new logic (fully implemented in the second patch) is as follows: * Nodes in the rb-tree will now contain not single fragments, but lists of consecutive fragments ("runs"). * At each point in time, the current "active" run at the tail is maintained/tracked. Fragments that arrive in-order, adjacent to the previous tail fragment, are added to this tail run without triggering the re-balancing of the rb-tree. * If a fragment arrives out of order with the offset _before_ the tail run, it is inserted into the rb-tree as a single fragment. * If a fragment arrives after the current tail fragment (with a gap), it starts a new "tail" run, as is inserted into the rb-tree at the end as the head of the new run. skb->cb is used to store additional information needed here (suggested by Eric Dumazet). Reported-by: Willem de Bruijn <willemb@google.com> Signed-off-by: Peter Oskolkov <posk@google.com> Cc: Eric Dumazet <edumazet@google.com> Cc: Florian Westphal <fw@strlen.de> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-08-06ipv4: frags: precedence bug in ip_expire()Dan Carpenter
We accidentally removed the parentheses here, but they are required because '!' has higher precedence than '&'. Fixes: fa0f527358bd ("ip: use rb trees for IP frag queue.") Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-08-05ip: use rb trees for IP frag queue.Peter Oskolkov
Similar to TCP OOO RX queue, it makes sense to use rb trees to store IP fragments, so that OOO fragments are inserted faster. Tested: - a follow-up patch contains a rather comprehensive ip defrag self-test (functional) - ran neper `udp_stream -c -H <host> -F 100 -l 300 -T 20`: netstat --statistics Ip: 282078937 total packets received 0 forwarded 0 incoming packets discarded 946760 incoming packets delivered 18743456 requests sent out 101 fragments dropped after timeout 282077129 reassemblies required 944952 packets reassembled ok 262734239 packet reassembles failed (The numbers/stats above are somewhat better re: reassemblies vs a kernel without this patchset. More comprehensive performance testing TBD). Reported-by: Jann Horn <jannh@google.com> Reported-by: Juha-Matti Tilli <juha-matti.tilli@iki.fi> Suggested-by: Eric Dumazet <edumazet@google.com> Signed-off-by: Peter Oskolkov <posk@google.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Florian Westphal <fw@strlen.de> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-08-05ip: discard IPv4 datagrams with overlapping segments.Peter Oskolkov
This behavior is required in IPv6, and there is little need to tolerate overlapping fragments in IPv4. This change simplifies the code and eliminates potential DDoS attack vectors. Tested: ran ip_defrag selftest (not yet available uptream). Suggested-by: David S. Miller <davem@davemloft.net> Signed-off-by: Peter Oskolkov <posk@google.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Florian Westphal <fw@strlen.de> Acked-by: Stephen Hemminger <stephen@networkplumber.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-07-31ipv4: frags: handle possible skb truesize changeEric Dumazet
ip_frag_queue() might call pskb_pull() on one skb that is already in the fragment queue. We need to take care of possible truesize change, or we might have an imbalance of the netns frags memory usage. IPv6 is immune to this bug, because RFC5722, Section 4, amended by Errata ID 3089 states : When reassembling an IPv6 datagram, if one or more its constituent fragments is determined to be an overlapping fragment, the entire datagram (and any constituent fragments) MUST be silently discarded. Fixes: 158f323b9868 ("net: adjust skb->truesize in pskb_expand_head()") Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-04-04inet: frags: fix ip6frag_low_thresh boundaryEric Dumazet
Giving an integer to proc_doulongvec_minmax() is dangerous on 64bit arches, since linker might place next to it a non zero value preventing a change to ip6frag_low_thresh. ip6frag_low_thresh is not used anymore in the kernel, but we do not want to prematuraly break user scripts wanting to change it. Since specifying a minimal value of 0 for proc_doulongvec_minmax() is moot, let's remove these zero values in all defrag units. Fixes: 6e00f7dd5e4e ("ipv6: frags: fix /proc/sys/net/ipv6/ip6frag_low_thresh") Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: Maciej Żenczykowski <maze@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-03-31inet: frags: get rid of ipfrag_skb_cb/FRAG_CBEric Dumazet
ip_defrag uses skb->cb[] to store the fragment offset, and unfortunately this integer is currently in a different cache line than skb->next, meaning that we use two cache lines per skb when finding the insertion point. By aliasing skb->ip_defrag_offset and skb->dev, we pack all the fields in a single cache line and save precious memory bandwidth. Note that after the fast path added by Changli Gao in commit d6bebca92c66 ("fragment: add fast path for in-order fragments") this change wont help the fast path, since we still need to access prev->len (2nd cache line), but will show great benefits when slow path is entered, since we perform a linear scan of a potentially long list. Also, note that this potential long list is an attack vector, we might consider also using an rb-tree there eventually. Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-03-31inet: frags: do not clone skb in ip_expire()Eric Dumazet
An skb_clone() was added in commit ec4fbd64751d ("inet: frag: release spinlock before calling icmp_send()") While fixing the bug at that time, it also added a very high cost for DDOS frags, as the ICMP rate limit is applied after this expensive operation (skb_clone() + consume_skb(), implying memory allocations, copy, and freeing) We can use skb_get(head) here, all we want is to make sure skb wont be freed by another cpu. Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-03-31inet: frags: break the 2GB limit for frags storageEric Dumazet
Some users are willing to provision huge amounts of memory to be able to perform reassembly reasonnably well under pressure. Current memory tracking is using one atomic_t and integers. Switch to atomic_long_t so that 64bit arches can use more than 2GB, without any cost for 32bit arches. Note that this patch avoids an overflow error, if high_thresh was set to ~2GB, since this test in inet_frag_alloc() was never true : if (... || frag_mem_limit(nf) > nf->high_thresh) Tested: $ echo 16000000000 >/proc/sys/net/ipv4/ipfrag_high_thresh <frag DDOS> $ grep FRAG /proc/net/sockstat FRAG: inuse 14705885 memory 16000002880 $ nstat -n ; sleep 1 ; nstat | grep Reas IpReasmReqds 3317150 0.0 IpReasmFails 3317112 0.0 Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-03-31inet: frags: remove inet_frag_maybe_warn_overflow()Eric Dumazet
This function is obsolete, after rhashtable addition to inet defrag. Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-03-31inet: frags: get rif of inet_frag_evicting()Eric Dumazet
This refactors ip_expire() since one indentation level is removed. Note: in the future, we should try hard to avoid the skb_clone() since this is a serious performance cost. Under DDOS, the ICMP message wont be sent because of rate limits. Fact that ip6_expire_frag_queue() does not use skb_clone() is disturbing too. Presumably IPv6 should have the same issue than the one we fixed in commit ec4fbd64751d ("inet: frag: release spinlock before calling icmp_send()") Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-03-31inet: frags: remove some helpersEric Dumazet
Remove sum_frag_mem_limit(), ip_frag_mem() & ip6_frag_mem() Also since we use rhashtable we can bring back the number of fragments in "grep FRAG /proc/net/sockstat /proc/net/sockstat6" that was removed in commit 434d305405ab ("inet: frag: don't account number of fragment queues") Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-03-31inet: frags: use rhashtables for reassembly unitsEric Dumazet
Some applications still rely on IP fragmentation, and to be fair linux reassembly unit is not working under any serious load. It uses static hash tables of 1024 buckets, and up to 128 items per bucket (!!!) A work queue is supposed to garbage collect items when host is under memory pressure, and doing a hash rebuild, changing seed used in hash computations. This work queue blocks softirqs for up to 25 ms when doing a hash rebuild, occurring every 5 seconds if host is under fire. Then there is the problem of sharing this hash table for all netns. It is time to switch to rhashtables, and allocate one of them per netns to speedup netns dismantle, since this is a critical metric these days. Lookup is now using RCU. A followup patch will even remove the refcount hold/release left from prior implementation and save a couple of atomic operations. Before this patch, 16 cpus (16 RX queue NIC) could not handle more than 1 Mpps frags DDOS. After the patch, I reach 9 Mpps without any tuning, and can use up to 2GB of storage for the fragments (exact number depends on frags being evicted after timeout) $ grep FRAG /proc/net/sockstat FRAG: inuse 1966916 memory 2140004608 A followup patch will change the limits for 64bit arches. Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Kirill Tkhai <ktkhai@virtuozzo.com> Cc: Herbert Xu <herbert@gondor.apana.org.au> Cc: Florian Westphal <fw@strlen.de> Cc: Jesper Dangaard Brouer <brouer@redhat.com> Cc: Alexander Aring <alex.aring@gmail.com> Cc: Stefan Schmidt <stefan@osg.samsung.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-03-31inet: frags: refactor ipfrag_init()Eric Dumazet
We need to call inet_frags_init() before register_pernet_subsys(), as a prereq for following patch ("inet: frags: use rhashtables for reassembly units") Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-03-31inet: frags: add a pointer to struct netns_fragsEric Dumazet
In order to simplify the API, add a pointer to struct inet_frags. This will allow us to make things less complex. These functions no longer have a struct inet_frags parameter : inet_frag_destroy(struct inet_frag_queue *q /*, struct inet_frags *f */) inet_frag_put(struct inet_frag_queue *q /*, struct inet_frags *f */) inet_frag_kill(struct inet_frag_queue *q /*, struct inet_frags *f */) inet_frags_exit_net(struct netns_frags *nf /*, struct inet_frags *f */) ip6_expire_frag_queue(struct net *net, struct frag_queue *fq) Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-03-31inet: frags: change inet_frags_init_net() return valueEric Dumazet
We will soon initialize one rhashtable per struct netns_frags in inet_frags_init_net(). This patch changes the return value to eventually propagate an error. Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-03-27net: Drop pernet_operations::asyncKirill Tkhai
Synchronous pernet_operations are not allowed anymore. All are asynchronous. So, drop the structure member. Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-02-13net: Convert pernet_subsys, registered from inet_init()Kirill Tkhai
arp_net_ops just addr/removes /proc entry. devinet_ops allocates and frees duplicate of init_net tables and (un)registers sysctl entries. fib_net_ops allocates and frees pernet tables, creates/destroys netlink socket and (un)initializes /proc entries. Foreign pernet_operations do not touch them. ip_rt_proc_ops only modifies pernet /proc entries. xfrm_net_ops creates/destroys /proc entries, allocates/frees pernet statistics, hashes and tables, and (un)initializes sysctl files. These are not touched by foreigh pernet_operations xfrm4_net_ops allocates/frees private pernet memory, and configures sysctls. sysctl_route_ops creates/destroys sysctls. rt_genid_ops only initializes fields of just allocated net. ipv4_inetpeer_ops allocated/frees net private memory. igmp_net_ops just creates/destroys /proc files and socket, noone else interested in. tcp_sk_ops seems to be safe, because tcp_sk_init() does not depend on any other pernet_operations modifications. Iteration over hash table in inet_twsk_purge() is made under RCU lock, and it's safe to iterate the table this way. Removing from the table happen from inet_twsk_deschedule_put(), but this function is safe without any extern locks, as it's synchronized inside itself. There are many examples, it's used in different context. So, it's safe to leave tcp_sk_exit_batch() unlocked. tcp_net_metrics_ops is synchronized on tcp_metrics_lock and safe. udplite4_net_ops only creates/destroys pernet /proc file. icmp_sk_ops creates percpu sockets, not touched by foreign pernet_operations. ipmr_net_ops creates/destroys pernet fib tables, (un)registers fib rules and /proc files. This seem to be safe to execute in parallel with foreign pernet_operations. af_inet_ops just sets up default parameters of newly created net. ipv4_mib_ops creates and destroys pernet percpu statistics. raw_net_ops, tcp4_net_ops, udp4_net_ops, ping_v4_net_ops and ip_proc_ops only create/destroy pernet /proc files. ip4_frags_ops creates and destroys sysctl file. So, it's safe to make the pernet_operations async. Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com> Acked-by: Andrei Vagin <avagin@virtuozzo.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-11-04Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/netDavid S. Miller
Files removed in 'net-next' had their license header updated in 'net'. We take the remove from 'net-next'. Signed-off-by: David S. Miller <davem@davemloft.net>
2017-11-02License cleanup: add SPDX GPL-2.0 license identifier to files with no licenseGreg Kroah-Hartman
Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-10-18inet: frags: Convert timers to use timer_setup()Kees Cook
In preparation for unconditionally passing the struct timer_list pointer to all timer callbacks, switch to using the new timer_setup() and from_timer() to pass the timer pointer explicitly. Cc: Alexander Aring <alex.aring@gmail.com> Cc: Stefan Schmidt <stefan@osg.samsung.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> Cc: Hideaki YOSHIFUJI <yoshfuji@linux-ipv6.org> Cc: Pablo Neira Ayuso <pablo@netfilter.org> Cc: Jozsef Kadlecsik <kadlec@blackhole.kfki.hu> Cc: Florian Westphal <fw@strlen.de> Cc: linux-wpan@vger.kernel.org Cc: netdev@vger.kernel.org Cc: netfilter-devel@vger.kernel.org Cc: coreteam@netfilter.org Signed-off-by: Kees Cook <keescook@chromium.org> Acked-by: Stefan Schmidt <stefan@osg.samsung.com> # for ieee802154 Signed-off-by: David S. Miller <davem@davemloft.net>
2017-09-03Revert "net: fix percpu memory leaks"Jesper Dangaard Brouer
This reverts commit 1d6119baf0610f813eb9d9580eb4fd16de5b4ceb. After reverting commit 6d7b857d541e ("net: use lib/percpu_counter API for fragmentation mem accounting") then here is no need for this fix-up patch. As percpu_counter is no longer used, it cannot memory leak it any-longer. Fixes: 6d7b857d541e ("net: use lib/percpu_counter API for fragmentation mem accounting") Fixes: 1d6119baf061 ("net: fix percpu memory leaks") Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-01net: convert inet_frag_queue.refcnt from atomic_t to refcount_tReshetova, Elena
refcount_t type and corresponding API should be used instead of atomic_t when the variable is used as a reference counter. This allows to avoid accidental refcounter overflows that might lead to use-after-free situations. Signed-off-by: Elena Reshetova <elena.reshetova@intel.com> Signed-off-by: Hans Liljestrand <ishkamiel@gmail.com> Signed-off-by: Kees Cook <keescook@chromium.org> Signed-off-by: David Windsor <dwindsor@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-03-22inet: frag: release spinlock before calling icmp_send()Eric Dumazet
Dmitry reported a lockdep splat [1] (false positive) that we can fix by releasing the spinlock before calling icmp_send() from ip_expire() This is a false positive because sending an ICMP message can not possibly re-enter the IP frag engine. [1] [ INFO: possible circular locking dependency detected ] 4.10.0+ #29 Not tainted ------------------------------------------------------- modprobe/12392 is trying to acquire lock: (_xmit_ETHER#2){+.-...}, at: [<ffffffff837a8182>] spin_lock include/linux/spinlock.h:299 [inline] (_xmit_ETHER#2){+.-...}, at: [<ffffffff837a8182>] __netif_tx_lock include/linux/netdevice.h:3486 [inline] (_xmit_ETHER#2){+.-...}, at: [<ffffffff837a8182>] sch_direct_xmit+0x282/0x6d0 net/sched/sch_generic.c:180 but task is already holding lock: (&(&q->lock)->rlock){+.-...}, at: [<ffffffff8389a4d1>] spin_lock include/linux/spinlock.h:299 [inline] (&(&q->lock)->rlock){+.-...}, at: [<ffffffff8389a4d1>] ip_expire+0x51/0x6c0 net/ipv4/ip_fragment.c:201 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #1 (&(&q->lock)->rlock){+.-...}: validate_chain kernel/locking/lockdep.c:2267 [inline] __lock_acquire+0x2149/0x3430 kernel/locking/lockdep.c:3340 lock_acquire+0x2a1/0x630 kernel/locking/lockdep.c:3755 __raw_spin_lock include/linux/spinlock_api_smp.h:142 [inline] _raw_spin_lock+0x33/0x50 kernel/locking/spinlock.c:151 spin_lock include/linux/spinlock.h:299 [inline] ip_defrag+0x3a2/0x4130 net/ipv4/ip_fragment.c:669 ip_check_defrag+0x4e3/0x8b0 net/ipv4/ip_fragment.c:713 packet_rcv_fanout+0x282/0x800 net/packet/af_packet.c:1459 deliver_skb net/core/dev.c:1834 [inline] dev_queue_xmit_nit+0x294/0xa90 net/core/dev.c:1890 xmit_one net/core/dev.c:2903 [inline] dev_hard_start_xmit+0x16b/0xab0 net/core/dev.c:2923 sch_direct_xmit+0x31f/0x6d0 net/sched/sch_generic.c:182 __dev_xmit_skb net/core/dev.c:3092 [inline] __dev_queue_xmit+0x13e5/0x1e60 net/core/dev.c:3358 dev_queue_xmit+0x17/0x20 net/core/dev.c:3423 neigh_resolve_output+0x6b9/0xb10 net/core/neighbour.c:1308 neigh_output include/net/neighbour.h:478 [inline] ip_finish_output2+0x8b8/0x15a0 net/ipv4/ip_output.c:228 ip_do_fragment+0x1d93/0x2720 net/ipv4/ip_output.c:672 ip_fragment.constprop.54+0x145/0x200 net/ipv4/ip_output.c:545 ip_finish_output+0x82d/0xe10 net/ipv4/ip_output.c:314 NF_HOOK_COND include/linux/netfilter.h:246 [inline] ip_output+0x1f0/0x7a0 net/ipv4/ip_output.c:404 dst_output include/net/dst.h:486 [inline] ip_local_out+0x95/0x170 net/ipv4/ip_output.c:124 ip_send_skb+0x3c/0xc0 net/ipv4/ip_output.c:1492 ip_push_pending_frames+0x64/0x80 net/ipv4/ip_output.c:1512 raw_sendmsg+0x26de/0x3a00 net/ipv4/raw.c:655 inet_sendmsg+0x164/0x5b0 net/ipv4/af_inet.c:761 sock_sendmsg_nosec net/socket.c:633 [inline] sock_sendmsg+0xca/0x110 net/socket.c:643 ___sys_sendmsg+0x4a3/0x9f0 net/socket.c:1985 __sys_sendmmsg+0x25c/0x750 net/socket.c:2075 SYSC_sendmmsg net/socket.c:2106 [inline] SyS_sendmmsg+0x35/0x60 net/socket.c:2101 do_syscall_64+0x2e8/0x930 arch/x86/entry/common.c:281 return_from_SYSCALL_64+0x0/0x7a -> #0 (_xmit_ETHER#2){+.-...}: check_prev_add kernel/locking/lockdep.c:1830 [inline] check_prevs_add+0xa8f/0x19f0 kernel/locking/lockdep.c:1940 validate_chain kernel/locking/lockdep.c:2267 [inline] __lock_acquire+0x2149/0x3430 kernel/locking/lockdep.c:3340 lock_acquire+0x2a1/0x630 kernel/locking/lockdep.c:3755 __raw_spin_lock include/linux/spinlock_api_smp.h:142 [inline] _raw_spin_lock+0x33/0x50 kernel/locking/spinlock.c:151 spin_lock include/linux/spinlock.h:299 [inline] __netif_tx_lock include/linux/netdevice.h:3486 [inline] sch_direct_xmit+0x282/0x6d0 net/sched/sch_generic.c:180 __dev_xmit_skb net/core/dev.c:3092 [inline] __dev_queue_xmit+0x13e5/0x1e60 net/core/dev.c:3358 dev_queue_xmit+0x17/0x20 net/core/dev.c:3423 neigh_hh_output include/net/neighbour.h:468 [inline] neigh_output include/net/neighbour.h:476 [inline] ip_finish_output2+0xf6c/0x15a0 net/ipv4/ip_output.c:228 ip_finish_output+0xa29/0xe10 net/ipv4/ip_output.c:316 NF_HOOK_COND include/linux/netfilter.h:246 [inline] ip_output+0x1f0/0x7a0 net/ipv4/ip_output.c:404 dst_output include/net/dst.h:486 [inline] ip_local_out+0x95/0x170 net/ipv4/ip_output.c:124 ip_send_skb+0x3c/0xc0 net/ipv4/ip_output.c:1492 ip_push_pending_frames+0x64/0x80 net/ipv4/ip_output.c:1512 icmp_push_reply+0x372/0x4d0 net/ipv4/icmp.c:394 icmp_send+0x156c/0x1c80 net/ipv4/icmp.c:754 ip_expire+0x40e/0x6c0 net/ipv4/ip_fragment.c:239 call_timer_fn+0x241/0x820 kernel/time/timer.c:1268 expire_timers kernel/time/timer.c:1307 [inline] __run_timers+0x960/0xcf0 kernel/time/timer.c:1601 run_timer_softirq+0x21/0x80 kernel/time/timer.c:1614 __do_softirq+0x31f/0xbe7 kernel/softirq.c:284 invoke_softirq kernel/softirq.c:364 [inline] irq_exit+0x1cc/0x200 kernel/softirq.c:405 exiting_irq arch/x86/include/asm/apic.h:657 [inline] smp_apic_timer_interrupt+0x76/0xa0 arch/x86/kernel/apic/apic.c:962 apic_timer_interrupt+0x93/0xa0 arch/x86/entry/entry_64.S:707 __read_once_size include/linux/compiler.h:254 [inline] atomic_read arch/x86/include/asm/atomic.h:26 [inline] rcu_dynticks_curr_cpu_in_eqs kernel/rcu/tree.c:350 [inline] __rcu_is_watching kernel/rcu/tree.c:1133 [inline] rcu_is_watching+0x83/0x110 kernel/rcu/tree.c:1147 rcu_read_lock_held+0x87/0xc0 kernel/rcu/update.c:293 radix_tree_deref_slot include/linux/radix-tree.h:238 [inline] filemap_map_pages+0x6d4/0x1570 mm/filemap.c:2335 do_fault_around mm/memory.c:3231 [inline] do_read_fault mm/memory.c:3265 [inline] do_fault+0xbd5/0x2080 mm/memory.c:3370 handle_pte_fault mm/memory.c:3600 [inline] __handle_mm_fault+0x1062/0x2cb0 mm/memory.c:3714 handle_mm_fault+0x1e2/0x480 mm/memory.c:3751 __do_page_fault+0x4f6/0xb60 arch/x86/mm/fault.c:1397 do_page_fault+0x54/0x70 arch/x86/mm/fault.c:1460 page_fault+0x28/0x30 arch/x86/entry/entry_64.S:1011 other info that might help us debug this: Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(&(&q->lock)->rlock); lock(_xmit_ETHER#2); lock(&(&q->lock)->rlock); lock(_xmit_ETHER#2); *** DEADLOCK *** 10 locks held by modprobe/12392: #0: (&mm->mmap_sem){++++++}, at: [<ffffffff81329758>] __do_page_fault+0x2b8/0xb60 arch/x86/mm/fault.c:1336 #1: (rcu_read_lock){......}, at: [<ffffffff8188cab6>] filemap_map_pages+0x1e6/0x1570 mm/filemap.c:2324 #2: (&(ptlock_ptr(page))->rlock#2){+.+...}, at: [<ffffffff81984a78>] spin_lock include/linux/spinlock.h:299 [inline] #2: (&(ptlock_ptr(page))->rlock#2){+.+...}, at: [<ffffffff81984a78>] pte_alloc_one_map mm/memory.c:2944 [inline] #2: (&(ptlock_ptr(page))->rlock#2){+.+...}, at: [<ffffffff81984a78>] alloc_set_pte+0x13b8/0x1b90 mm/memory.c:3072 #3: (((&q->timer))){+.-...}, at: [<ffffffff81627e72>] lockdep_copy_map include/linux/lockdep.h:175 [inline] #3: (((&q->timer))){+.-...}, at: [<ffffffff81627e72>] call_timer_fn+0x1c2/0x820 kernel/time/timer.c:1258 #4: (&(&q->lock)->rlock){+.-...}, at: [<ffffffff8389a4d1>] spin_lock include/linux/spinlock.h:299 [inline] #4: (&(&q->lock)->rlock){+.-...}, at: [<ffffffff8389a4d1>] ip_expire+0x51/0x6c0 net/ipv4/ip_fragment.c:201 #5: (rcu_read_lock){......}, at: [<ffffffff8389a633>] ip_expire+0x1b3/0x6c0 net/ipv4/ip_fragment.c:216 #6: (slock-AF_INET){+.-...}, at: [<ffffffff839b3313>] spin_trylock include/linux/spinlock.h:309 [inline] #6: (slock-AF_INET){+.-...}, at: [<ffffffff839b3313>] icmp_xmit_lock net/ipv4/icmp.c:219 [inline] #6: (slock-AF_INET){+.-...}, at: [<ffffffff839b3313>] icmp_send+0x803/0x1c80 net/ipv4/icmp.c:681 #7: (rcu_read_lock_bh){......}, at: [<ffffffff838ab9a1>] ip_finish_output2+0x2c1/0x15a0 net/ipv4/ip_output.c:198 #8: (rcu_read_lock_bh){......}, at: [<ffffffff836d1dee>] __dev_queue_xmit+0x23e/0x1e60 net/core/dev.c:3324 #9: (dev->qdisc_running_key ?: &qdisc_running_key){+.....}, at: [<ffffffff836d3a27>] dev_queue_xmit+0x17/0x20 net/core/dev.c:3423 stack backtrace: CPU: 0 PID: 12392 Comm: modprobe Not tainted 4.10.0+ #29 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Call Trace: <IRQ> __dump_stack lib/dump_stack.c:16 [inline] dump_stack+0x2ee/0x3ef lib/dump_stack.c:52 print_circular_bug+0x307/0x3b0 kernel/locking/lockdep.c:1204 check_prev_add kernel/locking/lockdep.c:1830 [inline] check_prevs_add+0xa8f/0x19f0 kernel/locking/lockdep.c:1940 validate_chain kernel/locking/lockdep.c:2267 [inline] __lock_acquire+0x2149/0x3430 kernel/locking/lockdep.c:3340 lock_acquire+0x2a1/0x630 kernel/locking/lockdep.c:3755 __raw_spin_lock include/linux/spinlock_api_smp.h:142 [inline] _raw_spin_lock+0x33/0x50 kernel/locking/spinlock.c:151 spin_lock include/linux/spinlock.h:299 [inline] __netif_tx_lock include/linux/netdevice.h:3486 [inline] sch_direct_xmit+0x282/0x6d0 net/sched/sch_generic.c:180 __dev_xmit_skb net/core/dev.c:3092 [inline] __dev_queue_xmit+0x13e5/0x1e60 net/core/dev.c:3358 dev_queue_xmit+0x17/0x20 net/core/dev.c:3423 neigh_hh_output include/net/neighbour.h:468 [inline] neigh_output include/net/neighbour.h:476 [inline] ip_finish_output2+0xf6c/0x15a0 net/ipv4/ip_output.c:228 ip_finish_output+0xa29/0xe10 net/ipv4/ip_output.c:316 NF_HOOK_COND include/linux/netfilter.h:246 [inline] ip_output+0x1f0/0x7a0 net/ipv4/ip_output.c:404 dst_output include/net/dst.h:486 [inline] ip_local_out+0x95/0x170 net/ipv4/ip_output.c:124 ip_send_skb+0x3c/0xc0 net/ipv4/ip_output.c:1492 ip_push_pending_frames+0x64/0x80 net/ipv4/ip_output.c:1512 icmp_push_reply+0x372/0x4d0 net/ipv4/icmp.c:394 icmp_send+0x156c/0x1c80 net/ipv4/icmp.c:754 ip_expire+0x40e/0x6c0 net/ipv4/ip_fragment.c:239 call_timer_fn+0x241/0x820 kernel/time/timer.c:1268 expire_timers kernel/time/timer.c:1307 [inline] __run_timers+0x960/0xcf0 kernel/time/timer.c:1601 run_timer_softirq+0x21/0x80 kernel/time/timer.c:1614 __do_softirq+0x31f/0xbe7 kernel/softirq.c:284 invoke_softirq kernel/softirq.c:364 [inline] irq_exit+0x1cc/0x200 kernel/softirq.c:405 exiting_irq arch/x86/include/asm/apic.h:657 [inline] smp_apic_timer_interrupt+0x76/0xa0 arch/x86/kernel/apic/apic.c:962 apic_timer_interrupt+0x93/0xa0 arch/x86/entry/entry_64.S:707 RIP: 0010:__read_once_size include/linux/compiler.h:254 [inline] RIP: 0010:atomic_read arch/x86/include/asm/atomic.h:26 [inline] RIP: 0010:rcu_dynticks_curr_cpu_in_eqs kernel/rcu/tree.c:350 [inline] RIP: 0010:__rcu_is_watching kernel/rcu/tree.c:1133 [inline] RIP: 0010:rcu_is_watching+0x83/0x110 kernel/rcu/tree.c:1147 RSP: 0000:ffff8801c391f120 EFLAGS: 00000a03 ORIG_RAX: ffffffffffffff10 RAX: dffffc0000000000 RBX: ffff8801c391f148 RCX: 0000000000000000 RDX: 0000000000000000 RSI: 000055edd4374000 RDI: ffff8801dbe1ae0c RBP: ffff8801c391f1a0 R08: 0000000000000002 R09: 0000000000000000 R10: dffffc0000000000 R11: 0000000000000002 R12: 1ffff10038723e25 R13: ffff8801dbe1ae00 R14: ffff8801c391f680 R15: dffffc0000000000 </IRQ> rcu_read_lock_held+0x87/0xc0 kernel/rcu/update.c:293 radix_tree_deref_slot include/linux/radix-tree.h:238 [inline] filemap_map_pages+0x6d4/0x1570 mm/filemap.c:2335 do_fault_around mm/memory.c:3231 [inline] do_read_fault mm/memory.c:3265 [inline] do_fault+0xbd5/0x2080 mm/memory.c:3370 handle_pte_fault mm/memory.c:3600 [inline] __handle_mm_fault+0x1062/0x2cb0 mm/memory.c:3714 handle_mm_fault+0x1e2/0x480 mm/memory.c:3751 __do_page_fault+0x4f6/0xb60 arch/x86/mm/fault.c:1397 do_page_fault+0x54/0x70 arch/x86/mm/fault.c:1460 page_fault+0x28/0x30 arch/x86/entry/entry_64.S:1011 RIP: 0033:0x7f83172f2786 RSP: 002b:00007fffe859ae80 EFLAGS: 00010293 RAX: 000055edd4373040 RBX: 00007f83175111c8 RCX: 000055edd4373238 RDX: 0000000000000000 RSI: 0000000000000000 RDI: 00007f8317510970 RBP: 00007fffe859afd0 R08: 0000000000000009 R09: 0000000000000000 R10: 0000000000000064 R11: 0000000000000000 R12: 000055edd4373040 R13: 0000000000000000 R14: 00007fffe859afe8 R15: 0000000000000000 Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: Dmitry Vyukov <dvyukov@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-04-27net: rename IP_INC_STATS_BH()Eric Dumazet
Rename IP_INC_STATS_BH() to __IP_INC_STATS(), to better express this is used in non preemptible context. Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-02-16net: Export ip fragment sysctl to unprivileged usersNikolay Borisov
Now that all the ip fragmentation related sysctls are namespaceified there is no reason to hide them anymore from "root" users inside containers. Signed-off-by: Nikolay Borisov <kernel@kyup.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-02-16ipv4: namespacify ip fragment max dist sysctl knobNikolay Borisov
Signed-off-by: Nikolay Borisov <kernel@kyup.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-01-28inet: frag: Always orphan skbs inside ip_defrag()Joe Stringer
Later parts of the stack (including fragmentation) expect that there is never a socket attached to frag in a frag_list, however this invariant was not enforced on all defrag paths. This could lead to the BUG_ON(skb->sk) during ip_do_fragment(), as per the call stack at the end of this commit message. While the call could be added to openvswitch to fix this particular error, the head and tail of the frags list are already orphaned indirectly inside ip_defrag(), so it seems like the remaining fragments should all be orphaned in all circumstances. kernel BUG at net/ipv4/ip_output.c:586! [...] Call Trace: <IRQ> [<ffffffffa0205270>] ? do_output.isra.29+0x1b0/0x1b0 [openvswitch] [<ffffffffa02167a7>] ovs_fragment+0xcc/0x214 [openvswitch] [<ffffffff81667830>] ? dst_discard_out+0x20/0x20 [<ffffffff81667810>] ? dst_ifdown+0x80/0x80 [<ffffffffa0212072>] ? find_bucket.isra.2+0x62/0x70 [openvswitch] [<ffffffff810e0ba5>] ? mod_timer_pending+0x65/0x210 [<ffffffff810b732b>] ? __lock_acquire+0x3db/0x1b90 [<ffffffffa03205a2>] ? nf_conntrack_in+0x252/0x500 [nf_conntrack] [<ffffffff810b63c4>] ? __lock_is_held+0x54/0x70 [<ffffffffa02051a3>] do_output.isra.29+0xe3/0x1b0 [openvswitch] [<ffffffffa0206411>] do_execute_actions+0xe11/0x11f0 [openvswitch] [<ffffffff810b63c4>] ? __lock_is_held+0x54/0x70 [<ffffffffa0206822>] ovs_execute_actions+0x32/0xd0 [openvswitch] [<ffffffffa020b505>] ovs_dp_process_packet+0x85/0x140 [openvswitch] [<ffffffff810b63c4>] ? __lock_is_held+0x54/0x70 [<ffffffffa02068a2>] ovs_execute_actions+0xb2/0xd0 [openvswitch] [<ffffffffa020b505>] ovs_dp_process_packet+0x85/0x140 [openvswitch] [<ffffffffa0215019>] ? ovs_ct_get_labels+0x49/0x80 [openvswitch] [<ffffffffa0213a1d>] ovs_vport_receive+0x5d/0xa0 [openvswitch] [<ffffffff810b732b>] ? __lock_acquire+0x3db/0x1b90 [<ffffffff810b732b>] ? __lock_acquire+0x3db/0x1b90 [<ffffffff810b732b>] ? __lock_acquire+0x3db/0x1b90 [<ffffffffa0214895>] ? internal_dev_xmit+0x5/0x140 [openvswitch] [<ffffffffa02148fc>] internal_dev_xmit+0x6c/0x140 [openvswitch] [<ffffffffa0214895>] ? internal_dev_xmit+0x5/0x140 [openvswitch] [<ffffffff81660299>] dev_hard_start_xmit+0x2b9/0x5e0 [<ffffffff8165fc21>] ? netif_skb_features+0xd1/0x1f0 [<ffffffff81660f20>] __dev_queue_xmit+0x800/0x930 [<ffffffff81660770>] ? __dev_queue_xmit+0x50/0x930 [<ffffffff810b53f1>] ? mark_held_locks+0x71/0x90 [<ffffffff81669876>] ? neigh_resolve_output+0x106/0x220 [<ffffffff81661060>] dev_queue_xmit+0x10/0x20 [<ffffffff816698e8>] neigh_resolve_output+0x178/0x220 [<ffffffff816a8e6f>] ? ip_finish_output2+0x1ff/0x590 [<ffffffff816a8e6f>] ip_finish_output2+0x1ff/0x590 [<ffffffff816a8cee>] ? ip_finish_output2+0x7e/0x590 [<ffffffff816a9a31>] ip_do_fragment+0x831/0x8a0 [<ffffffff816a8c70>] ? ip_copy_metadata+0x1b0/0x1b0 [<ffffffff816a9ae3>] ip_fragment.constprop.49+0x43/0x80 [<ffffffff816a9c9c>] ip_finish_output+0x17c/0x340 [<ffffffff8169a6f4>] ? nf_hook_slow+0xe4/0x190 [<ffffffff816ab4c0>] ip_output+0x70/0x110 [<ffffffff816a9b20>] ? ip_fragment.constprop.49+0x80/0x80 [<ffffffff816aa9f9>] ip_local_out+0x39/0x70 [<ffffffff816abf89>] ip_send_skb+0x19/0x40 [<ffffffff816abfe3>] ip_push_pending_frames+0x33/0x40 [<ffffffff816df21a>] icmp_push_reply+0xea/0x120 [<ffffffff816df93d>] icmp_reply.constprop.23+0x1ed/0x230 [<ffffffff816df9ce>] icmp_echo.part.21+0x4e/0x50 [<ffffffff810b63c4>] ? __lock_is_held+0x54/0x70 [<ffffffff810d5f9e>] ? rcu_read_lock_held+0x5e/0x70 [<ffffffff816dfa06>] icmp_echo+0x36/0x70 [<ffffffff816e0d11>] icmp_rcv+0x271/0x450 [<ffffffff816a4ca7>] ip_local_deliver_finish+0x127/0x3a0 [<ffffffff816a4bc1>] ? ip_local_deliver_finish+0x41/0x3a0 [<ffffffff816a5160>] ip_local_deliver+0x60/0xd0 [<ffffffff816a4b80>] ? ip_rcv_finish+0x560/0x560 [<ffffffff816a46fd>] ip_rcv_finish+0xdd/0x560 [<ffffffff816a5453>] ip_rcv+0x283/0x3e0 [<ffffffff810b6302>] ? match_held_lock+0x192/0x200 [<ffffffff816a4620>] ? inet_del_offload+0x40/0x40 [<ffffffff8165d062>] __netif_receive_skb_core+0x392/0xae0 [<ffffffff8165e68e>] ? process_backlog+0x8e/0x230 [<ffffffff810b53f1>] ? mark_held_locks+0x71/0x90 [<ffffffff8165d7c8>] __netif_receive_skb+0x18/0x60 [<ffffffff8165e678>] process_backlog+0x78/0x230 [<ffffffff8165e6dd>] ? process_backlog+0xdd/0x230 [<ffffffff8165e355>] net_rx_action+0x155/0x400 [<ffffffff8106b48c>] __do_softirq+0xcc/0x420 [<ffffffff816a8e87>] ? ip_finish_output2+0x217/0x590 [<ffffffff8178e78c>] do_softirq_own_stack+0x1c/0x30 <EOI> [<ffffffff8106b88e>] do_softirq+0x4e/0x60 [<ffffffff8106b948>] __local_bh_enable_ip+0xa8/0xb0 [<ffffffff816a8eb0>] ip_finish_output2+0x240/0x590 [<ffffffff816a9a31>] ? ip_do_fragment+0x831/0x8a0 [<ffffffff816a9a31>] ip_do_fragment+0x831/0x8a0 [<ffffffff816a8c70>] ? ip_copy_metadata+0x1b0/0x1b0 [<ffffffff816a9ae3>] ip_fragment.constprop.49+0x43/0x80 [<ffffffff816a9c9c>] ip_finish_output+0x17c/0x340 [<ffffffff8169a6f4>] ? nf_hook_slow+0xe4/0x190 [<ffffffff816ab4c0>] ip_output+0x70/0x110 [<ffffffff816a9b20>] ? ip_fragment.constprop.49+0x80/0x80 [<ffffffff816aa9f9>] ip_local_out+0x39/0x70 [<ffffffff816abf89>] ip_send_skb+0x19/0x40 [<ffffffff816abfe3>] ip_push_pending_frames+0x33/0x40 [<ffffffff816d55d3>] raw_sendmsg+0x7d3/0xc30 [<ffffffff810b732b>] ? __lock_acquire+0x3db/0x1b90 [<ffffffff816e7557>] ? inet_sendmsg+0xc7/0x1d0 [<ffffffff810b63c4>] ? __lock_is_held+0x54/0x70 [<ffffffff816e759a>] inet_sendmsg+0x10a/0x1d0 [<ffffffff816e7495>] ? inet_sendmsg+0x5/0x1d0 [<ffffffff8163e398>] sock_sendmsg+0x38/0x50 [<ffffffff8163ec5f>] ___sys_sendmsg+0x25f/0x270 [<ffffffff811aadad>] ? handle_mm_fault+0x8dd/0x1320 [<ffffffff8178c147>] ? _raw_spin_unlock+0x27/0x40 [<ffffffff810529b2>] ? __do_page_fault+0x1e2/0x460 [<ffffffff81204886>] ? __fget_light+0x66/0x90 [<ffffffff8163f8e2>] __sys_sendmsg+0x42/0x80 [<ffffffff8163f932>] SyS_sendmsg+0x12/0x20 [<ffffffff8178cb17>] entry_SYSCALL_64_fastpath+0x12/0x6f Code: 00 00 44 89 e0 e9 7c fb ff ff 4c 89 ff e8 e7 e7 ff ff 41 8b 9d 80 00 00 00 2b 5d d4 89 d8 c1 f8 03 0f b7 c0 e9 33 ff ff f 66 66 66 2e 0f 1f 84 00 00 00 00 00 66 66 66 66 90 55 48 RIP [<ffffffff816a9a92>] ip_do_fragment+0x892/0x8a0 RSP <ffff88006d603170> Fixes: 7f8a436eaa2c ("openvswitch: Add conntrack action") Signed-off-by: Joe Stringer <joe@ovn.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-01-05inet: kill unused skb_free opFlorian Westphal
The only user was removed in commit 029f7f3b8701cc7a ("netfilter: ipv6: nf_defrag: avoid/free clone operations"). Signed-off-by: Florian Westphal <fw@strlen.de> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-11-02net: fix percpu memory leaksEric Dumazet
This patch fixes following problems : 1) percpu_counter_init() can return an error, therefore init_frag_mem_limit() must propagate this error so that inet_frags_init_net() can do the same up to its callers. 2) If ip[46]_frags_ns_ctl_register() fail, we must unwind properly and free the percpu_counter. Without this fix, we leave freed object in percpu_counters global list (if CONFIG_HOTPLUG_CPU) leading to crashes. This bug was detected by KASAN and syzkaller tool (http://github.com/google/syzkaller) Fixes: 6d7b857d541e ("net: use lib/percpu_counter API for fragmentation mem accounting") Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: Dmitry Vyukov <dvyukov@google.com> Cc: Hannes Frederic Sowa <hannes@stressinduktion.org> Cc: Jesper Dangaard Brouer <brouer@redhat.com> Acked-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-10-12ipv4: Pass struct net into ip_defrag and ip_check_defragEric W. Biederman
The function ip_defrag is called on both the input and the output paths of the networking stack. In particular conntrack when it is tracking outbound packets from the local machine calls ip_defrag. So add a struct net parameter and stop making ip_defrag guess which network namespace it needs to defragment packets in. Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com> Acked-by: Pablo Neira Ayuso <pablo@netfilter.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-09-29net: Replace vrf_master_ifindex{, _rcu} with l3mdev equivalentsDavid Ahern
Replace calls to vrf_master_ifindex_rcu and vrf_master_ifindex with either l3mdev_master_ifindex_rcu or l3mdev_master_ifindex. The pattern: oif = vrf_master_ifindex(dev) ? : dev->ifindex; is replaced with oif = l3mdev_fib_oif(dev); And remove the now unused vrf macros. Signed-off-by: David Ahern <dsa@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-28net: Add support for VRFs to inetpeer cacheDavid Ahern
inetpeer caches based on address only, so duplicate IP addresses within a namespace return the same cached entry. Enhance the ipv4 address key to contain both the IPv4 address and VRF device index. Signed-off-by: David Ahern <dsa@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-13net: frags: Add VRF device index to cache and lookupDavid Ahern
Fragmentation cache uses information from the IP header to reassemble packets. That information can be duplicated across VRFs -- same source and destination addresses, protocol and id. Handle fragmentation with VRFs by adding the VRF device index to entries in the cache and the lookup arg. Signed-off-by: David Ahern <dsa@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-07-31Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/netDavid S. Miller
Conflicts: arch/s390/net/bpf_jit_comp.c drivers/net/ethernet/ti/netcp_ethss.c net/bridge/br_multicast.c net/ipv4/ip_fragment.c All four conflicts were cases of simple overlapping changes. Signed-off-by: David S. Miller <davem@davemloft.net>
2015-07-26inet: frags: remove INET_FRAG_EVICTED and use list_evictor for the testNikolay Aleksandrov
We can simply remove the INET_FRAG_EVICTED flag to avoid all the flags race conditions with the evictor and use a participation test for the evictor list, when we're at that point (after inet_frag_kill) in the timer there're 2 possible cases: 1. The evictor added the entry to its evictor list while the timer was waiting for the chainlock or 2. The timer unchained the entry and the evictor won't see it In both cases we should be able to see list_evictor correctly due to the sync on the chainlock. Joint work with Florian Westphal. Tested-by: Frank Schreuder <fschreuder@transip.nl> Signed-off-by: Nikolay Aleksandrov <nikolay@cumulusnetworks.com> Signed-off-by: Florian Westphal <fw@strlen.de> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-07-26inet: frag: change *_frag_mem_limit functions to take netns_frags as argumentFlorian Westphal
Followup patch will call it after inet_frag_queue was freed, so q->net doesn't work anymore (but netf = q->net; free(q); mem_limit(netf) would). Tested-by: Frank Schreuder <fschreuder@transip.nl> Signed-off-by: Florian Westphal <fw@strlen.de> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-07-23Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/netDavid S. Miller
Conflicts: net/bridge/br_mdb.c br_mdb.c conflict was a function call being removed to fix a bug in 'net' but whose signature was changed in 'net-next'. Signed-off-by: David S. Miller <davem@davemloft.net>
2015-07-21inet: frags: fix defragmented packet's IP header for af_packetEdward Hyunkoo Jee
When ip_frag_queue() computes positions, it assumes that the passed sk_buff does not contain L2 headers. However, when PACKET_FANOUT_FLAG_DEFRAG is used, IP reassembly functions can be called on outgoing packets that contain L2 headers. Also, IPv4 checksum is not corrected after reassembly. Fixes: 7736d33f4262 ("packet: Add pre-defragmentation support for ipv4 fanouts.") Signed-off-by: Edward Hyunkoo Jee <edjee@google.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Willem de Bruijn <willemb@google.com> Cc: Jerry Chu <hkchu@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-07-11Revert "ipv4: use skb coalescing in defragmentation"Florian Westphal
This reverts commit 3cc4949269e01f39443d0fcfffb5bc6b47878d45. There is nothing wrong with coalescing during defragmentation, it reduces truesize overhead and simplifies things for the receiving socket (no fraglist walk needed). However, it also destroys geometry of the original fragments. While that doesn't cause any breakage (we make sure to not exceed largest original size) ip_do_fragment contains a 'fastpath' that takes advantage of a present frag list and results in fragments that (in most cases) match what was received. In case its needed the coalescing could be done later, when we're sure the skb is not forwarded. But discussion during NFWS resulted in 'lets just remove this for now'. Cc: Eric Dumazet <edumazet@google.com> Signed-off-by: Florian Westphal <fw@strlen.de> Acked-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>