Age | Commit message (Collapse) | Author |
|
This reverts commit dde3c6b72a16c2db826f54b2d49bdea26c3534a2.
syzbot report a double-free bug. The following case can cause this bug.
- mm/slab_common.c: create_cache(): if the __kmem_cache_create() fails,
it does:
out_free_cache:
kmem_cache_free(kmem_cache, s);
- but __kmem_cache_create() - at least for slub() - will have done
sysfs_slab_add(s)
-> sysfs_create_group() .. fails ..
-> kobject_del(&s->kobj); .. which frees s ...
We can't remove the kmem_cache_free() in create_cache(), because other
error cases of __kmem_cache_create() do not free this.
So, revert the commit dde3c6b72a16 ("mm/slub: fix a memory leak in
sysfs_slab_add()") to fix this.
Reported-by: syzbot+d0bd96b4696c1ef67991@syzkaller.appspotmail.com
Fixes: dde3c6b72a16 ("mm/slub: fix a memory leak in sysfs_slab_add()")
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Wang Hai <wanghai38@huawei.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
This reverts commit d3921cb8be29ce5668c64e23ffdaeec5f8c69399.
Chris Wilson reports that it causes boot problems:
"We have half a dozen or so different machines in CI that are silently
failing to boot, that we believe is bisected to this patch"
and the CI team confirmed that a revert fixed the issues.
The cause is unknown for now, so let's revert it.
Link: https://lore.kernel.org/lkml/161160687463.28991.354987542182281928@build.alporthouse.com/
Reported-and-tested-by: Chris Wilson <chris@chris-wilson.co.uk>
Acked-by: Mike Rapoport <rppt@linux.ibm.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The generic kmap_local() map function uses set_pte_at(), but MIPS requires
set_pte() and PowerPC wants __set_pte_at().
Provide arch_kmap_local_set_pte() and default it to set_pte_at().
Link: https://lkml.kernel.org/r/20210112170411.056306194@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andreas Larsson <andreas@gaisler.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Paul Cercueil <paul@crapouillou.net>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The conversion to move pfn_to_online_page() internal to
soft_offline_page() missed that the get_user_pages() reference taken by
the madvise() path needs to be dropped when pfn_to_online_page() fails.
Note the direct sysfs-path to soft_offline_page() does not perform a
get_user_pages() lookup.
When soft_offline_page() is handed a pfn_valid() && !pfn_to_online_page()
pfn the kernel hangs at dax-device shutdown due to a leaked reference.
Link: https://lkml.kernel.org/r/161058501210.1840162.8108917599181157327.stgit@dwillia2-desk3.amr.corp.intel.com
Fixes: feec24a6139d ("mm, soft-offline: convert parameter to pfn")
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Qian Cai <cai@lca.pw>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
A previous commit added resetting KASAN page tags to
kernel_init_free_pages() to avoid false-positives due to accesses to
metadata with the hardware tag-based mode.
That commit did reset page tags before the metadata access, but didn't
restore them after. As the result, KASAN fails to detect bad accesses
to page_alloc allocations on some configurations.
Fix this by recovering the tag after the metadata access.
Link: https://lkml.kernel.org/r/02b5bcd692e912c27d484030f666b350ad7e4ae4.1611074450.git.andreyknvl@google.com
Fixes: aa1ef4d7b3f6 ("kasan, mm: reset tags when accessing metadata")
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Marco Elver <elver@google.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Peter Collingbourne <pcc@google.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Branislav Rankov <Branislav.Rankov@arm.com>
Cc: Kevin Brodsky <kevin.brodsky@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
A few places where SLUB accesses object's data or metadata were missed
in a previous patch. This leads to false positives with hardware
tag-based KASAN when bulk allocations are used with init_on_alloc/free.
Fix the false-positives by resetting pointer tags during these accesses.
(The kasan_reset_tag call is removed from slab_alloc_node, as it's added
into maybe_wipe_obj_freeptr.)
Link: https://linux-review.googlesource.com/id/I50dd32838a666e173fe06c3c5c766f2c36aae901
Link: https://lkml.kernel.org/r/093428b5d2ca8b507f4a79f92f9929b35f7fada7.1610731872.git.andreyknvl@google.com
Fixes: aa1ef4d7b3f67 ("kasan, mm: reset tags when accessing metadata")
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reported-by: Dmitry Vyukov <dvyukov@google.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Marco Elver <elver@google.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Peter Collingbourne <pcc@google.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Branislav Rankov <Branislav.Rankov@arm.com>
Cc: Kevin Brodsky <kevin.brodsky@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The initially proposed KASAN command line parameters are redundant.
This change drops the complex "kasan.mode=off/prod/full" parameter and
adds a simpler kill switch "kasan=off/on" instead. The new parameter
together with the already existing ones provides a cleaner way to
express the same set of features.
The full set of parameters with this change:
kasan=off/on - whether KASAN is enabled
kasan.fault=report/panic - whether to only print a report or also panic
kasan.stacktrace=off/on - whether to collect alloc/free stack traces
Default values:
kasan=on
kasan.fault=report
kasan.stacktrace=on (if CONFIG_DEBUG_KERNEL=y)
kasan.stacktrace=off (otherwise)
Link: https://linux-review.googlesource.com/id/Ib3694ed90b1e8ccac6cf77dfd301847af4aba7b8
Link: https://lkml.kernel.org/r/4e9c4a4bdcadc168317deb2419144582a9be6e61.1610736745.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Reviewed-by: Marco Elver <elver@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Peter Collingbourne <pcc@google.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Branislav Rankov <Branislav.Rankov@arm.com>
Cc: Kevin Brodsky <kevin.brodsky@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
kasan_remove_zero_shadow() shall use original virtual address, start and
size, instead of shadow address.
Link: https://lkml.kernel.org/r/20210103063847.5963-1-lecopzer@gmail.com
Fixes: 0207df4fa1a86 ("kernel/memremap, kasan: make ZONE_DEVICE with work with KASAN")
Signed-off-by: Lecopzer Chen <lecopzer.chen@mediatek.com>
Reviewed-by: Andrey Konovalov <andreyknvl@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Alexander Potapenko <glider@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
During testing kasan_populate_early_shadow and kasan_remove_zero_shadow,
if the shadow start and end address in kasan_remove_zero_shadow() is not
aligned to PMD_SIZE, the remain unaligned PTE won't be removed.
In the test case for kasan_remove_zero_shadow():
shadow_start: 0xffffffb802000000, shadow end: 0xffffffbfbe000000
3-level page table:
PUD_SIZE: 0x40000000 PMD_SIZE: 0x200000 PAGE_SIZE: 4K
0xffffffbf80000000 ~ 0xffffffbfbdf80000 will not be removed because in
kasan_remove_pud_table(), kasan_pmd_table(*pud) is true but the next
address is 0xffffffbfbdf80000 which is not aligned to PUD_SIZE.
In the correct condition, this should fallback to the next level
kasan_remove_pmd_table() but the condition flow always continue to skip
the unaligned part.
Fix by correcting the condition when next and addr are neither aligned.
Link: https://lkml.kernel.org/r/20210103135621.83129-1-lecopzer@gmail.com
Fixes: 0207df4fa1a86 ("kernel/memremap, kasan: make ZONE_DEVICE with work with KASAN")
Signed-off-by: Lecopzer Chen <lecopzer.chen@mediatek.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: YJ Chiang <yj.chiang@mediatek.com>
Cc: Andrey Konovalov <andreyknvl@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Currently the kernel is not correctly updating the numa stats for
NR_FILE_PAGES and NR_SHMEM on THP migration. Fix that.
For NR_FILE_DIRTY and NR_ZONE_WRITE_PENDING, although at the moment
there is no need to handle THP migration as kernel still does not have
write support for file THP but to be more future proof, this patch adds
the THP support for those stats as well.
Link: https://lkml.kernel.org/r/20210108155813.2914586-2-shakeelb@google.com
Fixes: e71769ae52609 ("mm: enable thp migration for shmem thp")
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Yang Shi <shy828301@gmail.com>
Reviewed-by: Roman Gushchin <guro@fb.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The kernel updates the per-node NR_FILE_DIRTY stats on page migration
but not the memcg numa stats.
That was not an issue until recently the commit 5f9a4f4a7096 ("mm:
memcontrol: add the missing numa_stat interface for cgroup v2") exposed
numa stats for the memcg.
So fix the file_dirty per-memcg numa stat.
Link: https://lkml.kernel.org/r/20210108155813.2914586-1-shakeelb@google.com
Fixes: 5f9a4f4a7096 ("mm: memcontrol: add the missing numa_stat interface for cgroup v2")
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Acked-by: Yang Shi <shy828301@gmail.com>
Reviewed-by: Roman Gushchin <guro@fb.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Imran Khan reported a 16% regression in hackbench results caused by the
commit f2fe7b09a52b ("mm: memcg/slab: charge individual slab objects
instead of pages"). The regression is noticeable in the case of a
consequent allocation of several relatively large slab objects, e.g.
skb's. As soon as the amount of stocked bytes exceeds PAGE_SIZE,
drain_obj_stock() and __memcg_kmem_uncharge() are called, and it leads
to a number of atomic operations in page_counter_uncharge().
The corresponding call graph is below (provided by Imran Khan):
|__alloc_skb
| |
| |__kmalloc_reserve.isra.61
| | |
| | |__kmalloc_node_track_caller
| | | |
| | | |slab_pre_alloc_hook.constprop.88
| | | obj_cgroup_charge
| | | | |
| | | | |__memcg_kmem_charge
| | | | | |
| | | | | |page_counter_try_charge
| | | | |
| | | | |refill_obj_stock
| | | | | |
| | | | | |drain_obj_stock.isra.68
| | | | | | |
| | | | | | |__memcg_kmem_uncharge
| | | | | | | |
| | | | | | | |page_counter_uncharge
| | | | | | | | |
| | | | | | | | |page_counter_cancel
| | | |
| | | |
| | | |__slab_alloc
| | | | |
| | | | |___slab_alloc
| | | | |
| | | |slab_post_alloc_hook
Instead of directly uncharging the accounted kernel memory, it's
possible to refill the generic page-sized per-cpu stock instead. It's a
much faster operation, especially on a default hierarchy. As a bonus,
__memcg_kmem_uncharge_page() will also get faster, so the freeing of
page-sized kernel allocations (e.g. large kmallocs) will become faster.
A similar change has been done earlier for the socket memory by the
commit 475d0487a2ad ("mm: memcontrol: use per-cpu stocks for socket
memory uncharging").
Link: https://lkml.kernel.org/r/20210106042239.2860107-1-guro@fb.com
Fixes: f2fe7b09a52b ("mm: memcg/slab: charge individual slab objects instead of pages")
Signed-off-by: Roman Gushchin <guro@fb.com>
Reported-by: Imran Khan <imran.f.khan@oracle.com>
Tested-by: Imran Khan <imran.f.khan@oracle.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Reviewed-by: Michal Koutn <mkoutny@suse.com>
Cc: Michal Koutný <mkoutny@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
There could be struct pages that are not backed by actual physical
memory. This can happen when the actual memory bank is not a multiple
of SECTION_SIZE or when an architecture does not register memory holes
reserved by the firmware as memblock.memory.
Such pages are currently initialized using init_unavailable_mem()
function that iterates through PFNs in holes in memblock.memory and if
there is a struct page corresponding to a PFN, the fields if this page
are set to default values and the page is marked as Reserved.
init_unavailable_mem() does not take into account zone and node the page
belongs to and sets both zone and node links in struct page to zero.
On a system that has firmware reserved holes in a zone above ZONE_DMA,
for instance in a configuration below:
# grep -A1 E820 /proc/iomem
7a17b000-7a216fff : Unknown E820 type
7a217000-7bffffff : System RAM
unset zone link in struct page will trigger
VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
because there are pages in both ZONE_DMA32 and ZONE_DMA (unset zone link
in struct page) in the same pageblock.
Update init_unavailable_mem() to use zone constraints defined by an
architecture to properly setup the zone link and use node ID of the
adjacent range in memblock.memory to set the node link.
Link: https://lkml.kernel.org/r/20210111194017.22696-3-rppt@kernel.org
Fixes: 73a6e474cb37 ("mm: memmap_init: iterate over memblock regions rather that check each PFN")
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Reported-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: David Hildenbrand <david@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Qian Cai <cai@lca.pw>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
memblock_phys_alloc_try_nid function's comments has typo NUMA as MUMA.
Correct this typo.
Signed-off-by: Levi Yun <ppbuk5246@gmail.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
|
|
So technically there is nothing wrong with adding a pinned page to the
swap cache, but the pinning obviously means that the page can't actually
be free'd right now anyway, so it's a bit pointless.
However, the real problem is not with it being a bit pointless: the real
issue is that after we've added it to the swap cache, we'll try to unmap
the page. That will succeed, because the code in mm/rmap.c doesn't know
or care about pinned pages.
Even the unmapping isn't fatal per se, since the page will stay around
in memory due to the pinning, and we do hold the connection to it using
the swap cache. But when we then touch it next and take a page fault,
the logic in do_swap_page() will map it back into the process as a
possibly read-only page, and we'll then break the page association on
the next COW fault.
Honestly, this issue could have been fixed in any of those other places:
(a) we could refuse to unmap a pinned page (which makes conceptual
sense), or (b) we could make sure to re-map a pinned page writably in
do_swap_page(), or (c) we could just make do_wp_page() not COW the
pinned page (which was what we historically did before that "mm:
do_wp_page() simplification" commit).
But while all of them are equally valid models for breaking this chain,
not putting pinned pages into the swap cache in the first place is the
simplest one by far.
It's also the safest one: the reason why do_wp_page() was changed in the
first place was that getting the "can I re-use this page" wrong is so
fraught with errors. If you do it wrong, you end up with an incorrectly
shared page.
As a result, using "page_maybe_dma_pinned()" in either do_wp_page() or
do_swap_page() would be a serious bug since it is only a (very good)
heuristic. Re-using the page requires a hard black-and-white rule with
no room for ambiguity.
In contrast, saying "this page is very likely dma pinned, so let's not
add it to the swap cache and try to unmap it" is an obviously safe thing
to do, and if the heuristic might very rarely be a false positive, no
harm is done.
Fixes: 09854ba94c6a ("mm: do_wp_page() simplification")
Reported-and-tested-by: Martin Raiber <martin@urbackup.org>
Cc: Pavel Begunkov <asml.silence@gmail.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Peter Xu <peterx@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Fix the build error:
mm/process_vm_access.c:277:5: error: implicit declaration of function 'in_compat_syscall'; did you mean 'in_ia32_syscall'? [-Werror=implicit-function-declaration]
Fixes: 38dc5079da7081e "Fix compat regression in process_vm_rw()"
Reported-by: syzbot+5b0d0de84d6c65b8dd2b@syzkaller.appspotmail.com
Cc: Kyle Huey <me@kylehuey.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Christoph Hellwig <hch@lst.de>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Format %pG expects a lower case 'p' in order to print the flags.
Fix it.
Link: https://lkml.kernel.org/r/20210108085202.4506-1-osalvador@suse.de
Fixes: 8295d535e2aa ("mm,hwpoison: refactor get_any_page")
Signed-off-by: Oscar Salvador <osalvador@suse.de>
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Acked-by: Naoya Horiguchi <naoya.horiguchi@nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The huge page size is encoded for VM_FAULT_HWPOISON errors only. So if
we return VM_FAULT_HWPOISON, huge page size would just be ignored.
Link: https://lkml.kernel.org/r/20210107123449.38481-1-linmiaohe@huawei.com
Fixes: aa50d3a7aa81 ("Encode huge page size for VM_FAULT_HWPOISON errors")
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
After commit 236c32eb1096 ("mm: migrate: clean up migrate_prep{_local}")',
do_migrate_pages can return uninitialized variable 'err' (which is
propagated to user-space as error) when 'from' and 'to' nodesets are
identical. This can be reproduced with LTP migrate_pages01, which calls
migrate_pages() with same set for both old/new_nodes.
Add 'err' initialization back.
Link: https://lkml.kernel.org/r/456a021c7ef3636d7668cec9dcb4a446a4244812.1609855564.git.jstancek@redhat.com
Fixes: 236c32eb1096 ("mm: migrate: clean up migrate_prep{_local}")
Signed-off-by: Jan Stancek <jstancek@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Yang Shi <shy828301@gmail.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Song Liu <songliubraving@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
In VM_MAP_PUT_PAGES case, we should put pages and free array in vfree.
But we missed to set area->nr_pages in vmap(). So we would fail to put
pages in __vunmap() because area->nr_pages = 0.
Link: https://lkml.kernel.org/r/20210107123541.39206-1-linmiaohe@huawei.com
Fixes: b944afc9d64d ("mm: add a VM_MAP_PUT_PAGES flag for vmap")
Signed-off-by: Shijie Luo <luoshijie1@huawei.com>
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The size of kasan_early_shadow_pte[] now is PTRS_PER_PTE which defined
to 512 for arm. This means that it only covers the prev Linux pte
entries, but not the HWTABLE pte entries for arm.
The reason it currently works is that the symbol kasan_early_shadow_page
immediately following kasan_early_shadow_pte in memory is page aligned,
which makes kasan_early_shadow_pte look like a 4KB size array. But we
can't ensure the order is always right with different compiler/linker,
or if more bss symbols are introduced.
We had a test with QEMU + vexpress:put a 512KB-size symbol with
attribute __section(".bss..page_aligned") after kasan_early_shadow_pte,
and poisoned it after kasan_early_init(). Then enabled CONFIG_KASAN, it
failed to boot up.
Link: https://lkml.kernel.org/r/20210109044622.8312-1-hailongliiu@yeah.net
Signed-off-by: Hailong Liu <liu.hailong6@zte.com.cn>
Signed-off-by: Ziliang Guo <guo.ziliang@zte.com.cn>
Reviewed-by: Linus Walleij <linus.walleij@linaro.org>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The trace point *trace_mm_page_alloc_zone_locked()* in __rmqueue() does
not currently cover all branches. Add the missing tracepoint and check
the page before do that.
[akpm@linux-foundation.org: use IS_ENABLED() to suppress warning]
Link: https://lkml.kernel.org/r/20201228132901.41523-1-carver4lio@163.com
Signed-off-by: Hailong liu <liu.hailong6@zte.com.cn>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
acquire_slab() fails if there is contention on the freelist of the page
(probably because some other CPU is concurrently freeing an object from
the page). In that case, it might make sense to look for a different page
(since there might be more remote frees to the page from other CPUs, and
we don't want contention on struct page).
However, the current code accidentally stops looking at the partial list
completely in that case. Especially on kernels without CONFIG_NUMA set,
this means that get_partial() fails and new_slab_objects() falls back to
new_slab(), allocating new pages. This could lead to an unnecessary
increase in memory fragmentation.
Link: https://lkml.kernel.org/r/20201228130853.1871516-1-jannh@google.com
Fixes: 7ced37197196 ("slub: Acquire_slab() avoid loop")
Signed-off-by: Jann Horn <jannh@google.com>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Ever since commit 2a9127fcf229 ("mm: rewrite wait_on_page_bit_common()
logic") we've had some very occasional reports of BUG_ON(PageWriteback)
in write_cache_pages(), which we thought we already fixed in commit
073861ed77b6 ("mm: fix VM_BUG_ON(PageTail) and BUG_ON(PageWriteback)").
But syzbot just reported another one, even with that commit in place.
And it turns out that there's a simpler way to trigger the BUG_ON() than
the one Hugh found with page re-use. It all boils down to the fact that
the page writeback is ostensibly serialized by the page lock, but that
isn't actually really true.
Yes, the people _setting_ writeback all do so under the page lock, but
the actual clearing of the bit - and waking up any waiters - happens
without any page lock.
This gives us this fairly simple race condition:
CPU1 = end previous writeback
CPU2 = start new writeback under page lock
CPU3 = write_cache_pages()
CPU1 CPU2 CPU3
---- ---- ----
end_page_writeback()
test_clear_page_writeback(page)
... delayed...
lock_page();
set_page_writeback()
unlock_page()
lock_page()
wait_on_page_writeback();
wake_up_page(page, PG_writeback);
.. wakes up CPU3 ..
BUG_ON(PageWriteback(page));
where the BUG_ON() happens because we woke up the PG_writeback bit
becasue of the _previous_ writeback, but a new one had already been
started because the clearing of the bit wasn't actually atomic wrt the
actual wakeup or serialized by the page lock.
The reason this didn't use to happen was that the old logic in waiting
on a page bit would just loop if it ever saw the bit set again.
The nice proper fix would probably be to get rid of the whole "wait for
writeback to clear, and then set it" logic in the writeback path, and
replace it with an atomic "wait-to-set" (ie the same as we have for page
locking: we set the page lock bit with a single "lock_page()", not with
"wait for lock bit to clear and then set it").
However, out current model for writeback is that the waiting for the
writeback bit is done by the generic VFS code (ie write_cache_pages()),
but the actual setting of the writeback bit is done much later by the
filesystem ".writepages()" function.
IOW, to make the writeback bit have that same kind of "wait-to-set"
behavior as we have for page locking, we'd have to change our roughly
~50 different writeback functions. Painful.
Instead, just make "wait_on_page_writeback()" loop on the very unlikely
situation that the PG_writeback bit is still set, basically re-instating
the old behavior. This is very non-optimal in case of contention, but
since we only ever set the bit under the page lock, that situation is
controlled.
Reported-by: syzbot+2fc0712f8f8b8b8fa0ef@syzkaller.appspotmail.com
Fixes: 2a9127fcf229 ("mm: rewrite wait_on_page_bit_common() logic")
Acked-by: Hugh Dickins <hughd@google.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: stable@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
It's convenient to have page->objects initialized before calling into
account_slab_page(). In particular, this information can be used to
pre-alloc the obj_cgroup vector.
Let's call account_slab_page() a bit later, after the initialization of
page->objects.
This commit doesn't bring any functional change, but is required for
further optimizations.
[akpm@linux-foundation.org: undo changes needed by forthcoming mm-memcg-slab-pre-allocate-obj_cgroups-for-slab-caches-with-slab_account.patch]
Link: https://lkml.kernel.org/r/20201110195753.530157-1-guro@fb.com
Signed-off-by: Roman Gushchin <guro@fb.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Christoph Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Syzbot reported the following [1]:
BUG: kernel NULL pointer dereference, address: 0000000000000008
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD 2d993067 P4D 2d993067 PUD 19a3c067 PMD 0
Oops: 0000 [#1] PREEMPT SMP KASAN
CPU: 1 PID: 3852 Comm: kworker/1:2 Not tainted 5.10.0-syzkaller #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
Workqueue: events free_ipc
RIP: 0010:kasan_record_aux_stack+0x77/0xb0
Add null checking slab object from kasan_get_alloc_meta() in order to
avoid null pointer dereference.
[1] https://syzkaller.appspot.com/x/log.txt?x=10a82a50d00000
Link: https://lkml.kernel.org/r/20201228080018.23041-1-walter-zh.wu@mediatek.com
Signed-off-by: Walter Wu <walter-zh.wu@mediatek.com>
Suggested-by: Dmitry Vyukov <dvyukov@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Andrey Konovalov <andreyknvl@google.com>
Cc: Alexander Potapenko <glider@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
I'm not sure if I'm completely missing something here, but AFAIKS the
reference to the mysterious "COW SMC race" confuses the issue. The
original changelog and mailing list thread didn't help me either.
This SMC race is where the problem was detected, but isn't the general
problem bigger and more obvious: that the new PTE could be picked up at
any time by any TLB while entries for the old PTE exist in other TLBs
before the TLB flush takes effect?
The case where the iTLB and dTLB of a CPU are pointing at different pages
is an interesting one but follows from the general problem.
The other (minor) thing with the comment I think it makes it a bit clearer
to say what the old code was doing (i.e., it avoids the race as opposed to
what?).
References: 4ce072f1faf29 ("mm: fix a race condition under SMC + COW")
Link: https://lkml.kernel.org/r/20201215121119.351650-1-npiggin@gmail.com
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Suresh Siddha <suresh.b.siddha@intel.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Hugh Dickins <hughd@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Suresh Siddha <sbsiddha@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
When `next < old_addr`, `next - old_addr` arithmetic underflows causing
`extent` to be incorrect.
Make `extent` the smaller of `next - old_addr` or `old_end - old_addr`.
Link: https://lkml.kernel.org/r/20201219170433.2418867-1-kaleshsingh@google.com
Fixes: c49dd34018026 ("mm: speedup mremap on 1GB or larger regions")
Signed-off-by: Kalesh Singh <kaleshsingh@google.com>
Reported-by: Guenter Roeck <linux@roeck-us.net>
Tested-by: Guenter Roeck <linux@roeck-us.net>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Lokesh Gidra <lokeshgidra@google.com>
Cc: Helge Deller <deller@gmx.de>
Cc: Kalesh Singh <kaleshsingh@google.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
VMware observed a performance regression during memmap init on their
platform, and bisected to commit 73a6e474cb376 ("mm: memmap_init:
iterate over memblock regions rather that check each PFN") causing it.
Before the commit:
[0.033176] Normal zone: 1445888 pages used for memmap
[0.033176] Normal zone: 89391104 pages, LIFO batch:63
[0.035851] ACPI: PM-Timer IO Port: 0x448
With commit
[0.026874] Normal zone: 1445888 pages used for memmap
[0.026875] Normal zone: 89391104 pages, LIFO batch:63
[2.028450] ACPI: PM-Timer IO Port: 0x448
The root cause is the current memmap defer init doesn't work as expected.
Before, memmap_init_zone() was used to do memmap init of one whole zone,
to initialize all low zones of one numa node, but defer memmap init of
the last zone in that numa node. However, since commit 73a6e474cb376,
function memmap_init() is adapted to iterater over memblock regions
inside one zone, then call memmap_init_zone() to do memmap init for each
region.
E.g, on VMware's system, the memory layout is as below, there are two
memory regions in node 2. The current code will mistakenly initialize the
whole 1st region [mem 0xab00000000-0xfcffffffff], then do memmap defer to
iniatialize only one memmory section on the 2nd region [mem
0x10000000000-0x1033fffffff]. In fact, we only expect to see that there's
only one memory section's memmap initialized. That's why more time is
costed at the time.
[ 0.008842] ACPI: SRAT: Node 0 PXM 0 [mem 0x00000000-0x0009ffff]
[ 0.008842] ACPI: SRAT: Node 0 PXM 0 [mem 0x00100000-0xbfffffff]
[ 0.008843] ACPI: SRAT: Node 0 PXM 0 [mem 0x100000000-0x55ffffffff]
[ 0.008844] ACPI: SRAT: Node 1 PXM 1 [mem 0x5600000000-0xaaffffffff]
[ 0.008844] ACPI: SRAT: Node 2 PXM 2 [mem 0xab00000000-0xfcffffffff]
[ 0.008845] ACPI: SRAT: Node 2 PXM 2 [mem 0x10000000000-0x1033fffffff]
Now, let's add a parameter 'zone_end_pfn' to memmap_init_zone() to pass
down the real zone end pfn so that defer_init() can use it to judge
whether defer need be taken in zone wide.
Link: https://lkml.kernel.org/r/20201223080811.16211-1-bhe@redhat.com
Link: https://lkml.kernel.org/r/20201223080811.16211-2-bhe@redhat.com
Fixes: commit 73a6e474cb376 ("mm: memmap_init: iterate over memblock regions rather that check each PFN")
Signed-off-by: Baoquan He <bhe@redhat.com>
Reported-by: Rahul Gopakumar <gopakumarr@vmware.com>
Reviewed-by: Mike Rapoport <rppt@linux.ibm.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
syzbot reported the deadlock here [1]. The issue is in hugetlb cow
error handling when there are not enough huge pages for the faulting
task which took the original reservation. It is possible that other
(child) tasks could have consumed pages associated with the reservation.
In this case, we want the task which took the original reservation to
succeed. So, we unmap any associated pages in children so that they can
be used by the faulting task that owns the reservation.
The unmapping code needs to hold i_mmap_rwsem in write mode. However,
due to commit c0d0381ade79 ("hugetlbfs: use i_mmap_rwsem for more pmd
sharing synchronization") we are already holding i_mmap_rwsem in read
mode when hugetlb_cow is called.
Technically, i_mmap_rwsem does not need to be held in read mode for COW
mappings as they can not share pmd's. Modifying the fault code to not
take i_mmap_rwsem in read mode for COW (and other non-sharable) mappings
is too involved for a stable fix.
Instead, we simply drop the hugetlb_fault_mutex and i_mmap_rwsem before
unmapping. This is OK as it is technically not needed. They are
reacquired after unmapping as expected by calling code. Since this is
done in an uncommon error path, the overhead of dropping and reacquiring
mutexes is acceptable.
While making changes, remove redundant BUG_ON after unmap_ref_private.
[1] https://lkml.kernel.org/r/000000000000b73ccc05b5cf8558@google.com
Link: https://lkml.kernel.org/r/4c5781b8-3b00-761e-c0c7-c5edebb6ec1a@oracle.com
Fixes: c0d0381ade79 ("hugetlbfs: use i_mmap_rwsem for more pmd sharing synchronization")
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Reported-by: syzbot+5eee4145df3c15e96625@syzkaller.appspotmail.com
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Pull virtio updates from Michael Tsirkin:
- vdpa sim refactoring
- virtio mem: Big Block Mode support
- misc cleanus, fixes
* tag 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mst/vhost: (61 commits)
vdpa: Use simpler version of ida allocation
vdpa: Add missing comment for virtqueue count
uapi: virtio_ids: add missing device type IDs from OASIS spec
uapi: virtio_ids.h: consistent indentions
vhost scsi: fix error return code in vhost_scsi_set_endpoint()
virtio_ring: Fix two use after free bugs
virtio_net: Fix error code in probe()
virtio_ring: Cut and paste bugs in vring_create_virtqueue_packed()
tools/virtio: add barrier for aarch64
tools/virtio: add krealloc_array
tools/virtio: include asm/bug.h
vdpa/mlx5: Use write memory barrier after updating CQ index
vdpa: split vdpasim to core and net modules
vdpa_sim: split vdpasim_virtqueue's iov field in out_iov and in_iov
vdpa_sim: make vdpasim->buffer size configurable
vdpa_sim: use kvmalloc to allocate vdpasim->buffer
vdpa_sim: set vringh notify callback
vdpa_sim: add set_config callback in vdpasim_dev_attr
vdpa_sim: add get_config callback in vdpasim_dev_attr
vdpa_sim: make 'config' generic and usable for any device type
...
|
|
The reason cache merging is disabled with KASAN is because KASAN puts its
metadata right after the allocated object. When the merged caches have
slightly different sizes, the metadata ends up in different places, which
KASAN doesn't support.
It might be possible to adjust the metadata allocation algorithm and make
it friendly to the cache merging code. Instead this change takes a simpler
approach and allows merging caches when no metadata is present. Which is
the case for hardware tag-based KASAN with kasan.mode=prod.
Link: https://lkml.kernel.org/r/37497e940bfd4b32c0a93a702a9ae4cf061d5392.1606162397.git.andreyknvl@google.com
Link: https://linux-review.googlesource.com/id/Ia114847dfb2244f297d2cb82d592bf6a07455dba
Co-developed-by: Vincenzo Frascino <Vincenzo.Frascino@arm.com>
Signed-off-by: Vincenzo Frascino <Vincenzo.Frascino@arm.com>
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Reviewed-by: Marco Elver <elver@google.com>
Tested-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Branislav Rankov <Branislav.Rankov@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Kevin Brodsky <kevin.brodsky@arm.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
KASAN marks caches that are sanitized with the SLAB_KASAN cache flag.
Currently if the metadata that is appended after the object (stores e.g.
stack trace ids) doesn't fit into KMALLOC_MAX_SIZE (can only happen with
SLAB, see the comment in the patch), KASAN turns off sanitization
completely.
With this change sanitization of the object data is always enabled.
However the metadata is only stored when it fits. Instead of checking for
SLAB_KASAN flag accross the code to find out whether the metadata is
there, use cache->kasan_info.alloc/free_meta_offset. As 0 can be a valid
value for free_meta_offset, introduce KASAN_NO_FREE_META as an indicator
that the free metadata is missing.
Without this change all sanitized KASAN objects would be put into
quarantine with generic KASAN. With this change, only the objects that
have metadata (i.e. when it fits) are put into quarantine, the rest is
freed right away.
Along the way rework __kasan_cache_create() and add claryfying comments.
Link: https://lkml.kernel.org/r/aee34b87a5e4afe586c2ac6a0b32db8dc4dcc2dc.1606162397.git.andreyknvl@google.com
Link: https://linux-review.googlesource.com/id/Icd947e2bea054cb5cfbdc6cf6652227d97032dcb
Co-developed-by: Vincenzo Frascino <Vincenzo.Frascino@arm.com>
Signed-off-by: Vincenzo Frascino <Vincenzo.Frascino@arm.com>
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Marco Elver <elver@google.com>
Tested-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Branislav Rankov <Branislav.Rankov@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Kevin Brodsky <kevin.brodsky@arm.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Currently it says that the memory gets poisoned by page_alloc code.
Clarify this by mentioning the specific callback that poisons the memory.
Link: https://lkml.kernel.org/r/1c8380fe0332a3bcc720fe29f1e0bef2e2974416.1606162397.git.andreyknvl@google.com
Link: https://linux-review.googlesource.com/id/I1334dffb69b87d7986fab88a1a039cc3ea764725
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Reviewed-by: Marco Elver <elver@google.com>
Tested-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Branislav Rankov <Branislav.Rankov@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Kevin Brodsky <kevin.brodsky@arm.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
set_tag() already ignores the tag for the generic mode, so just call it
as is. Add a check for the generic mode to assign_tag(), and simplify its
call in ____kasan_kmalloc().
Link: https://lkml.kernel.org/r/121eeab245f98555862b289d2ba9269c868fbbcf.1606162397.git.andreyknvl@google.com
Link: https://linux-review.googlesource.com/id/I18905ca78fb4a3d60e1a34a4ca00247272480438
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Reviewed-by: Marco Elver <elver@google.com>
Tested-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Branislav Rankov <Branislav.Rankov@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Kevin Brodsky <kevin.brodsky@arm.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
For hardware tag-based mode kasan_poison_memory() already rounds up the
size. Do the same for software modes and remove round_up() from the common
code.
Link: https://lkml.kernel.org/r/47b232474f1f89dc072aeda0fa58daa6efade377.1606162397.git.andreyknvl@google.com
Link: https://linux-review.googlesource.com/id/Ib397128fac6eba874008662b4964d65352db4aa4
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Reviewed-by: Marco Elver <elver@google.com>
Tested-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Branislav Rankov <Branislav.Rankov@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Kevin Brodsky <kevin.brodsky@arm.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Rename kasan_poison_kfree() to kasan_slab_free_mempool() as it better
reflects what this annotation does. Also add a comment that explains the
PageSlab() check.
No functional changes.
Link: https://lkml.kernel.org/r/141675fb493555e984c5dca555e9d9f768c7bbaa.1606162397.git.andreyknvl@google.com
Link: https://linux-review.googlesource.com/id/I5026f87364e556b506ef1baee725144bb04b8810
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Marco Elver <elver@google.com>
Tested-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Branislav Rankov <Branislav.Rankov@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Kevin Brodsky <kevin.brodsky@arm.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Declare the kasan_enabled static key in include/linux/kasan.h and in
include/linux/mm.h and check it in all kasan annotations. This allows to
avoid any slowdown caused by function calls when kasan_enabled is
disabled.
Link: https://lkml.kernel.org/r/9f90e3c0aa840dbb4833367c2335193299f69023.1606162397.git.andreyknvl@google.com
Link: https://linux-review.googlesource.com/id/I2589451d3c96c97abbcbf714baabe6161c6f153e
Co-developed-by: Vincenzo Frascino <Vincenzo.Frascino@arm.com>
Signed-off-by: Vincenzo Frascino <Vincenzo.Frascino@arm.com>
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Marco Elver <elver@google.com>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Tested-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Branislav Rankov <Branislav.Rankov@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Kevin Brodsky <kevin.brodsky@arm.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Hardware tag-based KASAN mode is intended to eventually be used in
production as a security mitigation. Therefore there's a need for finer
control over KASAN features and for an existence of a kill switch.
This change adds a few boot parameters for hardware tag-based KASAN that
allow to disable or otherwise control particular KASAN features.
The features that can be controlled are:
1. Whether KASAN is enabled at all.
2. Whether KASAN collects and saves alloc/free stacks.
3. Whether KASAN panics on a detected bug or not.
With this change a new boot parameter kasan.mode allows to choose one of
three main modes:
- kasan.mode=off - KASAN is disabled, no tag checks are performed
- kasan.mode=prod - only essential production features are enabled
- kasan.mode=full - all KASAN features are enabled
The chosen mode provides default control values for the features mentioned
above. However it's also possible to override the default values by
providing:
- kasan.stacktrace=off/on - enable alloc/free stack collection
(default: on for mode=full, otherwise off)
- kasan.fault=report/panic - only report tag fault or also panic
(default: report)
If kasan.mode parameter is not provided, it defaults to full when
CONFIG_DEBUG_KERNEL is enabled, and to prod otherwise.
It is essential that switching between these modes doesn't require
rebuilding the kernel with different configs, as this is required by
the Android GKI (Generic Kernel Image) initiative [1].
[1] https://source.android.com/devices/architecture/kernel/generic-kernel-image
[andreyknvl@google.com: don't use read-only static keys]
Link: https://lkml.kernel.org/r/f2ded589eba1597f7360a972226083de9afd86e2.1607537948.git.andreyknvl@google.com
Link: https://lkml.kernel.org/r/cb093613879d8d8841173f090133eddeb4c35f1f.1606162397.git.andreyknvl@google.com
Link: https://linux-review.googlesource.com/id/If7d37003875b2ed3e0935702c8015c223d6416a4
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Marco Elver <elver@google.com>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Tested-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Branislav Rankov <Branislav.Rankov@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Kevin Brodsky <kevin.brodsky@arm.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Using (un)poison_range() or check_invalid_free() currently results in
function calls. Move their definitions to mm/kasan/kasan.h and turn them
into static inline functions for hardware tag-based mode to avoid
unneeded function calls.
Link: https://lkml.kernel.org/r/7007955b69eb31b5376a7dc1e0f4ac49138504f2.1606162397.git.andreyknvl@google.com
Link: https://linux-review.googlesource.com/id/Ia9d8191024a12d1374675b3d27197f10193f50bb
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Marco Elver <elver@google.com>
Tested-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Branislav Rankov <Branislav.Rankov@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Kevin Brodsky <kevin.brodsky@arm.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
There's the external annotation kasan_unpoison_slab() that is currently
defined as static inline and uses kasan_unpoison_range(). Open-code this
function in mempool.c. Otherwise with an upcoming change this function
will result in an unnecessary function call.
Link: https://lkml.kernel.org/r/131a6694a978a9a8b150187e539eecc8bcbf759b.1606162397.git.andreyknvl@google.com
Link: https://linux-review.googlesource.com/id/Ia7c8b659f79209935cbaab3913bf7f082cc43a0e
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Marco Elver <elver@google.com>
Tested-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Branislav Rankov <Branislav.Rankov@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Kevin Brodsky <kevin.brodsky@arm.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Using random_tag() currently results in a function call. Move its
definition to mm/kasan/kasan.h and turn it into a static inline function
for hardware tag-based mode to avoid uneeded function calls.
Link: https://lkml.kernel.org/r/be438471690e351e1d792e6bb432e8c03ccb15d3.1606162397.git.andreyknvl@google.com
Link: https://linux-review.googlesource.com/id/Iac5b2faf9a912900e16cca6834d621f5d4abf427
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Marco Elver <elver@google.com>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Tested-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Branislav Rankov <Branislav.Rankov@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Kevin Brodsky <kevin.brodsky@arm.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Using kasan_reset_tag() currently results in a function call. As it's
called quite often from the allocator code, this leads to a noticeable
slowdown. Move it to include/linux/kasan.h and turn it into a static
inline function. Also remove the now unneeded reset_tag() internal KASAN
macro and use kasan_reset_tag() instead.
Link: https://lkml.kernel.org/r/6940383a3a9dfb416134d338d8fac97a9ebb8686.1606162397.git.andreyknvl@google.com
Link: https://linux-review.googlesource.com/id/I4d2061acfe91d480a75df00b07c22d8494ef14b5
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Marco Elver <elver@google.com>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Tested-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Branislav Rankov <Branislav.Rankov@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Kevin Brodsky <kevin.brodsky@arm.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
There's no need for __kasan_unpoison_stack() helper, as it's only
currently used in a single place. Removing it also removes unneeded
arithmetic.
No functional changes.
Link: https://lkml.kernel.org/r/93e78948704a42ea92f6248ff8a725613d721161.1606162397.git.andreyknvl@google.com
Link: https://linux-review.googlesource.com/id/Ie5ba549d445292fe629b4a96735e4034957bcc50
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Reviewed-by: Marco Elver <elver@google.com>
Tested-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Branislav Rankov <Branislav.Rankov@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Kevin Brodsky <kevin.brodsky@arm.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
There's a config option CONFIG_KASAN_STACK that has to be enabled for
KASAN to use stack instrumentation and perform validity checks for
stack variables.
There's no need to unpoison stack when CONFIG_KASAN_STACK is not enabled.
Only call kasan_unpoison_task_stack[_below]() when CONFIG_KASAN_STACK is
enabled.
Note, that CONFIG_KASAN_STACK is an option that is currently always
defined when CONFIG_KASAN is enabled, and therefore has to be tested
with #if instead of #ifdef.
Link: https://lkml.kernel.org/r/d09dd3f8abb388da397fd11598c5edeaa83fe559.1606162397.git.andreyknvl@google.com
Link: https://linux-review.googlesource.com/id/If8a891e9fe01ea543e00b576852685afec0887e3
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Marco Elver <elver@google.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Tested-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Branislav Rankov <Branislav.Rankov@arm.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Kevin Brodsky <kevin.brodsky@arm.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Add set_alloc_info() helper and move kasan_set_track() into it. This will
simplify the code for one of the upcoming changes.
No functional changes.
Link: https://lkml.kernel.org/r/b2393e8f1e311a70fc3aaa2196461b6acdee7d21.1606162397.git.andreyknvl@google.com
Link: https://linux-review.googlesource.com/id/I0316193cbb4ecc9b87b7c2eee0dd79f8ec908c1a
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Reviewed-by: Marco Elver <elver@google.com>
Tested-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Branislav Rankov <Branislav.Rankov@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Kevin Brodsky <kevin.brodsky@arm.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Rename get_alloc_info() and get_free_info() to kasan_get_alloc_meta() and
kasan_get_free_meta() to better reflect what those do and avoid confusion
with kasan_set_free_info().
No functional changes.
Link: https://lkml.kernel.org/r/27b7c036b754af15a2839e945f6d8bfce32b4c2f.1606162397.git.andreyknvl@google.com
Link: https://linux-review.googlesource.com/id/Ib6e4ba61c8b12112b403d3479a9799ac8fff8de1
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Reviewed-by: Marco Elver <elver@google.com>
Tested-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Branislav Rankov <Branislav.Rankov@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Kevin Brodsky <kevin.brodsky@arm.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Patch series "kasan: boot parameters for hardware tag-based mode", v4.
=== Overview
Hardware tag-based KASAN mode [1] is intended to eventually be used in
production as a security mitigation. Therefore there's a need for finer
control over KASAN features and for an existence of a kill switch.
This patchset adds a few boot parameters for hardware tag-based KASAN that
allow to disable or otherwise control particular KASAN features, as well
as provides some initial optimizations for running KASAN in production.
There's another planned patchset what will further optimize hardware
tag-based KASAN, provide proper benchmarking and tests, and will fully
enable tag-based KASAN for production use.
Hardware tag-based KASAN relies on arm64 Memory Tagging Extension (MTE)
[2] to perform memory and pointer tagging. Please see [3] and [4] for
detailed analysis of how MTE helps to fight memory safety problems.
The features that can be controlled are:
1. Whether KASAN is enabled at all.
2. Whether KASAN collects and saves alloc/free stacks.
3. Whether KASAN panics on a detected bug or not.
The patch titled "kasan: add and integrate kasan boot parameters" of this
series adds a few new boot parameters.
kasan.mode allows to choose one of three main modes:
- kasan.mode=off - KASAN is disabled, no tag checks are performed
- kasan.mode=prod - only essential production features are enabled
- kasan.mode=full - all KASAN features are enabled
The chosen mode provides default control values for the features mentioned
above. However it's also possible to override the default values by
providing:
- kasan.stacktrace=off/on - enable stacks collection
(default: on for mode=full, otherwise off)
- kasan.fault=report/panic - only report tag fault or also panic
(default: report)
If kasan.mode parameter is not provided, it defaults to full when
CONFIG_DEBUG_KERNEL is enabled, and to prod otherwise.
It is essential that switching between these modes doesn't require
rebuilding the kernel with different configs, as this is required by
the Android GKI (Generic Kernel Image) initiative.
=== Benchmarks
For now I've only performed a few simple benchmarks such as measuring
kernel boot time and slab memory usage after boot. There's an upcoming
patchset which will optimize KASAN further and include more detailed
benchmarking results.
The benchmarks were performed in QEMU and the results below exclude the
slowdown caused by QEMU memory tagging emulation (as it's different from
the slowdown that will be introduced by hardware and is therefore
irrelevant).
KASAN_HW_TAGS=y + kasan.mode=off introduces no performance or memory
impact compared to KASAN_HW_TAGS=n.
kasan.mode=prod (manually excluding tagging) introduces 3% of performance
and no memory impact (except memory used by hardware to store tags)
compared to kasan.mode=off.
kasan.mode=full has about 40% performance and 30% memory impact over
kasan.mode=prod. Both come from alloc/free stack collection.
=== Notes
This patchset is available here:
https://github.com/xairy/linux/tree/up-boot-mte-v4
This patchset is based on v11 of "kasan: add hardware tag-based mode for
arm64" patchset [1].
For testing in QEMU hardware tag-based KASAN requires:
1. QEMU built from master [6] (use "-machine virt,mte=on -cpu max" arguments
to run).
2. GCC version 10.
[1] https://lore.kernel.org/linux-arm-kernel/cover.1606161801.git.andreyknvl@google.com/T/#t
[2] https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/enhancing-memory-safety
[3] https://arxiv.org/pdf/1802.09517.pdf
[4] https://github.com/microsoft/MSRC-Security-Research/blob/master/papers/2020/Security%20analysis%20of%20memory%20tagging.pdf
[5] https://source.android.com/devices/architecture/kernel/generic-kernel-image
[6] https://github.com/qemu/qemu
=== Tags
Tested-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
This patch (of 19):
Move get_free_info() call into quarantine_put() to simplify the call site.
No functional changes.
Link: https://lkml.kernel.org/r/cover.1606162397.git.andreyknvl@google.com
Link: https://lkml.kernel.org/r/312d0a3ef92cc6dc4fa5452cbc1714f9393ca239.1606162397.git.andreyknvl@google.com
Link: https://linux-review.googlesource.com/id/Iab0f04e7ebf8d83247024b7190c67c3c34c7940f
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Reviewed-by: Marco Elver <elver@google.com>
Tested-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Branislav Rankov <Branislav.Rankov@arm.com>
Cc: Kevin Brodsky <kevin.brodsky@arm.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Kernel allocator code accesses metadata for slab objects, that may lie
out-of-bounds of the object itself, or be accessed when an object is
freed. Such accesses trigger tag faults and lead to false-positive
reports with hardware tag-based KASAN.
Software KASAN modes disable instrumentation for allocator code via
KASAN_SANITIZE Makefile macro, and rely on kasan_enable/disable_current()
annotations which are used to ignore KASAN reports.
With hardware tag-based KASAN neither of those options are available, as
it doesn't use compiler instrumetation, no tag faults are ignored, and MTE
is disabled after the first one.
Instead, reset tags when accessing metadata (currently only for SLUB).
Link: https://lkml.kernel.org/r/a0f3cefbc49f34c843b664110842de4db28179d0.1606161801.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Signed-off-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Acked-by: Marco Elver <elver@google.com>
Reviewed-by: Alexander Potapenko <glider@google.com>
Tested-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Branislav Rankov <Branislav.Rankov@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Kevin Brodsky <kevin.brodsky@arm.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Add error reporting for hardware tag-based KASAN. When
CONFIG_KASAN_HW_TAGS is enabled, print KASAN report from the arm64 tag
fault handler.
SAS bits aren't set in ESR for all faults reported in EL1, so it's
impossible to find out the size of the access the caused the fault. Adapt
KASAN reporting code to handle this case.
Link: https://lkml.kernel.org/r/b559c82b6a969afedf53b4694b475f0234067a1a.1606161801.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Co-developed-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Signed-off-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Alexander Potapenko <glider@google.com>
Tested-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Branislav Rankov <Branislav.Rankov@arm.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Kevin Brodsky <kevin.brodsky@arm.com>
Cc: Marco Elver <elver@google.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|