Age | Commit message (Collapse) | Author |
|
find_{smallest|biggest}_section_pfn()s find the smallest/biggest section
and return the pfn of the section. But the functions are defined as int.
So the functions always return 0x00000000 - 0xffffffff. It means if
memory address is over 16TB, the functions does not work correctly.
To handle 64 bit value, the patch defines
find_{smallest|biggest}_section_pfn() as unsigned long.
Fixes: 815121d2b5cd ("memory_hotplug: clear zone when removing the memory")
Link: http://lkml.kernel.org/r/d9d5593a-d0a4-c4be-ab08-493df59a85c6@gmail.com
Signed-off-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Reza Arbab <arbab@linux.vnet.ibm.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
inline function
pfn_to_section_nr() and section_nr_to_pfn() are defined as macro.
pfn_to_section_nr() has no issue even if it is defined as macro. But
section_nr_to_pfn() has overflow issue if sec is defined as int.
section_nr_to_pfn() just shifts sec by PFN_SECTION_SHIFT. If sec is
defined as unsigned long, section_nr_to_pfn() returns pfn as 64 bit value.
But if sec is defined as int, section_nr_to_pfn() returns pfn as 32 bit
value.
__remove_section() calculates start_pfn using section_nr_to_pfn() and
scn_nr defined as int. So if hot-removed memory address is over 16TB,
overflow issue occurs and section_nr_to_pfn() does not calculate correct
pfn.
To make callers use proper arg, the patch changes the macros to inline
functions.
Fixes: 815121d2b5cd ("memory_hotplug: clear zone when removing the memory")
Link: http://lkml.kernel.org/r/e643a387-e573-6bbf-d418-c60c8ee3d15e@gmail.com
Signed-off-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Reza Arbab <arbab@linux.vnet.ibm.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Patch series "mm, memory_hotplug: fix few soft lockups in memory
hotadd".
Johannes has noticed few soft lockups when adding a large nvdimm device.
All of them were caused by a long loop without any explicit cond_resched
which is a problem for !PREEMPT kernels.
The fix is quite straightforward. Just make sure that cond_resched gets
called from time to time.
This patch (of 3):
__add_pages gets a pfn range to add and there is no upper bound for a
single call. This is usually a memory block aligned size for the
regular memory hotplug - smaller sizes are usual for memory balloning
drivers, or the whole NUMA node for physical memory online. There is no
explicit scheduling point in that code path though.
This can lead to long latencies while __add_pages is executed and we
have even seen a soft lockup report during nvdimm initialization with
!PREEMPT kernel
NMI watchdog: BUG: soft lockup - CPU#11 stuck for 23s! [kworker/u641:3:832]
[...]
Workqueue: events_unbound async_run_entry_fn
task: ffff881809270f40 ti: ffff881809274000 task.ti: ffff881809274000
RIP: _raw_spin_unlock_irqrestore+0x11/0x20
RSP: 0018:ffff881809277b10 EFLAGS: 00000286
[...]
Call Trace:
sparse_add_one_section+0x13d/0x18e
__add_pages+0x10a/0x1d0
arch_add_memory+0x4a/0xc0
devm_memremap_pages+0x29d/0x430
pmem_attach_disk+0x2fd/0x3f0 [nd_pmem]
nvdimm_bus_probe+0x64/0x110 [libnvdimm]
driver_probe_device+0x1f7/0x420
bus_for_each_drv+0x52/0x80
__device_attach+0xb0/0x130
bus_probe_device+0x87/0xa0
device_add+0x3fc/0x5f0
nd_async_device_register+0xe/0x40 [libnvdimm]
async_run_entry_fn+0x43/0x150
process_one_work+0x14e/0x410
worker_thread+0x116/0x490
kthread+0xc7/0xe0
ret_from_fork+0x3f/0x70
DWARF2 unwinder stuck at ret_from_fork+0x3f/0x70
Fix this by adding cond_resched once per each memory section in the
given pfn range. Each section is constant amount of work which itself
is not too expensive but many of them will just add up.
Link: http://lkml.kernel.org/r/20170918121410.24466-2-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: Johannes Thumshirn <jthumshirn@suse.de>
Tested-by: Johannes Thumshirn <jthumshirn@suse.de>
Cc: Dan Williams <dan.j.williams@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
HMM (heterogeneous memory management) need struct page to support
migration from system main memory to device memory. Reasons for HMM and
migration to device memory is explained with HMM core patch.
This patch deals with device memory that is un-addressable memory (ie CPU
can not access it). Hence we do not want those struct page to be manage
like regular memory. That is why we extend ZONE_DEVICE to support
different types of memory.
A persistent memory type is define for existing user of ZONE_DEVICE and a
new device un-addressable type is added for the un-addressable memory
type. There is a clear separation between what is expected from each
memory type and existing user of ZONE_DEVICE are un-affected by new
requirement and new use of the un-addressable type. All specific code
path are protect with test against the memory type.
Because memory is un-addressable we use a new special swap type for when a
page is migrated to device memory (this reduces the number of maximum swap
file).
The main two additions beside memory type to ZONE_DEVICE is two callbacks.
First one, page_free() is call whenever page refcount reach 1 (which
means the page is free as ZONE_DEVICE page never reach a refcount of 0).
This allow device driver to manage its memory and associated struct page.
The second callback page_fault() happens when there is a CPU access to an
address that is back by a device page (which are un-addressable by the
CPU). This callback is responsible to migrate the page back to system
main memory. Device driver can not block migration back to system memory,
HMM make sure that such page can not be pin into device memory.
If device is in some error condition and can not migrate memory back then
a CPU page fault to device memory should end with SIGBUS.
[arnd@arndb.de: fix warning]
Link: http://lkml.kernel.org/r/20170823133213.712917-1-arnd@arndb.de
Link: http://lkml.kernel.org/r/20170817000548.32038-8-jglisse@redhat.com
Signed-off-by: Jérôme Glisse <jglisse@redhat.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Dan Williams <dan.j.williams@intel.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: David Nellans <dnellans@nvidia.com>
Cc: Evgeny Baskakov <ebaskakov@nvidia.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Mark Hairgrove <mhairgrove@nvidia.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Sherry Cheung <SCheung@nvidia.com>
Cc: Subhash Gutti <sgutti@nvidia.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Bob Liu <liubo95@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
This patch enables thp migration for memory hotremove.
Link: http://lkml.kernel.org/r/20170717193955.20207-11-zi.yan@sent.com
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Zi Yan <zi.yan@cs.rutgers.edu>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: David Nellans <dnellans@nvidia.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
zonelists_mutex was introduced by commit 4eaf3f64397c ("mem-hotplug: fix
potential race while building zonelist for new populated zone") to
protect zonelist building from races. This is no longer needed though
because both memory online and offline are fully serialized. New users
have grown since then.
Notably setup_per_zone_wmarks wants to prevent from races between memory
hotplug, khugepaged setup and manual min_free_kbytes update via sysctl
(see cfd3da1e49bb ("mm: Serialize access to min_free_kbytes"). Let's
add a private lock for that purpose. This will not prevent from seeing
halfway through memory hotplug operation but that shouldn't be a big
deal becuse memory hotplug will update watermarks explicitly so we will
eventually get a full picture. The lock just makes sure we won't race
when updating watermarks leading to weird results.
Also __build_all_zonelists manipulates global data so add a private lock
for it as well. This doesn't seem to be necessary today but it is more
robust to have a lock there.
While we are at it make sure we document that memory online/offline
depends on a full serialization either via mem_hotplug_begin() or
device_lock.
Link: http://lkml.kernel.org/r/20170721143915.14161-9-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Shaohua Li <shaohua.li@intel.com>
Cc: Toshi Kani <toshi.kani@hpe.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Haicheng Li <haicheng.li@linux.intel.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
try_online_node calls hotadd_new_pgdat which already calls
build_all_zonelists. So the additional call is redundant. Even though
hotadd_new_pgdat will only initialize zonelists of the new node this is
the right thing to do because such a node doesn't have any memory so
other zonelists would ignore all the zones from this node anyway.
Link: http://lkml.kernel.org/r/20170721143915.14161-6-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Toshi Kani <toshi.kani@hpe.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Shaohua Li <shaohua.li@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
build_all_zonelists gets a zone parameter to initialize zone's pagesets.
There is only a single user which gives a non-NULL zone parameter and
that one doesn't really need the rest of the build_all_zonelists (see
commit 6dcd73d7011b ("memory-hotplug: allocate zone's pcp before
onlining pages")).
Therefore remove setup_zone_pageset from build_all_zonelists and call it
from its only user directly. This will also remove a pointless zonlists
rebuilding which is always good.
Link: http://lkml.kernel.org/r/20170721143915.14161-5-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Shaohua Li <shaohua.li@intel.com>
Cc: Toshi Kani <toshi.kani@hpe.com>
Cc: Wen Congyang <wency@cn.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Historically we have enforced that any kernel zone (e.g ZONE_NORMAL) has
to precede the Movable zone in the physical memory range. The purpose
of the movable zone is, however, not bound to any physical memory
restriction. It merely defines a class of migrateable and reclaimable
memory.
There are users (e.g. CMA) who might want to reserve specific physical
memory ranges for their own purpose. Moreover our pfn walkers have to
be prepared for zones overlapping in the physical range already because
we do support interleaving NUMA nodes and therefore zones can interleave
as well. This means we can allow each memory block to be associated
with a different zone.
Loosen the current onlining semantic and allow explicit onlining type on
any memblock. That means that online_{kernel,movable} will be allowed
regardless of the physical address of the memblock as long as it is
offline of course. This might result in moveble zone overlapping with
other kernel zones. Default onlining then becomes a bit tricky but
still sensible. echo online > memoryXY/state will online the given
block to
1) the default zone if the given range is outside of any zone
2) the enclosing zone if such a zone doesn't interleave with
any other zone
3) the default zone if more zones interleave for this range
where default zone is movable zone only if movable_node is enabled
otherwise it is a kernel zone.
Here is an example of the semantic with (movable_node is not present but
it work in an analogous way). We start with following memblocks, all of
them offline:
memory34/valid_zones:Normal Movable
memory35/valid_zones:Normal Movable
memory36/valid_zones:Normal Movable
memory37/valid_zones:Normal Movable
memory38/valid_zones:Normal Movable
memory39/valid_zones:Normal Movable
memory40/valid_zones:Normal Movable
memory41/valid_zones:Normal Movable
Now, we online block 34 in default mode and block 37 as movable
root@test1:/sys/devices/system/node/node1# echo online > memory34/state
root@test1:/sys/devices/system/node/node1# echo online_movable > memory37/state
memory34/valid_zones:Normal
memory35/valid_zones:Normal Movable
memory36/valid_zones:Normal Movable
memory37/valid_zones:Movable
memory38/valid_zones:Normal Movable
memory39/valid_zones:Normal Movable
memory40/valid_zones:Normal Movable
memory41/valid_zones:Normal Movable
As we can see all other blocks can still be onlined both into Normal and
Movable zones and the Normal is default because the Movable zone spans
only block37 now.
root@test1:/sys/devices/system/node/node1# echo online_movable > memory41/state
memory34/valid_zones:Normal
memory35/valid_zones:Normal Movable
memory36/valid_zones:Normal Movable
memory37/valid_zones:Movable
memory38/valid_zones:Movable Normal
memory39/valid_zones:Movable Normal
memory40/valid_zones:Movable Normal
memory41/valid_zones:Movable
Now the default zone for blocks 37-41 has changed because movable zone
spans that range.
root@test1:/sys/devices/system/node/node1# echo online_kernel > memory39/state
memory34/valid_zones:Normal
memory35/valid_zones:Normal Movable
memory36/valid_zones:Normal Movable
memory37/valid_zones:Movable
memory38/valid_zones:Normal Movable
memory39/valid_zones:Normal
memory40/valid_zones:Movable Normal
memory41/valid_zones:Movable
Note that the block 39 now belongs to the zone Normal and so block38
falls into Normal by default as well.
For completness
root@test1:/sys/devices/system/node/node1# for i in memory[34]?
do
echo online > $i/state 2>/dev/null
done
memory34/valid_zones:Normal
memory35/valid_zones:Normal
memory36/valid_zones:Normal
memory37/valid_zones:Movable
memory38/valid_zones:Normal
memory39/valid_zones:Normal
memory40/valid_zones:Movable
memory41/valid_zones:Movable
Implementation wise the change is quite straightforward. We can get rid
of allow_online_pfn_range altogether. online_pages allows only offline
nodes already. The original default_zone_for_pfn will become
default_kernel_zone_for_pfn. New default_zone_for_pfn implements the
above semantic. zone_for_pfn_range is slightly reorganized to implement
kernel and movable online type explicitly and MMOP_ONLINE_KEEP becomes a
catch all default behavior.
Link: http://lkml.kernel.org/r/20170714121233.16861-3-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Reza Arbab <arbab@linux.vnet.ibm.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Yasuaki Ishimatsu <yasu.isimatu@gmail.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Kani Toshimitsu <toshi.kani@hpe.com>
Cc: <slaoub@gmail.com>
Cc: Daniel Kiper <daniel.kiper@oracle.com>
Cc: Igor Mammedov <imammedo@redhat.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: <linux-api@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Prior to commit f1dd2cd13c4b ("mm, memory_hotplug: do not associate
hotadded memory to zones until online") we used to allow to change the
valid zone types of a memory block if it is adjacent to a different zone
type.
This fact was reflected in memoryNN/valid_zones by the ordering of
printed zones. The first one was default (echo online > memoryNN/state)
and the other one could be onlined explicitly by online_{movable,kernel}.
This behavior was removed by the said patch and as such the ordering was
not all that important. In most cases a kernel zone would be default
anyway. The only exception is movable_node handled by "mm,
memory_hotplug: support movable_node for hotpluggable nodes".
Let's reintroduce this behavior again because later patch will remove
the zone overlap restriction and so user will be allowed to online
kernel resp. movable block regardless of its placement. Original
behavior will then become significant again because it would be
non-trivial for users to see what is the default zone to online into.
Implementation is really simple. Pull out zone selection out of
move_pfn_range into zone_for_pfn_range helper and use it in
show_valid_zones to display the zone for default onlining and then both
kernel and movable if they are allowed. Default online zone is not
duplicated.
Link: http://lkml.kernel.org/r/20170714121233.16861-2-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Reza Arbab <arbab@linux.vnet.ibm.com>
Cc: Yasuaki Ishimatsu <yasu.isimatu@gmail.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Kani Toshimitsu <toshi.kani@hpe.com>
Cc: <slaoub@gmail.com>
Cc: Daniel Kiper <daniel.kiper@oracle.com>
Cc: Igor Mammedov <imammedo@redhat.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Wei Yang <richard.weiyang@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Andrey reported a potential deadlock with the memory hotplug lock and
the cpu hotplug lock.
The reason is that memory hotplug takes the memory hotplug lock and then
calls stop_machine() which calls get_online_cpus(). That's the reverse
lock order to get_online_cpus(); get_online_mems(); in mm/slub_common.c
The problem has been there forever. The reason why this was never
reported is that the cpu hotplug locking had this homebrewn recursive
reader writer semaphore construct which due to the recursion evaded the
full lock dep coverage. The memory hotplug code copied that construct
verbatim and therefor has similar issues.
Three steps to fix this:
1) Convert the memory hotplug locking to a per cpu rwsem so the
potential issues get reported proper by lockdep.
2) Lock the online cpus in mem_hotplug_begin() before taking the memory
hotplug rwsem and use stop_machine_cpuslocked() in the page_alloc
code to avoid recursive locking.
3) The cpu hotpluck locking in #2 causes a recursive locking of the cpu
hotplug lock via __offline_pages() -> lru_add_drain_all(). Solve this
by invoking lru_add_drain_all_cpuslocked() instead.
Link: http://lkml.kernel.org/r/20170704093421.506836322@linutronix.de
Reported-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
__remove_zone() sets up up zone_type, but never uses it for anything.
This does not cause a warning, due to the (necessary) use of
-Wno-unused-but-set-variable. However, it's noise, so just delete it.
Link: http://lkml.kernel.org/r/20170624043421.24465-2-jhubbard@nvidia.com
Signed-off-by: John Hubbard <jhubbard@nvidia.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Commit 394e31d2ceb4 ("mem-hotplug: alloc new page from a nearest
neighbor node when mem-offline") has duplicated a large part of
alloc_migrate_target with some hotplug specific special casing.
To be more precise it tried to enfore the allocation from a different
node than the original page. As a result the two function diverged in
their shared logic, e.g. the hugetlb allocation strategy.
Let's unify the two and express different NUMA requirements by the given
nodemask. new_node_page will simply exclude the node it doesn't care
about and alloc_migrate_target will use all the available nodes.
alloc_migrate_target will then learn to migrate hugetlb pages more
sanely and use preallocated pool when possible.
Please note that alloc_migrate_target used to call alloc_page resp.
alloc_pages_current so the memory policy of the current context which is
quite strange when we consider that it is used in the context of
alloc_contig_range which just tries to migrate pages which stand in the
way.
Link: http://lkml.kernel.org/r/20170608074553.22152-4-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: zhong jiang <zhongjiang@huawei.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
new_node_page will try to use the origin's next NUMA node as the
migration destination for hugetlb pages. If such a node doesn't have
any preallocated pool it falls back to __alloc_buddy_huge_page_no_mpol
to allocate a surplus page instead. This is quite subotpimal for any
configuration when hugetlb pages are no distributed to all NUMA nodes
evenly. Say we have a hotplugable node 4 and spare hugetlb pages are
node 0
/sys/devices/system/node/node0/hugepages/hugepages-2048kB/nr_hugepages:10000
/sys/devices/system/node/node1/hugepages/hugepages-2048kB/nr_hugepages:0
/sys/devices/system/node/node2/hugepages/hugepages-2048kB/nr_hugepages:0
/sys/devices/system/node/node3/hugepages/hugepages-2048kB/nr_hugepages:0
/sys/devices/system/node/node4/hugepages/hugepages-2048kB/nr_hugepages:10000
/sys/devices/system/node/node5/hugepages/hugepages-2048kB/nr_hugepages:0
/sys/devices/system/node/node6/hugepages/hugepages-2048kB/nr_hugepages:0
/sys/devices/system/node/node7/hugepages/hugepages-2048kB/nr_hugepages:0
Now we consume the whole pool on node 4 and try to offline this node.
All the allocated pages should be moved to node0 which has enough
preallocated pages to hold them. With the current implementation
offlining very likely fails because hugetlb allocations during runtime
are much less reliable.
Fix this by reusing the nodemask which excludes migration source and try
to find a first node which has a page in the preallocated pool first and
fall back to __alloc_buddy_huge_page_no_mpol only when the whole pool is
consumed.
[akpm@linux-foundation.org: remove bogus arg from alloc_huge_page_nodemask() stub]
Link: http://lkml.kernel.org/r/20170608074553.22152-3-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: zhong jiang <zhongjiang@huawei.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
new_node_page tries to allocate the target page on a different NUMA node
than the source page. This makes sense in most cases during the hotplug
because we are likely to offline the whole numa node. But there are
cases where there are no other nodes to fallback (e.g. when offlining
parts of the only existing node) and we have to fallback to allocating
from the source node. The current code does that but it can be
simplified by checking the nmask and updating it before we even try to
allocate rather than special casing it.
This patch shouldn't introduce any functional change.
Link: http://lkml.kernel.org/r/20170608074553.22152-2-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: zhong jiang <zhongjiang@huawei.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
movable_node kernel parameter allows making hotpluggable NUMA nodes to
put all the hotplugable memory into movable zone which allows more or
less reliable memory hotremove. At least this is the case for the NUMA
nodes present during the boot (see find_zone_movable_pfns_for_nodes).
This is not the case for the memory hotplug, though.
echo online > /sys/devices/system/memory/memoryXYZ/state
will default to a kernel zone (usually ZONE_NORMAL) unless the
particular memblock is already in the movable zone range which is not
the case normally when onlining the memory from the udev rule context
for a freshly hotadded NUMA node. The only option currently is to have
a special udev rule to echo online_movable to all memblocks belonging to
such a node which is rather clumsy. Not to mention this is inconsistent
as well because what ended up in the movable zone during the boot will
end up in a kernel zone after hotremove & hotadd without special care.
It would be nice to reuse memblock_is_hotpluggable but the runtime
hotplug doesn't have that information available because the boot and
hotplug paths are not shared and it would be really non trivial to make
them use the same code path because the runtime hotplug doesn't play
with the memblock allocator at all.
Teach move_pfn_range that MMOP_ONLINE_KEEP can use the movable zone if
movable_node is enabled and the range doesn't overlap with the existing
normal zone. This should provide a reasonable default onlining
strategy.
Strictly speaking the semantic is not identical with the boot time
initialization because find_zone_movable_pfns_for_nodes covers only the
hotplugable range as described by the BIOS/FW. From my experience this
is usually a full node though (except for Node0 which is special and
never goes away completely). If this turns out to be a problem in the
real life we can tweak the code to store hotplug flag into memblocks but
let's keep this simple now.
Link: http://lkml.kernel.org/r/20170612111227.GI7476@dhcp22.suse.cz
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Reza Arbab <arbab@linux.vnet.ibm.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Yasuaki Ishimatsu <yasu.isimatu@gmail.com>
Cc: <qiuxishi@huawei.com>
Cc: Kani Toshimitsu <toshi.kani@hpe.com>
Cc: <slaoub@gmail.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Daniel Kiper <daniel.kiper@oracle.com>
Cc: Igor Mammedov <imammedo@redhat.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The NULL check at line 1226: if (!pgdat), implies that pointer pgdat
might be NULL.
rollback_node_hotadd() dereferences this pointer. Add NULL check to
avoid a potential NULL pointer dereference.
Addresses-Coverity-ID: 1369133
Link: http://lkml.kernel.org/r/20170530212436.GA6195@embeddedgus
Signed-off-by: Gustavo A. R. Silva <garsilva@embeddedor.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
movable_node_is_enabled is defined in memblock proper while it is
initialized from the memory hotplug proper. This is quite messy and it
makes a dependency between the two so move movable_node along with the
helper functions to memory_hotplug.
To make it more entertaining the kernel parameter is ignored unless
CONFIG_HAVE_MEMBLOCK_NODE_MAP=y because we do not have the node
information for each memblock otherwise. So let's warn when the option
is disabled.
Link: http://lkml.kernel.org/r/20170529114141.536-4-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Reza Arbab <arbab@linux.vnet.ibm.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Yasuaki Ishimatsu <yasu.isimatu@gmail.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Kani Toshimitsu <toshi.kani@hpe.com>
Cc: Chen Yucong <slaoub@gmail.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Daniel Kiper <daniel.kiper@oracle.com>
Cc: Igor Mammedov <imammedo@redhat.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Commit 20b2f52b73fe ("numa: add CONFIG_MOVABLE_NODE for
movable-dedicated node") has introduced CONFIG_MOVABLE_NODE without a
good explanation on why it is actually useful.
It makes a lot of sense to make movable node semantic opt in but we
already have that because the feature has to be explicitly enabled on
the kernel command line. A config option on top only makes the
configuration space larger without a good reason. It also adds an
additional ifdefery that pollutes the code.
Just drop the config option and make it de-facto always enabled. This
shouldn't introduce any change to the semantic.
Link: http://lkml.kernel.org/r/20170529114141.536-3-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Reza Arbab <arbab@linux.vnet.ibm.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Yasuaki Ishimatsu <yasu.isimatu@gmail.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Kani Toshimitsu <toshi.kani@hpe.com>
Cc: Chen Yucong <slaoub@gmail.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Daniel Kiper <daniel.kiper@oracle.com>
Cc: Igor Mammedov <imammedo@redhat.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Patch series "remove CONFIG_MOVABLE_NODE".
I am continuing to clean up the memory hotplug code and
CONFIG_MOVABLE_NODE seems dubious at best. The following two patches
simply removes the flag and make it de-facto always enabled.
The current semantic of the config option is twofold 1) it automatically
binds hotplugable nodes to have memory in zone_movable by default when
movable_node is enabled 2) forbids memory hotplug to online all the
memory as movable when !CONFIG_MOVABLE_NODE.
The later restriction is quite dubious because there is no clear cut of
how much normal memory do we need for a reasonable system operation. A
single memory block which is sufficient to allow further movable onlines
is far from sufficient (e.g a node with >2GB and memblocks 128MB will
fill up this zone with struct pages leaving nothing for other
allocations). Removing the config option will not only reduce the
configuration space it also removes quite some code.
The semantic of the movable_node command line parameter is preserved.
The first patch removes the restriction mentioned above and the second
one simply removes all the CONFIG_MOVABLE_NODE related stuff. The last
patch moves movable_node flag handling to memory_hotplug proper where it
belongs.
[1] http://lkml.kernel.org/r/20170524122411.25212-1-mhocko@kernel.org
This patch (of 3):
Commit 74d42d8fe146 ("memory_hotplug: ensure every online node has
NORMAL memory") has introduced a restriction that every numa node has to
have at least some memory in !movable zones before a first movable
memory can be onlined if !CONFIG_MOVABLE_NODE.
Likewise can_offline_normal checks the amount of normal memory in
!movable zones and it disallows to offline memory if there is no normal
memory left with a justification that "memory-management acts bad when
we have nodes which is online but don't have any normal memory".
While it is true that not having _any_ memory for kernel allocations on
a NUMA node is far from great and such a node would be quite subotimal
because all kernel allocations will have to fallback to another NUMA
node but there is no reason to disallow such a configuration in
principle.
Besides that there is not really a big difference to have one memblock
for ZONE_NORMAL available or none. With 128MB size memblocks the system
might trash on the kernel allocations requests anyway. It is really
hard to draw a line on how much normal memory is really sufficient so we
have to rely on administrator to configure system sanely therefore drop
the artificial restriction and remove can_offline_normal and
can_online_high_movable altogether.
Link: http://lkml.kernel.org/r/20170529114141.536-2-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Reza Arbab <arbab@linux.vnet.ibm.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Yasuaki Ishimatsu <yasu.isimatu@gmail.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Kani Toshimitsu <toshi.kani@hpe.com>
Cc: Chen Yucong <slaoub@gmail.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Daniel Kiper <daniel.kiper@oracle.com>
Cc: Igor Mammedov <imammedo@redhat.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The main allocator function __alloc_pages_nodemask() takes a zonelist
pointer as one of its parameters. All of its callers directly or
indirectly obtain the zonelist via node_zonelist() using a preferred
node id and gfp_mask. We can make the code a bit simpler by doing the
zonelist lookup in __alloc_pages_nodemask(), passing it a preferred node
id instead (gfp_mask is already another parameter).
There are some code size benefits thanks to removal of inlined
node_zonelist():
bloat-o-meter add/remove: 2/2 grow/shrink: 4/36 up/down: 399/-1351 (-952)
This will also make things simpler if we proceed with converting cpusets
to zonelists.
Link: http://lkml.kernel.org/r/20170517081140.30654-4-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Christoph Lameter <cl@linux.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Dimitri Sivanich <sivanich@sgi.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Li Zefan <lizefan@huawei.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
zone_for_memory doesn't have any user anymore as well as the whole zone
shifting infrastructure so drop them all.
This shouldn't introduce any functional changes.
Link: http://lkml.kernel.org/r/20170515085827.16474-15-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Daniel Kiper <daniel.kiper@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Igor Mammedov <imammedo@redhat.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Reza Arbab <arbab@linux.vnet.ibm.com>
Cc: Tobias Regnery <tobias.regnery@gmail.com>
Cc: Toshi Kani <toshi.kani@hpe.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Tobias has reported following section mismatches introduced by "mm,
memory_hotplug: do not associate hotadded memory to zones until online".
WARNING: mm/built-in.o(.text+0x5a1c2): Section mismatch in reference from the function move_pfn_range_to_zone() to the function .meminit.text:memmap_init_zone()
The function move_pfn_range_to_zone() references
the function __meminit memmap_init_zone().
This is often because move_pfn_range_to_zone lacks a __meminit
annotation or the annotation of memmap_init_zone is wrong.
WARNING: mm/built-in.o(.text+0x5a25b): Section mismatch in reference from the function move_pfn_range_to_zone() to the function .meminit.text:init_currently_empty_zone()
The function move_pfn_range_to_zone() references
the function __meminit init_currently_empty_zone().
This is often because move_pfn_range_to_zone lacks a __meminit
annotation or the annotation of init_currently_empty_zone is wrong.
WARNING: vmlinux.o(.text+0x188aa2): Section mismatch in reference from the function move_pfn_range_to_zone() to the function .meminit.text:memmap_init_zone()
The function move_pfn_range_to_zone() references
the function __meminit memmap_init_zone().
This is often because move_pfn_range_to_zone lacks a __meminit
annotation or the annotation of memmap_init_zone is wrong.
WARNING: vmlinux.o(.text+0x188b3b): Section mismatch in reference from the function move_pfn_range_to_zone() to the function .meminit.text:init_currently_empty_zone()
The function move_pfn_range_to_zone() references
the function __meminit init_currently_empty_zone().
This is often because move_pfn_range_to_zone lacks a __meminit
annotation or the annotation of init_currently_empty_zone is wrong.
Both memmap_init_zone and init_currently_empty_zone are marked __meminit
but move_pfn_range_to_zone is used outside of __meminit sections (e.g.
devm_memremap_pages) so we have to hide it from the checker by __ref
annotation.
Link: http://lkml.kernel.org/r/20170515085827.16474-14-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: Tobias Regnery <tobias.regnery@gmail.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Daniel Kiper <daniel.kiper@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Igor Mammedov <imammedo@redhat.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Reza Arbab <arbab@linux.vnet.ibm.com>
Cc: Toshi Kani <toshi.kani@hpe.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
arch_add_memory gets for_device argument which then controls whether we
want to create memblocks for created memory sections. Simplify the
logic by telling whether we want memblocks directly rather than going
through pointless negation. This also makes the api easier to
understand because it is clear what we want rather than nothing telling
for_device which can mean anything.
This shouldn't introduce any functional change.
Link: http://lkml.kernel.org/r/20170515085827.16474-13-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Tested-by: Dan Williams <dan.j.williams@intel.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Daniel Kiper <daniel.kiper@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Igor Mammedov <imammedo@redhat.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Reza Arbab <arbab@linux.vnet.ibm.com>
Cc: Tobias Regnery <tobias.regnery@gmail.com>
Cc: Toshi Kani <toshi.kani@hpe.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Heiko Carstens has noticed that he can generate overlapping zones for
ZONE_DMA and ZONE_NORMAL:
DMA [mem 0x0000000000000000-0x000000007fffffff]
Normal [mem 0x0000000080000000-0x000000017fffffff]
$ cat /sys/devices/system/memory/block_size_bytes
10000000
$ cat /sys/devices/system/memory/memory5/valid_zones
DMA
$ echo 0 > /sys/devices/system/memory/memory5/online
$ cat /sys/devices/system/memory/memory5/valid_zones
Normal
$ echo 1 > /sys/devices/system/memory/memory5/online
Normal
$ cat /proc/zoneinfo
Node 0, zone DMA
spanned 524288 <-----
present 458752
managed 455078
start_pfn: 0 <-----
Node 0, zone Normal
spanned 720896
present 589824
managed 571648
start_pfn: 327680 <-----
The reason is that we assume that the default zone for kernel onlining
is ZONE_NORMAL. This was a simplification introduced by the memory
hotplug rework and it is easily fixable by checking the range overlap in
the zone order and considering the first matching zone as the default
one. If there is no such zone then assume ZONE_NORMAL as we have been
doing so far.
Fixes: "mm, memory_hotplug: do not associate hotadded memory to zones until online"
Link: http://lkml.kernel.org/r/20170601083746.4924-3-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Tested-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Reza Arbab <arbab@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Heiko Carstens has noticed that the MMOP_ONLINE_KEEP is broken currently
$ grep . memory3?/valid_zones
memory34/valid_zones:Normal Movable
memory35/valid_zones:Normal Movable
memory36/valid_zones:Normal Movable
memory37/valid_zones:Normal Movable
$ echo online_movable > memory34/state
$ grep . memory3?/valid_zones
memory34/valid_zones:Movable
memory35/valid_zones:Movable
memory36/valid_zones:Movable
memory37/valid_zones:Movable
$ echo online > memory36/state
$ grep . memory3?/valid_zones
memory34/valid_zones:Movable
memory36/valid_zones:Normal
memory37/valid_zones:Movable
so we have effectively punched a hole into the movable zone.
The problem is that move_pfn_range() check for MMOP_ONLINE_KEEP is
wrong. It only checks whether the given range is already part of the
movable zone which is not the case here as only memory34 is in the zone.
Fix this by using allow_online_pfn_range(..., MMOP_ONLINE_KERNEL) if
that is false then we can be sure that movable onlining is the right
thing to do.
Fixes: "mm, memory_hotplug: do not associate hotadded memory to zones until online"
Link: http://lkml.kernel.org/r/20170601083746.4924-2-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Tested-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Reza Arbab <arbab@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The current memory hotplug implementation relies on having all the
struct pages associate with a zone/node during the physical hotplug
phase (arch_add_memory->__add_pages->__add_section->__add_zone). In the
vast majority of cases this means that they are added to ZONE_NORMAL.
This has been so since 9d99aaa31f59 ("[PATCH] x86_64: Support memory
hotadd without sparsemem") and it wasn't a big deal back then because
movable onlining didn't exist yet.
Much later memory hotplug wanted to (ab)use ZONE_MOVABLE for movable
onlining 511c2aba8f07 ("mm, memory-hotplug: dynamic configure movable
memory and portion memory") and then things got more complicated.
Rather than reconsidering the zone association which was no longer
needed (because the memory hotplug already depended on SPARSEMEM) a
convoluted semantic of zone shifting has been developed. Only the
currently last memblock or the one adjacent to the zone_movable can be
onlined movable. This essentially means that the online type changes as
the new memblocks are added.
Let's simulate memory hot online manually
$ echo 0x100000000 > /sys/devices/system/memory/probe
$ grep . /sys/devices/system/memory/memory32/valid_zones
Normal Movable
$ echo $((0x100000000+(128<<20))) > /sys/devices/system/memory/probe
$ grep . /sys/devices/system/memory/memory3?/valid_zones
/sys/devices/system/memory/memory32/valid_zones:Normal
/sys/devices/system/memory/memory33/valid_zones:Normal Movable
$ echo $((0x100000000+2*(128<<20))) > /sys/devices/system/memory/probe
$ grep . /sys/devices/system/memory/memory3?/valid_zones
/sys/devices/system/memory/memory32/valid_zones:Normal
/sys/devices/system/memory/memory33/valid_zones:Normal
/sys/devices/system/memory/memory34/valid_zones:Normal Movable
$ echo online_movable > /sys/devices/system/memory/memory34/state
$ grep . /sys/devices/system/memory/memory3?/valid_zones
/sys/devices/system/memory/memory32/valid_zones:Normal
/sys/devices/system/memory/memory33/valid_zones:Normal Movable
/sys/devices/system/memory/memory34/valid_zones:Movable Normal
This is an awkward semantic because an udev event is sent as soon as the
block is onlined and an udev handler might want to online it based on
some policy (e.g. association with a node) but it will inherently race
with new blocks showing up.
This patch changes the physical online phase to not associate pages with
any zone at all. All the pages are just marked reserved and wait for
the onlining phase to be associated with the zone as per the online
request. There are only two requirements
- existing ZONE_NORMAL and ZONE_MOVABLE cannot overlap
- ZONE_NORMAL precedes ZONE_MOVABLE in physical addresses
the latter one is not an inherent requirement and can be changed in the
future. It preserves the current behavior and made the code slightly
simpler. This is subject to change in future.
This means that the same physical online steps as above will lead to the
following state: Normal Movable
/sys/devices/system/memory/memory32/valid_zones:Normal Movable
/sys/devices/system/memory/memory33/valid_zones:Normal Movable
/sys/devices/system/memory/memory32/valid_zones:Normal Movable
/sys/devices/system/memory/memory33/valid_zones:Normal Movable
/sys/devices/system/memory/memory34/valid_zones:Normal Movable
/sys/devices/system/memory/memory32/valid_zones:Normal Movable
/sys/devices/system/memory/memory33/valid_zones:Normal Movable
/sys/devices/system/memory/memory34/valid_zones:Movable
Implementation:
The current move_pfn_range is reimplemented to check the above
requirements (allow_online_pfn_range) and then updates the respective
zone (move_pfn_range_to_zone), the pgdat and links all the pages in the
pfn range with the zone/node. __add_pages is updated to not require the
zone and only initializes sections in the range. This allowed to
simplify the arch_add_memory code (s390 could get rid of quite some of
code).
devm_memremap_pages is the only user of arch_add_memory which relies on
the zone association because it only hooks into the memory hotplug only
half way. It uses it to associate the new memory with ZONE_DEVICE but
doesn't allow it to be {on,off}lined via sysfs. This means that this
particular code path has to call move_pfn_range_to_zone explicitly.
The original zone shifting code is kept in place and will be removed in
the follow up patch for an easier review.
Please note that this patch also changes the original behavior when
offlining a memory block adjacent to another zone (Normal vs. Movable)
used to allow to change its movable type. This will be handled later.
[richard.weiyang@gmail.com: simplify zone_intersects()]
Link: http://lkml.kernel.org/r/20170616092335.5177-1-richard.weiyang@gmail.com
[richard.weiyang@gmail.com: remove duplicate call for set_page_links]
Link: http://lkml.kernel.org/r/20170616092335.5177-2-richard.weiyang@gmail.com
[akpm@linux-foundation.org: remove unused local `i']
Link: http://lkml.kernel.org/r/20170515085827.16474-12-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Wei Yang <richard.weiyang@gmail.com>
Tested-by: Dan Williams <dan.j.williams@intel.com>
Tested-by: Reza Arbab <arbab@linux.vnet.ibm.com>
Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com> # For s390 bits
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Daniel Kiper <daniel.kiper@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Igor Mammedov <imammedo@redhat.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Tobias Regnery <tobias.regnery@gmail.com>
Cc: Toshi Kani <toshi.kani@hpe.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
__pageblock_pfn_to_page has two users currently, set_zone_contiguous
which checks whether the given zone contains holes and
pageblock_pfn_to_page which then carefully returns a first valid page
from the given pfn range for the given zone. This doesn't handle zones
which are not fully populated though. Memory pageblocks can be offlined
or might not have been onlined yet. In such a case the zone should be
considered to have holes otherwise pfn walkers can touch and play with
offline pages.
Current callers of pageblock_pfn_to_page in compaction seem to work
properly right now because they only isolate PageBuddy
(isolate_freepages_block) or PageLRU resp. __PageMovable
(isolate_migratepages_block) which will be always false for these pages.
It would be safer to skip these pages altogether, though.
In order to do this patch adds a new memory section state
(SECTION_IS_ONLINE) which is set in memory_present (during boot time) or
in online_pages_range during the memory hotplug. Similarly
offline_mem_sections clears the bit and it is called when the memory
range is offlined.
pfn_to_online_page helper is then added which check the mem section and
only returns a page if it is onlined already.
Use the new helper in __pageblock_pfn_to_page and skip the whole page
block in such a case.
[mhocko@suse.com: check valid section number in pfn_to_online_page (Vlastimil),
mark sections online after all struct pages are initialized in
online_pages_range (Vlastimil)]
Link: http://lkml.kernel.org/r/20170518164210.GD18333@dhcp22.suse.cz
Link: http://lkml.kernel.org/r/20170515085827.16474-8-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Daniel Kiper <daniel.kiper@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Igor Mammedov <imammedo@redhat.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Reza Arbab <arbab@linux.vnet.ibm.com>
Cc: Tobias Regnery <tobias.regnery@gmail.com>
Cc: Toshi Kani <toshi.kani@hpe.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Memory hotplug (add_memory_resource) has to reinitialize node
infrastructure if the node is offline (one which went through the
complete add_memory(); remove_memory() cycle). That involves node
registration to the kobj infrastructure (register_node), the proper
association with cpus (register_cpu_under_node) and finally creation of
node<->memblock symlinks (link_mem_sections).
The last part requires to know node_start_pfn and node_spanned_pages
which we currently have but a leter patch will postpone this
initialization to the onlining phase which happens later. In fact we do
not need to rely on the early pgdat initialization even now because the
currently hot added pfn range is currently known.
Split register_one_node into core which does all the common work for the
boot time NUMA initialization and the hotplug (__register_one_node).
register_one_node keeps the full initialization while hotplug calls
__register_one_node and manually calls link_mem_sections for the proper
range.
This shouldn't introduce any functional change.
Link: http://lkml.kernel.org/r/20170515085827.16474-6-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Daniel Kiper <daniel.kiper@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Igor Mammedov <imammedo@redhat.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Reza Arbab <arbab@linux.vnet.ibm.com>
Cc: Tobias Regnery <tobias.regnery@gmail.com>
Cc: Toshi Kani <toshi.kani@hpe.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Device memory hotplug hooks into regular memory hotplug only half way.
It needs memory sections to track struct pages but there is no
need/desire to associate those sections with memory blocks and export
them to the userspace via sysfs because they cannot be onlined anyway.
This is currently expressed by for_device argument to arch_add_memory
which then makes sure to associate the given memory range with
ZONE_DEVICE. register_new_memory then relies on is_zone_device_section
to distinguish special memory hotplug from the regular one. While this
works now, later patches in this series want to move __add_zone outside
of arch_add_memory path so we have to come up with something else.
Add want_memblock down the __add_pages path and use it to control
whether the section->memblock association should be done.
arch_add_memory then just trivially want memblock for everything but
for_device hotplug.
remove_memory_section doesn't need is_zone_device_section either. We
can simply skip all the memblock specific cleanup if there is no
memblock for the given section.
This shouldn't introduce any functional change.
Link: http://lkml.kernel.org/r/20170515085827.16474-5-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Tested-by: Dan Williams <dan.j.williams@intel.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Daniel Kiper <daniel.kiper@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Igor Mammedov <imammedo@redhat.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Reza Arbab <arbab@linux.vnet.ibm.com>
Cc: Tobias Regnery <tobias.regnery@gmail.com>
Cc: Toshi Kani <toshi.kani@hpe.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The primary purpose of this helper is to query the node state so use the
node id directly. This is a preparatory patch for later changes.
This shouldn't introduce any functional change
Link: http://lkml.kernel.org/r/20170515085827.16474-3-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Daniel Kiper <daniel.kiper@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Igor Mammedov <imammedo@redhat.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Reza Arbab <arbab@linux.vnet.ibm.com>
Cc: Tobias Regnery <tobias.regnery@gmail.com>
Cc: Toshi Kani <toshi.kani@hpe.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Patch series "mm: make movable onlining suck less", v4.
Movable onlining is a real hack with many downsides - mainly
reintroduction of lowmem/highmem issues we used to have on 32b systems -
but it is the only way to make the memory hotremove more reliable which
is something that people are asking for.
The current semantic of memory movable onlinening is really cumbersome,
however. The main reason for this is that the udev driven approach is
basically unusable because udev races with the memory probing while only
the last memory block or the one adjacent to the existing zone_movable
are allowed to be onlined movable. In short the criterion for the
successful online_movable changes under udev's feet. A reliable udev
approach would require a 2 phase approach where the first successful
movable online would have to check all the previous blocks and online
them in descending order. This is hard to be considered sane.
This patchset aims at making the onlining semantic more usable. First
of all it allows to online memory movable as long as it doesn't clash
with the existing ZONE_NORMAL. That means that ZONE_NORMAL and
ZONE_MOVABLE cannot overlap. Currently I preserve the original ordering
semantic so the zone always precedes the movable zone but I have plans
to remove this restriction in future because it is not really necessary.
First 3 patches are cleanups which should be ready to be merged right
away (unless I have missed something subtle of course).
Patch 4 deals with ZONE_DEVICE dependencies down the __add_pages path.
Patch 5 deals with implicit assumptions of register_one_node on pgdat
initialization.
Patches 6-10 deal with offline holes in the zone for pfn walkers. I
hope I got all of them right but people familiar with compaction should
double check this.
Patch 11 is the core of the change. In order to make it easier to
review I have tried it to be as minimalistic as possible and the large
code removal is moved to patch 14.
Patch 12 is a trivial follow up cleanup. Patch 13 fixes sparse warnings
and finally patch 14 removes the unused code.
I have tested the patches in kvm:
# qemu-system-x86_64 -enable-kvm -monitor pty -m 2G,slots=4,maxmem=4G -numa node,mem=1G -numa node,mem=1G ...
and then probed the additional memory by
(qemu) object_add memory-backend-ram,id=mem1,size=1G
(qemu) device_add pc-dimm,id=dimm1,memdev=mem1
Then I have used this simple script to probe the memory block by hand
# cat probe_memblock.sh
#!/bin/sh
BLOCK_NR=$1
# echo $((0x100000000+$BLOCK_NR*(128<<20))) > /sys/devices/system/memory/probe
# for i in $(seq 10); do sh probe_memblock.sh $i; done
# grep . /sys/devices/system/memory/memory3?/valid_zones 2>/dev/null
/sys/devices/system/memory/memory33/valid_zones:Normal Movable
/sys/devices/system/memory/memory34/valid_zones:Normal Movable
/sys/devices/system/memory/memory35/valid_zones:Normal Movable
/sys/devices/system/memory/memory36/valid_zones:Normal Movable
/sys/devices/system/memory/memory37/valid_zones:Normal Movable
/sys/devices/system/memory/memory38/valid_zones:Normal Movable
/sys/devices/system/memory/memory39/valid_zones:Normal Movable
The main difference to the original implementation is that all new
memblocks can be both online_kernel and online_movable initially because
there is no clash obviously. For the comparison the original
implementation would have
/sys/devices/system/memory/memory33/valid_zones:Normal
/sys/devices/system/memory/memory34/valid_zones:Normal
/sys/devices/system/memory/memory35/valid_zones:Normal
/sys/devices/system/memory/memory36/valid_zones:Normal
/sys/devices/system/memory/memory37/valid_zones:Normal
/sys/devices/system/memory/memory38/valid_zones:Normal
/sys/devices/system/memory/memory39/valid_zones:Normal Movable
Now
# echo online_movable > /sys/devices/system/memory/memory34/state
# grep . /sys/devices/system/memory/memory3?/valid_zones 2>/dev/null
/sys/devices/system/memory/memory33/valid_zones:Normal Movable
/sys/devices/system/memory/memory34/valid_zones:Movable
/sys/devices/system/memory/memory35/valid_zones:Movable
/sys/devices/system/memory/memory36/valid_zones:Movable
/sys/devices/system/memory/memory37/valid_zones:Movable
/sys/devices/system/memory/memory38/valid_zones:Movable
/sys/devices/system/memory/memory39/valid_zones:Movable
Block 33 can still be online both kernel and movable while all
the remaining can be only movable.
/proc/zonelist says
Node 0, zone Normal
pages free 0
min 0
low 0
high 0
spanned 0
present 0
--
Node 0, zone Movable
pages free 32753
min 85
low 117
high 149
spanned 32768
present 32768
A new memblock at a lower address will result in a new memblock (32)
which will still allow both Normal and Movable.
# sh probe_memblock.sh 0
# grep . /sys/devices/system/memory/memory3[2-5]/valid_zones 2>/dev/null
/sys/devices/system/memory/memory32/valid_zones:Normal Movable
/sys/devices/system/memory/memory33/valid_zones:Normal Movable
/sys/devices/system/memory/memory34/valid_zones:Movable
/sys/devices/system/memory/memory35/valid_zones:Movable
and online_kernel will convert it to the zone normal properly
while 33 can be still onlined both ways.
# echo online_kernel > /sys/devices/system/memory/memory32/state
# grep . /sys/devices/system/memory/memory3[2-5]/valid_zones 2>/dev/null
/sys/devices/system/memory/memory32/valid_zones:Normal
/sys/devices/system/memory/memory33/valid_zones:Normal Movable
/sys/devices/system/memory/memory34/valid_zones:Movable
/sys/devices/system/memory/memory35/valid_zones:Movable
/proc/zoneinfo will now tell
Node 0, zone Normal
pages free 65441
min 165
low 230
high 295
spanned 65536
present 65536
--
Node 0, zone Movable
pages free 32740
min 82
low 114
high 146
spanned 32768
present 32768
so both zones have one memblock spanned and present.
Onlining 39 should associate this block to the movable zone
# echo online > /sys/devices/system/memory/memory39/state
/proc/zoneinfo will now tell
Node 0, zone Normal
pages free 32765
min 80
low 112
high 144
spanned 32768
present 32768
--
Node 0, zone Movable
pages free 65501
min 160
low 225
high 290
spanned 196608
present 65536
so we will have a movable zone which spans 6 memblocks, 2 present and 4
representing a hole.
Offlining both movable blocks will lead to the zone with no present
pages which is the expected behavior I believe.
# echo offline > /sys/devices/system/memory/memory39/state
# echo offline > /sys/devices/system/memory/memory34/state
# grep -A6 "Movable\|Normal" /proc/zoneinfo
Node 0, zone Normal
pages free 32735
min 90
low 122
high 154
spanned 32768
present 32768
--
Node 0, zone Movable
pages free 0
min 0
low 0
high 0
spanned 196608
present 0
As a bonus we will get a nice cleanup in the memory hotplug codebase.
This patch (of 16):
init_currently_empty_zone doesn't have any error to return yet it is
still an int and callers try to be defensive and try to handle potential
error. Remove this nonsense and simplify all callers.
This patch shouldn't have any visible effect
Link: http://lkml.kernel.org/r/20170515085827.16474-2-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Acked-by: Balbir Singh <bsingharora@gmail.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Daniel Kiper <daniel.kiper@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Igor Mammedov <imammedo@redhat.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Reza Arbab <arbab@linux.vnet.ibm.com>
Cc: Tobias Regnery <tobias.regnery@gmail.com>
Cc: Toshi Kani <toshi.kani@hpe.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
kswapd is woken to reclaim a node based on a failed allocation request
from any eligible zone. Once reclaiming in balance_pgdat(), it will
continue reclaiming until there is an eligible zone available for the
zone it was woken for. kswapd tracks what zone it was recently woken
for in pgdat->kswapd_classzone_idx. If it has not been woken recently,
this zone will be 0.
However, the decision on whether to sleep is made on
kswapd_classzone_idx which is 0 without a recent wakeup request and that
classzone does not account for lowmem reserves. This allows kswapd to
sleep when a low small zone such as ZONE_DMA is balanced for a GFP_DMA
request even if a stream of allocations cannot use that zone. While
kswapd may be woken again shortly in the near future there are two
consequences -- the pgdat bits that control congestion are cleared
prematurely and direct reclaim is more likely as kswapd slept
prematurely.
This patch flips kswapd_classzone_idx to default to MAX_NR_ZONES (an
invalid index) when there has been no recent wakeups. If there are no
wakeups, it'll decide whether to sleep based on the highest possible
zone available (MAX_NR_ZONES - 1). It then becomes critical that the
"pgdat balanced" decisions during reclaim and when deciding to sleep are
the same. If there is a mismatch, kswapd can stay awake continually
trying to balance tiny zones.
simoop was used to evaluate it again. Two of the preparation patches
regressed the workload so they are included as the second set of
results. Otherwise this patch looks artifically excellent
4.11.0-rc1 4.11.0-rc1 4.11.0-rc1
vanilla clear-v2 keepawake-v2
Amean p50-Read 21670074.18 ( 0.00%) 19786774.76 ( 8.69%) 22668332.52 ( -4.61%)
Amean p95-Read 25456267.64 ( 0.00%) 24101956.27 ( 5.32%) 26738688.00 ( -5.04%)
Amean p99-Read 29369064.73 ( 0.00%) 27691872.71 ( 5.71%) 30991404.52 ( -5.52%)
Amean p50-Write 1390.30 ( 0.00%) 1011.91 ( 27.22%) 924.91 ( 33.47%)
Amean p95-Write 412901.57 ( 0.00%) 34874.98 ( 91.55%) 1362.62 ( 99.67%)
Amean p99-Write 6668722.09 ( 0.00%) 575449.60 ( 91.37%) 16854.04 ( 99.75%)
Amean p50-Allocation 78714.31 ( 0.00%) 84246.26 ( -7.03%) 74729.74 ( 5.06%)
Amean p95-Allocation 175533.51 ( 0.00%) 400058.43 (-127.91%) 101609.74 ( 42.11%)
Amean p99-Allocation 247003.02 ( 0.00%) 10905600.00 (-4315.17%) 125765.57 ( 49.08%)
With this patch on top, write and allocation latencies are massively
improved. The read latencies are slightly impaired but it's worth
noting that this is mostly due to the IO scheduler and not directly
related to reclaim. The vmstats are a bit of a mix but the relevant
ones are as follows;
4.10.0-rc7 4.10.0-rc7 4.10.0-rc7
mmots-20170209 clear-v1r25keepawake-v1r25
Swap Ins 0 0 0
Swap Outs 0 608 0
Direct pages scanned 6910672 3132699 6357298
Kswapd pages scanned 57036946 82488665 56986286
Kswapd pages reclaimed 55993488 63474329 55939113
Direct pages reclaimed 6905990 2964843 6352115
Kswapd efficiency 98% 76% 98%
Kswapd velocity 12494.375 17597.507 12488.065
Direct efficiency 99% 94% 99%
Direct velocity 1513.835 668.306 1393.148
Page writes by reclaim 0.000 4410243.000 0.000
Page writes file 0 4409635 0
Page writes anon 0 608 0
Page reclaim immediate 1036792 14175203 1042571
4.11.0-rc1 4.11.0-rc1 4.11.0-rc1
vanilla clear-v2 keepawake-v2
Swap Ins 0 12 0
Swap Outs 0 838 0
Direct pages scanned 6579706 3237270 6256811
Kswapd pages scanned 61853702 79961486 54837791
Kswapd pages reclaimed 60768764 60755788 53849586
Direct pages reclaimed 6579055 2987453 6256151
Kswapd efficiency 98% 75% 98%
Page writes by reclaim 0.000 4389496.000 0.000
Page writes file 0 4388658 0
Page writes anon 0 838 0
Page reclaim immediate 1073573 14473009 982507
Swap-outs are equivalent to baseline.
Direct reclaim is reduced but not eliminated. It's worth noting that
there are two periods of direct reclaim for this workload. The first is
when it switches from preparing the files for the actual test itself.
It's a lot of file IO followed by a lot of allocs that reclaims heavily
for a brief window. While direct reclaim is lower with clear-v2, it is
due to kswapd scanning aggressively and trying to reclaim the world
which is not the right thing to do. With the patches applied, there is
still direct reclaim but the phase change from "creating work files" to
starting multiple threads that allocate a lot of anonymous memory faster
than kswapd can reclaim.
Scanning/reclaim efficiency is restored by this patch.
Page writes from reclaim context are back at 0 which is ideal.
Pages immediately reclaimed after IO completes is slightly improved but
it is expected this will vary slightly.
On UMA, there is almost no change so this is not expected to be a
universal win.
[mgorman@suse.de: fix ->kswapd_classzone_idx initialization]
Link: http://lkml.kernel.org/r/20170406174538.5msrznj6nt6qpbx5@suse.de
Link: http://lkml.kernel.org/r/20170309075657.25121-4-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Shantanu Goel <sgoel01@yahoo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Commit bfc8c90139eb ("mem-hotplug: implement get/put_online_mems")
introduced new functions get/put_online_mems() and mem_hotplug_begin/end()
in order to allow similar semantics for memory hotplug like for cpu
hotplug.
The corresponding functions for cpu hotplug are get/put_online_cpus()
and cpu_hotplug_begin/done() for cpu hotplug.
The commit however missed to introduce functions that would serialize
memory hotplug operations like they are done for cpu hotplug with
cpu_maps_update_begin/done().
This basically leaves mem_hotplug.active_writer unprotected and allows
concurrent writers to modify it, which may lead to problems as outlined
by commit f931ab479dd2 ("mm: fix devm_memremap_pages crash, use
mem_hotplug_{begin, done}").
That commit was extended again with commit b5d24fda9c3d ("mm,
devm_memremap_pages: hold device_hotplug lock over mem_hotplug_{begin,
done}") which serializes memory hotplug operations for some call sites
by using the device_hotplug lock.
In addition with commit 3fc21924100b ("mm: validate device_hotplug is held
for memory hotplug") a sanity check was added to mem_hotplug_begin() to
verify that the device_hotplug lock is held.
This in turn triggers the following warning on s390:
WARNING: CPU: 6 PID: 1 at drivers/base/core.c:643 assert_held_device_hotplug+0x4a/0x58
Call Trace:
assert_held_device_hotplug+0x40/0x58)
mem_hotplug_begin+0x34/0xc8
add_memory_resource+0x7e/0x1f8
add_memory+0xda/0x130
add_memory_merged+0x15c/0x178
sclp_detect_standby_memory+0x2ae/0x2f8
do_one_initcall+0xa2/0x150
kernel_init_freeable+0x228/0x2d8
kernel_init+0x2a/0x140
kernel_thread_starter+0x6/0xc
One possible fix would be to add more lock_device_hotplug() and
unlock_device_hotplug() calls around each call site of
mem_hotplug_begin/end(). But that would give the device_hotplug lock
additional semantics it better should not have (serialize memory hotplug
operations).
Instead add a new memory_add_remove_lock which has the similar semantics
like cpu_add_remove_lock for cpu hotplug.
To keep things hopefully a bit easier the lock will be locked and unlocked
within the mem_hotplug_begin/end() functions.
Link: http://lkml.kernel.org/r/20170314125226.16779-2-heiko.carstens@de.ibm.com
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Reported-by: Sebastian Ott <sebott@linux.vnet.ibm.com>
Acked-by: Dan Williams <dan.j.williams@intel.com>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Ben Hutchings <ben@decadent.org.uk>
Cc: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
<linux/sched.h> into <linux/sched/signal.h>
Fix up affected files that include this signal functionality via sched.h.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Commit 31bc3858ea3e ("add automatic onlining policy for the newly added
memory") provides the capability to have added memory automatically
onlined during add, but this appears to be slightly broken.
The current implementation uses walk_memory_range() to call
online_memory_block, which uses memory_block_change_state() to online
the memory. Instead, we should be calling device_online() for the
memory block in online_memory_block(). This would online the memory
(the memory bus online routine memory_subsys_online() called from
device_online calls memory_block_change_state()) and properly update the
device struct offline flag.
As a result of the current implementation, attempting to remove a memory
block after adding it using auto online fails. This is because doing a
remove, for instance
echo offline > /sys/devices/system/memory/memoryXXX/state
uses device_offline() which checks the dev->offline flag.
Link: http://lkml.kernel.org/r/20170222220744.8119.19687.stgit@ltcalpine2-lp14.aus.stglabs.ibm.com
Signed-off-by: Nathan Fontenot <nfont@linux.vnet.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michael Roth <mdroth@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
When mainline introduced commit a96dfddbcc04 ("base/memory, hotplug: fix
a kernel oops in show_valid_zones()"), it obtained the valid start and
end pfn from the given pfn range. The valid start pfn can fix the
actual issue, but it introduced another issue. The valid end pfn will
may exceed the given end_pfn.
Although the incorrect overflow will not result in actual problem at
present, but I think it need to be fixed.
[toshi.kani@hpe.com: remove assumption that end_pfn is aligned by MAX_ORDER_NR_PAGES]
Fixes: a96dfddbcc04 ("base/memory, hotplug: fix a kernel oops in show_valid_zones()")
Link: http://lkml.kernel.org/r/1486467299-22648-1-git-send-email-zhongjiang@huawei.com
Signed-off-by: zhong jiang <zhongjiang@huawei.com>
Signed-off-by: Toshi Kani <toshi.kani@hpe.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
We had considered all of the non-lru pages as unmovable before commit
bda807d44454 ("mm: migrate: support non-lru movable page migration").
But now some of non-lru pages like zsmalloc, virtio-balloon pages also
become movable. So we can offline such blocks by using non-lru page
migration.
This patch straightforwardly adds non-lru migration code, which means
adding non-lru related code to the functions which scan over pfn and
collect pages to be migrated and isolate them before migration.
Signed-off-by: Yisheng Xie <xieyisheng1@huawei.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Hanjun Guo <guohanjun@huawei.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Reza Arbab <arbab@linux.vnet.ibm.com>
Cc: Taku Izumi <izumi.taku@jp.fujitsu.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Yisheng Xie <xieyisheng1@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
It has no modular callers.
Cc: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
mem_hotplug_begin() assumes that it can set mem_hotplug.active_writer
and run the hotplug process without racing another thread. Validate
this assumption with a lockdep assertion.
Link: http://lkml.kernel.org/r/148693886229.16345.1770484669403334689.stgit@dwillia2-desk3.amr.corp.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Reported-by: Ben Hutchings <ben@decadent.org.uk>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Toshi Kani <toshi.kani@hpe.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Logan Gunthorpe <logang@deltatee.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Masayoshi Mizuma <m.mizuma@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
To identify that pages of page table are allocated from bootmem
allocator, magic number sets to page->lru.next.
But page->lru list is initialized in reserve_bootmem_region(). So when
calling free_pagetable(), the function cannot find the magic number of
pages. And free_pagetable() frees the pages by free_reserved_page() not
put_page_bootmem().
But if the pages are allocated from bootmem allocator and used as page
table, the pages have private flag. So before freeing the pages, we
should clear the private flag by put_page_bootmem().
Before applying the commit 7bfec6f47bb0 ("mm, page_alloc: check multiple
page fields with a single branch"), we could find the following visible
issue:
BUG: Bad page state in process kworker/u1024:1
page:ffffea103cfd8040 count:0 mapcount:0 mappi
flags: 0x6fffff80000800(private)
page dumped because: PAGE_FLAGS_CHECK_AT_FREE flag(s) set
bad because of flags: 0x800(private)
<snip>
Call Trace:
[...] dump_stack+0x63/0x87
[...] bad_page+0x114/0x130
[...] free_pages_prepare+0x299/0x2d0
[...] free_hot_cold_page+0x31/0x150
[...] __free_pages+0x25/0x30
[...] free_pagetable+0x6f/0xb4
[...] remove_pagetable+0x379/0x7ff
[...] vmemmap_free+0x10/0x20
[...] sparse_remove_one_section+0x149/0x180
[...] __remove_pages+0x2e9/0x4f0
[...] arch_remove_memory+0x63/0xc0
[...] remove_memory+0x8c/0xc0
[...] acpi_memory_device_remove+0x79/0xa5
[...] acpi_bus_trim+0x5a/0x8d
[...] acpi_bus_trim+0x38/0x8d
[...] acpi_device_hotplug+0x1b7/0x418
[...] acpi_hotplug_work_fn+0x1e/0x29
[...] process_one_work+0x152/0x400
[...] worker_thread+0x125/0x4b0
[...] kthread+0xd8/0xf0
[...] ret_from_fork+0x22/0x40
And the issue still silently occurs.
Until freeing the pages of page table allocated from bootmem allocator,
the page->freelist is never used. So the patch sets magic number to
page->freelist instead of page->lru.next.
[isimatu.yasuaki@jp.fujitsu.com: fix merge issue]
Link: http://lkml.kernel.org/r/722b1cc4-93ac-dd8b-2be2-7a7e313b3b0b@gmail.com
Link: http://lkml.kernel.org/r/2c29bd9f-5b67-02d0-18a3-8828e78bbb6f@gmail.com
Signed-off-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Reading a sysfs "memoryN/valid_zones" file leads to the following oops
when the first page of a range is not backed by struct page.
show_valid_zones() assumes that 'start_pfn' is always valid for
page_zone().
BUG: unable to handle kernel paging request at ffffea017a000000
IP: show_valid_zones+0x6f/0x160
This issue may happen on x86-64 systems with 64GiB or more memory since
their memory block size is bumped up to 2GiB. [1] An example of such
systems is desribed below. 0x3240000000 is only aligned by 1GiB and
this memory block starts from 0x3200000000, which is not backed by
struct page.
BIOS-e820: [mem 0x0000003240000000-0x000000603fffffff] usable
Since test_pages_in_a_zone() already checks holes, fix this issue by
extending this function to return 'valid_start' and 'valid_end' for a
given range. show_valid_zones() then proceeds with the valid range.
[1] 'Commit bdee237c0343 ("x86: mm: Use 2GB memory block size on
large-memory x86-64 systems")'
Link: http://lkml.kernel.org/r/20170127222149.30893-3-toshi.kani@hpe.com
Signed-off-by: Toshi Kani <toshi.kani@hpe.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Zhang Zhen <zhenzhang.zhang@huawei.com>
Cc: Reza Arbab <arbab@linux.vnet.ibm.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: <stable@vger.kernel.org> [4.4+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Patch series "fix a kernel oops when reading sysfs valid_zones", v2.
A sysfs memory file is created for each 2GiB memory block on x86-64 when
the system has 64GiB or more memory. [1] When the start address of a
memory block is not backed by struct page, i.e. a memory range is not
aligned by 2GiB, reading its 'valid_zones' attribute file leads to a
kernel oops. This issue was observed on multiple x86-64 systems with
more than 64GiB of memory. This patch-set fixes this issue.
Patch 1 first fixes an issue in test_pages_in_a_zone(), which does not
test the start section.
Patch 2 then fixes the kernel oops by extending test_pages_in_a_zone()
to return valid [start, end).
Note for stable kernels: The memory block size change was made by commit
bdee237c0343 ("x86: mm: Use 2GB memory block size on large-memory x86-64
systems"), which was accepted to 3.9. However, this patch-set depends
on (and fixes) the change to test_pages_in_a_zone() made by commit
5f0f2887f4de ("mm/memory_hotplug.c: check for missing sections in
test_pages_in_a_zone()"), which was accepted to 4.4.
So, I recommend that we backport it up to 4.4.
[1] 'Commit bdee237c0343 ("x86: mm: Use 2GB memory block size on
large-memory x86-64 systems")'
This patch (of 2):
test_pages_in_a_zone() does not check 'start_pfn' when it is aligned by
section since 'sec_end_pfn' is set equal to 'pfn'. Since this function
is called for testing the range of a sysfs memory file, 'start_pfn' is
always aligned by section.
Fix it by properly setting 'sec_end_pfn' to the next section pfn.
Also make sure that this function returns 1 only when the range belongs
to a zone.
Link: http://lkml.kernel.org/r/20170127222149.30893-2-toshi.kani@hpe.com
Signed-off-by: Toshi Kani <toshi.kani@hpe.com>
Cc: Andrew Banman <abanman@sgi.com>
Cc: Reza Arbab <arbab@linux.vnet.ibm.com>
Cc: Greg KH <greg@kroah.com>
Cc: <stable@vger.kernel.org> [4.4+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
online_{kernel|movable} is used to change the memory zone to
ZONE_{NORMAL|MOVABLE} and online the memory.
To check that memory zone can be changed, zone_can_shift() is used.
Currently the function returns minus integer value, plus integer
value and 0. When the function returns minus or plus integer value,
it means that the memory zone can be changed to ZONE_{NORNAL|MOVABLE}.
But when the function returns 0, there are two meanings.
One of the meanings is that the memory zone does not need to be changed.
For example, when memory is in ZONE_NORMAL and onlined by online_kernel
the memory zone does not need to be changed.
Another meaning is that the memory zone cannot be changed. When memory
is in ZONE_NORMAL and onlined by online_movable, the memory zone may
not be changed to ZONE_MOVALBE due to memory online limitation(see
Documentation/memory-hotplug.txt). In this case, memory must not be
onlined.
The patch changes the return type of zone_can_shift() so that memory
online operation fails when memory zone cannot be changed as follows:
Before applying patch:
# grep -A 35 "Node 2" /proc/zoneinfo
Node 2, zone Normal
<snip>
node_scanned 0
spanned 8388608
present 7864320
managed 7864320
# echo online_movable > memory4097/state
# grep -A 35 "Node 2" /proc/zoneinfo
Node 2, zone Normal
<snip>
node_scanned 0
spanned 8388608
present 8388608
managed 8388608
online_movable operation succeeded. But memory is onlined as
ZONE_NORMAL, not ZONE_MOVABLE.
After applying patch:
# grep -A 35 "Node 2" /proc/zoneinfo
Node 2, zone Normal
<snip>
node_scanned 0
spanned 8388608
present 7864320
managed 7864320
# echo online_movable > memory4097/state
bash: echo: write error: Invalid argument
# grep -A 35 "Node 2" /proc/zoneinfo
Node 2, zone Normal
<snip>
node_scanned 0
spanned 8388608
present 7864320
managed 7864320
online_movable operation failed because of failure of changing
the memory zone from ZONE_NORMAL to ZONE_MOVABLE
Fixes: df429ac03936 ("memory-hotplug: more general validation of zone during online")
Link: http://lkml.kernel.org/r/2f9c3837-33d7-b6e5-59c0-6ca4372b2d84@gmail.com
Signed-off-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Reviewed-by: Reza Arbab <arbab@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
In commit c5320926e370 ("mem-hotplug: introduce movable_node boot
option"), the memblock allocation direction is changed to bottom-up and
then back to top-down like this:
1. memblock_set_bottom_up(true), called by cmdline_parse_movable_node().
2. memblock_set_bottom_up(false), called by x86's numa_init().
Even though (1) occurs in generic mm code, it is wrapped by #ifdef
CONFIG_MOVABLE_NODE, which depends on X86_64.
This means that when we extend CONFIG_MOVABLE_NODE to non-x86 arches,
things will be unbalanced. (1) will happen for them, but (2) will not.
This toggle was added in the first place because x86 has a delay between
adding memblocks and marking them as hotpluggable. Since other arches
do this marking either immediately or not at all, they do not require
the bottom-up toggle.
So, resolve things by moving (1) from cmdline_parse_movable_node() to
x86's setup_arch(), immediately after the movable_node parameter has
been parsed.
Link: http://lkml.kernel.org/r/1479160961-25840-3-git-send-email-arbab@linux.vnet.ibm.com
Signed-off-by: Reza Arbab <arbab@linux.vnet.ibm.com>
Acked-by: Balbir Singh <bsingharora@gmail.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Alistair Popple <apopple@au1.ibm.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Bharata B Rao <bharata@linux.vnet.ibm.com>
Cc: Frank Rowand <frowand.list@gmail.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Nathan Fontenot <nfont@linux.vnet.ibm.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Rob Herring <robh+dt@kernel.org>
Cc: Stewart Smith <stewart@linux.vnet.ibm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
When I removed the per-zone bitlock hashed waitqueues in commit
9dcb8b685fc3 ("mm: remove per-zone hashtable of bitlock waitqueues"), I
removed all the magic hotplug memory initialization of said waitqueues
too.
But when I actually _tested_ the resulting build, I stupidly assumed
that "allmodconfig" would enable memory hotplug. And it doesn't,
because it enables KASAN instead, which then disables hotplug memory
support.
As a result, my build test of the per-zone waitqueues was totally
broken, and I didn't notice that the compiler warns about the now unused
iterator variable 'i'.
I guess I should be happy that that seems to be the worst breakage from
my clearly horribly failed test coverage.
Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The per-zone waitqueues exist because of a scalability issue with the
page waitqueues on some NUMA machines, but it turns out that they hurt
normal loads, and now with the vmalloced stacks they also end up
breaking gfs2 that uses a bit_wait on a stack object:
wait_on_bit(&gh->gh_iflags, HIF_WAIT, TASK_UNINTERRUPTIBLE)
where 'gh' can be a reference to the local variable 'mount_gh' on the
stack of fill_super().
The reason the per-zone hash table breaks for this case is that there is
no "zone" for virtual allocations, and trying to look up the physical
page to get at it will fail (with a BUG_ON()).
It turns out that I actually complained to the mm people about the
per-zone hash table for another reason just a month ago: the zone lookup
also hurts the regular use of "unlock_page()" a lot, because the zone
lookup ends up forcing several unnecessary cache misses and generates
horrible code.
As part of that earlier discussion, we had a much better solution for
the NUMA scalability issue - by just making the page lock have a
separate contention bit, the waitqueue doesn't even have to be looked at
for the normal case.
Peter Zijlstra already has a patch for that, but let's see if anybody
even notices. In the meantime, let's fix the actual gfs2 breakage by
simplifying the bitlock waitqueues and removing the per-zone issue.
Reported-by: Andreas Gruenbacher <agruenba@redhat.com>
Tested-by: Bob Peterson <rpeterso@redhat.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Steven Whitehouse <swhiteho@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
In dissolve_free_huge_pages(), free hugepages will be dissolved without
making sure that there are enough of them left to satisfy hugepage
reservations.
Fix this by adding a return value to dissolve_free_huge_pages() and
checking h->free_huge_pages vs. h->resv_huge_pages. Note that this may
lead to the situation where dissolve_free_huge_page() returns an error
and all free hugepages that were dissolved before that error are lost,
while the memory block still cannot be set offline.
Fixes: c8721bbb ("mm: memory-hotplug: enable memory hotplug to handle hugepage")
Link: http://lkml.kernel.org/r/20160926172811.94033-3-gerald.schaefer@de.ibm.com
Signed-off-by: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Rui Teng <rui.teng@linux.vnet.ibm.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
9bb627be47a5 ("mem-hotplug: don't clear the only node in new_node_page()")
prevents allocating from an empty nodemask, but as David points out, it is
still wrong. As node_online_map may include memoryless nodes, only
allocating from these nodes is meaningless.
This patch uses node_states[N_MEMORY] mask to prevent the above case.
Fixes: 9bb627be47a5 ("mem-hotplug: don't clear the only node in new_node_page()")
Fixes: 394e31d2ceb4 ("mem-hotplug: alloc new page from a nearest neighbor node when mem-offline")
Link: http://lkml.kernel.org/r/1474447117.28370.6.camel@TP420
Signed-off-by: Li Zhong <zhong@linux.vnet.ibm.com>
Suggested-by: David Rientjes <rientjes@google.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: John Allen <jallen@linux.vnet.ibm.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Commit 394e31d2ceb4 ("mem-hotplug: alloc new page from a nearest
neighbor node when mem-offline") introduced new_node_page() for memory
hotplug.
In new_node_page(), the nid is cleared before calling
__alloc_pages_nodemask(). But if it is the only node of the system, and
the first round allocation fails, it will not be able to get memory from
an empty nodemask, and will trigger oom.
The patch checks whether it is the last node on the system, and if it
is, then don't clear the nid in the nodemask.
Fixes: 394e31d2ceb4 ("mem-hotplug: alloc new page from a nearest neighbor node when mem-offline")
Link: http://lkml.kernel.org/r/1473044391.4250.19.camel@TP420
Signed-off-by: Li Zhong <zhong@linux.vnet.ibm.com>
Reported-by: John Allen <jallen@linux.vnet.ibm.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|