Age | Commit message (Collapse) | Author |
|
git://git.kernel.org/pub/scm/linux/kernel/git/rdma/rdma
Pull hmm updates from Jason Gunthorpe:
"This is more cleanup and consolidation of the hmm APIs and the very
strongly related mmu_notifier interfaces. Many places across the tree
using these interfaces are touched in the process. Beyond that a
cleanup to the page walker API and a few memremap related changes
round out the series:
- General improvement of hmm_range_fault() and related APIs, more
documentation, bug fixes from testing, API simplification &
consolidation, and unused API removal
- Simplify the hmm related kconfigs to HMM_MIRROR and DEVICE_PRIVATE,
and make them internal kconfig selects
- Hoist a lot of code related to mmu notifier attachment out of
drivers by using a refcount get/put attachment idiom and remove the
convoluted mmu_notifier_unregister_no_release() and related APIs.
- General API improvement for the migrate_vma API and revision of its
only user in nouveau
- Annotate mmu_notifiers with lockdep and sleeping region debugging
Two series unrelated to HMM or mmu_notifiers came along due to
dependencies:
- Allow pagemap's memremap_pages family of APIs to work without
providing a struct device
- Make walk_page_range() and related use a constant structure for
function pointers"
* tag 'for-linus-hmm' of git://git.kernel.org/pub/scm/linux/kernel/git/rdma/rdma: (75 commits)
libnvdimm: Enable unit test infrastructure compile checks
mm, notifier: Catch sleeping/blocking for !blockable
kernel.h: Add non_block_start/end()
drm/radeon: guard against calling an unpaired radeon_mn_unregister()
csky: add missing brackets in a macro for tlb.h
pagewalk: use lockdep_assert_held for locking validation
pagewalk: separate function pointers from iterator data
mm: split out a new pagewalk.h header from mm.h
mm/mmu_notifiers: annotate with might_sleep()
mm/mmu_notifiers: prime lockdep
mm/mmu_notifiers: add a lockdep map for invalidate_range_start/end
mm/mmu_notifiers: remove the __mmu_notifier_invalidate_range_start/end exports
mm/hmm: hmm_range_fault() infinite loop
mm/hmm: hmm_range_fault() NULL pointer bug
mm/hmm: fix hmm_range_fault()'s handling of swapped out pages
mm/mmu_notifiers: remove unregister_no_release
RDMA/odp: remove ib_ucontext from ib_umem
RDMA/odp: use mmu_notifier_get/put for 'struct ib_ucontext_per_mm'
RDMA/mlx5: Use odp instead of mr->umem in pagefault_mr
RDMA/mlx5: Use ib_umem_start instead of umem.address
...
|
|
Pull block updates from Jens Axboe:
- Two NVMe pull requests:
- ana log parse fix from Anton
- nvme quirks support for Apple devices from Ben
- fix missing bio completion tracing for multipath stack devices
from Hannes and Mikhail
- IP TOS settings for nvme rdma and tcp transports from Israel
- rq_dma_dir cleanups from Israel
- tracing for Get LBA Status command from Minwoo
- Some nvme-tcp cleanups from Minwoo, Potnuri and Myself
- Some consolidation between the fabrics transports for handling
the CAP register
- reset race with ns scanning fix for fabrics (move fabrics
commands to a dedicated request queue with a different lifetime
from the admin request queue)."
- controller reset and namespace scan races fixes
- nvme discovery log change uevent support
- naming improvements from Keith
- multiple discovery controllers reject fix from James
- some regular cleanups from various people
- Series fixing (and re-fixing) null_blk debug printing and nr_devices
checks (André)
- A few pull requests from Song, with fixes from Andy, Guoqing,
Guilherme, Neil, Nigel, and Yufen.
- REQ_OP_ZONE_RESET_ALL support (Chaitanya)
- Bio merge handling unification (Christoph)
- Pick default elevator correctly for devices with special needs
(Damien)
- Block stats fixes (Hou)
- Timeout and support devices nbd fixes (Mike)
- Series fixing races around elevator switching and device add/remove
(Ming)
- sed-opal cleanups (Revanth)
- Per device weight support for BFQ (Fam)
- Support for blk-iocost, a new model that can properly account cost of
IO workloads. (Tejun)
- blk-cgroup writeback fixes (Tejun)
- paride queue init fixes (zhengbin)
- blk_set_runtime_active() cleanup (Stanley)
- Block segment mapping optimizations (Bart)
- lightnvm fixes (Hans/Minwoo/YueHaibing)
- Various little fixes and cleanups
* tag 'for-5.4/block-2019-09-16' of git://git.kernel.dk/linux-block: (186 commits)
null_blk: format pr_* logs with pr_fmt
null_blk: match the type of parameter nr_devices
null_blk: do not fail the module load with zero devices
block: also check RQF_STATS in blk_mq_need_time_stamp()
block: make rq sector size accessible for block stats
bfq: Fix bfq linkage error
raid5: use bio_end_sector in r5_next_bio
raid5: remove STRIPE_OPS_REQ_PENDING
md: add feature flag MD_FEATURE_RAID0_LAYOUT
md/raid0: avoid RAID0 data corruption due to layout confusion.
raid5: don't set STRIPE_HANDLE to stripe which is in batch list
raid5: don't increment read_errors on EILSEQ return
nvmet: fix a wrong error status returned in error log page
nvme: send discovery log page change events to userspace
nvme: add uevent variables for controller devices
nvme: enable aen regardless of the presence of I/O queues
nvme-fabrics: allow discovery subsystems accept a kato
nvmet: Use PTR_ERR_OR_ZERO() in nvmet_init_discovery()
nvme: Remove redundant assignment of cq vector
nvme: Assign subsys instance from first ctrl
...
|
|
The mm_walk structure currently mixed data and code. Split out the
operations vectors into a new mm_walk_ops structure, and while we are
changing the API also declare the mm_walk structure inside the
walk_page_range and walk_page_vma functions.
Based on patch from Linus Torvalds.
Link: https://lore.kernel.org/r/20190828141955.22210-3-hch@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Thomas Hellstrom <thellstrom@vmware.com>
Reviewed-by: Steven Price <steven.price@arm.com>
Reviewed-by: Jason Gunthorpe <jgg@mellanox.com>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
|
|
Add a new header for the two handful of users of the walk_page_range /
walk_page_vma interface instead of polluting all users of mm.h with it.
Link: https://lore.kernel.org/r/20190828141955.22210-2-hch@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Thomas Hellstrom <thellstrom@vmware.com>
Reviewed-by: Steven Price <steven.price@arm.com>
Reviewed-by: Jason Gunthorpe <jgg@mellanox.com>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
|
|
Instead of using raw_cpu_read() use per_cpu() to read the actual data of
the corresponding cpu otherwise we will be reading the data of the
current cpu for the number of online CPUs.
Link: http://lkml.kernel.org/r/20190829203110.129263-1-shakeelb@google.com
Fixes: bb65f89b7d3d ("mm: memcontrol: flush percpu vmevents before releasing memcg")
Fixes: c350a99ea2b1 ("mm: memcontrol: flush percpu vmstats before releasing memcg")
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Roman Gushchin <guro@fb.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
with the hierarchical ones"
Commit 766a4c19d880 ("mm/memcontrol.c: keep local VM counters in sync
with the hierarchical ones") effectively decreased the precision of
per-memcg vmstats_local and per-memcg-per-node lruvec percpu counters.
That's good for displaying in memory.stat, but brings a serious
regression into the reclaim process.
One issue I've discovered and debugged is the following:
lruvec_lru_size() can return 0 instead of the actual number of pages in
the lru list, preventing the kernel to reclaim last remaining pages.
Result is yet another dying memory cgroups flooding. The opposite is
also happening: scanning an empty lru list is the waste of cpu time.
Also, inactive_list_is_low() can return incorrect values, preventing the
active lru from being scanned and freed. It can fail both because the
size of active and inactive lists are inaccurate, and because the number
of workingset refaults isn't precise. In other words, the result is
pretty random.
I'm not sure, if using the approximate number of slab pages in
count_shadow_number() is acceptable, but issues described above are
enough to partially revert the patch.
Let's keep per-memcg vmstat_local batched (they are only used for
displaying stats to the userspace), but keep lruvec stats precise. This
change fixes the dead memcg flooding on my setup.
Link: http://lkml.kernel.org/r/20190817004726.2530670-1-guro@fb.com
Fixes: 766a4c19d880 ("mm/memcontrol.c: keep local VM counters in sync with the hierarchical ones")
Signed-off-by: Roman Gushchin <guro@fb.com>
Acked-by: Yafang Shao <laoar.shao@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
I've noticed that the "slab" value in memory.stat is sometimes 0, even
if some children memory cgroups have a non-zero "slab" value. The
following investigation showed that this is the result of the kmem_cache
reparenting in combination with the per-cpu batching of slab vmstats.
At the offlining some vmstat value may leave in the percpu cache, not
being propagated upwards by the cgroup hierarchy. It means that stats
on ancestor levels are lower than actual. Later when slab pages are
released, the precise number of pages is substracted on the parent
level, making the value negative. We don't show negative values, 0 is
printed instead.
To fix this issue, let's flush percpu slab memcg and lruvec stats on
memcg offlining. This guarantees that numbers on all ancestor levels
are accurate and match the actual number of outstanding slab pages.
Link: http://lkml.kernel.org/r/20190819202338.363363-3-guro@fb.com
Fixes: fb2f2b0adb98 ("mm: memcg/slab: reparent memcg kmem_caches on cgroup removal")
Signed-off-by: Roman Gushchin <guro@fb.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
cgroup foreign inode handling has quite a bit of heuristics and
internal states which sometimes makes it difficult to understand
what's going on. Add tracepoints to improve visibility.
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
There's an inherent mismatch between memcg and writeback. The former
trackes ownership per-page while the latter per-inode. This was a
deliberate design decision because honoring per-page ownership in the
writeback path is complicated, may lead to higher CPU and IO overheads
and deemed unnecessary given that write-sharing an inode across
different cgroups isn't a common use-case.
Combined with inode majority-writer ownership switching, this works
well enough in most cases but there are some pathological cases. For
example, let's say there are two cgroups A and B which keep writing to
different but confined parts of the same inode. B owns the inode and
A's memory is limited far below B's. A's dirty ratio can rise enough
to trigger balance_dirty_pages() sleeps but B's can be low enough to
avoid triggering background writeback. A will be slowed down without
a way to make writeback of the dirty pages happen.
This patch implements foreign dirty recording and foreign mechanism so
that when a memcg encounters a condition as above it can trigger
flushes on bdi_writebacks which can clean its pages. Please see the
comment on top of mem_cgroup_track_foreign_dirty_slowpath() for
details.
A reproducer follows.
write-range.c::
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <fcntl.h>
#include <sys/types.h>
static const char *usage = "write-range FILE START SIZE\n";
int main(int argc, char **argv)
{
int fd;
unsigned long start, size, end, pos;
char *endp;
char buf[4096];
if (argc < 4) {
fprintf(stderr, usage);
return 1;
}
fd = open(argv[1], O_WRONLY);
if (fd < 0) {
perror("open");
return 1;
}
start = strtoul(argv[2], &endp, 0);
if (*endp != '\0') {
fprintf(stderr, usage);
return 1;
}
size = strtoul(argv[3], &endp, 0);
if (*endp != '\0') {
fprintf(stderr, usage);
return 1;
}
end = start + size;
while (1) {
for (pos = start; pos < end; ) {
long bread, bwritten = 0;
if (lseek(fd, pos, SEEK_SET) < 0) {
perror("lseek");
return 1;
}
bread = read(0, buf, sizeof(buf) < end - pos ?
sizeof(buf) : end - pos);
if (bread < 0) {
perror("read");
return 1;
}
if (bread == 0)
return 0;
while (bwritten < bread) {
long this;
this = write(fd, buf + bwritten,
bread - bwritten);
if (this < 0) {
perror("write");
return 1;
}
bwritten += this;
pos += bwritten;
}
}
}
}
repro.sh::
#!/bin/bash
set -e
set -x
sysctl -w vm.dirty_expire_centisecs=300000
sysctl -w vm.dirty_writeback_centisecs=300000
sysctl -w vm.dirtytime_expire_seconds=300000
echo 3 > /proc/sys/vm/drop_caches
TEST=/sys/fs/cgroup/test
A=$TEST/A
B=$TEST/B
mkdir -p $A $B
echo "+memory +io" > $TEST/cgroup.subtree_control
echo $((1<<30)) > $A/memory.high
echo $((32<<30)) > $B/memory.high
rm -f testfile
touch testfile
fallocate -l 4G testfile
echo "Starting B"
(echo $BASHPID > $B/cgroup.procs
pv -q --rate-limit 70M < /dev/urandom | ./write-range testfile $((2<<30)) $((2<<30))) &
echo "Waiting 10s to ensure B claims the testfile inode"
sleep 5
sync
sleep 5
sync
echo "Starting A"
(echo $BASHPID > $A/cgroup.procs
pv < /dev/urandom | ./write-range testfile 0 $((2<<30)))
v2: Added comments explaining why the specific intervals are being used.
v3: Use 0 @nr when calling cgroup_writeback_by_id() to use best-effort
flushing while avoding possible livelocks.
v4: Use get_jiffies_64() and time_before/after64() instead of raw
jiffies_64 and arthimetic comparisons as suggested by Jan.
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
Similar to vmstats, percpu caching of local vmevents leads to an
accumulation of errors on non-leaf levels. This happens because some
leftovers may remain in percpu caches, so that they are never propagated
up by the cgroup tree and just disappear into nonexistence with on
releasing of the memory cgroup.
To fix this issue let's accumulate and propagate percpu vmevents values
before releasing the memory cgroup similar to what we're doing with
vmstats.
Since on cpu hotplug we do flush percpu vmstats anyway, we can iterate
only over online cpus.
Link: http://lkml.kernel.org/r/20190819202338.363363-4-guro@fb.com
Fixes: 42a300353577 ("mm: memcontrol: fix recursive statistics correctness & scalabilty")
Signed-off-by: Roman Gushchin <guro@fb.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Percpu caching of local vmstats with the conditional propagation by the
cgroup tree leads to an accumulation of errors on non-leaf levels.
Let's imagine two nested memory cgroups A and A/B. Say, a process
belonging to A/B allocates 100 pagecache pages on the CPU 0. The percpu
cache will spill 3 times, so that 32*3=96 pages will be accounted to A/B
and A atomic vmstat counters, 4 pages will remain in the percpu cache.
Imagine A/B is nearby memory.max, so that every following allocation
triggers a direct reclaim on the local CPU. Say, each such attempt will
free 16 pages on a new cpu. That means every percpu cache will have -16
pages, except the first one, which will have 4 - 16 = -12. A/B and A
atomic counters will not be touched at all.
Now a user removes A/B. All percpu caches are freed and corresponding
vmstat numbers are forgotten. A has 96 pages more than expected.
As memory cgroups are created and destroyed, errors do accumulate. Even
1-2 pages differences can accumulate into large numbers.
To fix this issue let's accumulate and propagate percpu vmstat values
before releasing the memory cgroup. At this point these numbers are
stable and cannot be changed.
Since on cpu hotplug we do flush percpu vmstats anyway, we can iterate
only over online cpus.
Link: http://lkml.kernel.org/r/20190819202338.363363-2-guro@fb.com
Fixes: 42a300353577 ("mm: memcontrol: fix recursive statistics correctness & scalabilty")
Signed-off-by: Roman Gushchin <guro@fb.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Memcg counters for shadow nodes are broken because the memcg pointer is
obtained in a wrong way. The following approach is used:
virt_to_page(xa_node)->mem_cgroup
Since commit 4d96ba353075 ("mm: memcg/slab: stop setting
page->mem_cgroup pointer for slab pages") page->mem_cgroup pointer isn't
set for slab pages, so memcg_from_slab_page() should be used instead.
Also I doubt that it ever worked correctly: virt_to_head_page() should
be used instead of virt_to_page(). Otherwise objects residing on tail
pages are not accounted, because only the head page contains a valid
mem_cgroup pointer. That was a case since the introduction of these
counters by the commit 68d48e6a2df5 ("mm: workingset: add vmstat counter
for shadow nodes").
Link: http://lkml.kernel.org/r/20190801233532.138743-1-guro@fb.com
Fixes: 4d96ba353075 ("mm: memcg/slab: stop setting page->mem_cgroup pointer for slab pages")
Signed-off-by: Roman Gushchin <guro@fb.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
This patch is sent to report an use after free in mem_cgroup_iter()
after merging commit be2657752e9e ("mm: memcg: fix use after free in
mem_cgroup_iter()").
I work with android kernel tree (4.9 & 4.14), and commit be2657752e9e
("mm: memcg: fix use after free in mem_cgroup_iter()") has been merged
to the trees. However, I can still observe use after free issues
addressed in the commit be2657752e9e. (on low-end devices, a few times
this month)
backtrace:
css_tryget <- crash here
mem_cgroup_iter
shrink_node
shrink_zones
do_try_to_free_pages
try_to_free_pages
__perform_reclaim
__alloc_pages_direct_reclaim
__alloc_pages_slowpath
__alloc_pages_nodemask
To debug, I poisoned mem_cgroup before freeing it:
static void __mem_cgroup_free(struct mem_cgroup *memcg)
for_each_node(node)
free_mem_cgroup_per_node_info(memcg, node);
free_percpu(memcg->stat);
+ /* poison memcg before freeing it */
+ memset(memcg, 0x78, sizeof(struct mem_cgroup));
kfree(memcg);
}
The coredump shows the position=0xdbbc2a00 is freed.
(gdb) p/x ((struct mem_cgroup_per_node *)0xe5009e00)->iter[8]
$13 = {position = 0xdbbc2a00, generation = 0x2efd}
0xdbbc2a00: 0xdbbc2e00 0x00000000 0xdbbc2800 0x00000100
0xdbbc2a10: 0x00000200 0x78787878 0x00026218 0x00000000
0xdbbc2a20: 0xdcad6000 0x00000001 0x78787800 0x00000000
0xdbbc2a30: 0x78780000 0x00000000 0x0068fb84 0x78787878
0xdbbc2a40: 0x78787878 0x78787878 0x78787878 0xe3fa5cc0
0xdbbc2a50: 0x78787878 0x78787878 0x00000000 0x00000000
0xdbbc2a60: 0x00000000 0x00000000 0x00000000 0x00000000
0xdbbc2a70: 0x00000000 0x00000000 0x00000000 0x00000000
0xdbbc2a80: 0x00000000 0x00000000 0x00000000 0x00000000
0xdbbc2a90: 0x00000001 0x00000000 0x00000000 0x00100000
0xdbbc2aa0: 0x00000001 0xdbbc2ac8 0x00000000 0x00000000
0xdbbc2ab0: 0x00000000 0x00000000 0x00000000 0x00000000
0xdbbc2ac0: 0x00000000 0x00000000 0xe5b02618 0x00001000
0xdbbc2ad0: 0x00000000 0x78787878 0x78787878 0x78787878
0xdbbc2ae0: 0x78787878 0x78787878 0x78787878 0x78787878
0xdbbc2af0: 0x78787878 0x78787878 0x78787878 0x78787878
0xdbbc2b00: 0x78787878 0x78787878 0x78787878 0x78787878
0xdbbc2b10: 0x78787878 0x78787878 0x78787878 0x78787878
0xdbbc2b20: 0x78787878 0x78787878 0x78787878 0x78787878
0xdbbc2b30: 0x78787878 0x78787878 0x78787878 0x78787878
0xdbbc2b40: 0x78787878 0x78787878 0x78787878 0x78787878
0xdbbc2b50: 0x78787878 0x78787878 0x78787878 0x78787878
0xdbbc2b60: 0x78787878 0x78787878 0x78787878 0x78787878
0xdbbc2b70: 0x78787878 0x78787878 0x78787878 0x78787878
0xdbbc2b80: 0x78787878 0x78787878 0x00000000 0x78787878
0xdbbc2b90: 0x78787878 0x78787878 0x78787878 0x78787878
0xdbbc2ba0: 0x78787878 0x78787878 0x78787878 0x78787878
In the reclaim path, try_to_free_pages() does not setup
sc.target_mem_cgroup and sc is passed to do_try_to_free_pages(), ...,
shrink_node().
In mem_cgroup_iter(), root is set to root_mem_cgroup because
sc->target_mem_cgroup is NULL. It is possible to assign a memcg to
root_mem_cgroup.nodeinfo.iter in mem_cgroup_iter().
try_to_free_pages
struct scan_control sc = {...}, target_mem_cgroup is 0x0;
do_try_to_free_pages
shrink_zones
shrink_node
mem_cgroup *root = sc->target_mem_cgroup;
memcg = mem_cgroup_iter(root, NULL, &reclaim);
mem_cgroup_iter()
if (!root)
root = root_mem_cgroup;
...
css = css_next_descendant_pre(css, &root->css);
memcg = mem_cgroup_from_css(css);
cmpxchg(&iter->position, pos, memcg);
My device uses memcg non-hierarchical mode. When we release a memcg:
invalidate_reclaim_iterators() reaches only dead_memcg and its parents.
If non-hierarchical mode is used, invalidate_reclaim_iterators() never
reaches root_mem_cgroup.
static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
{
struct mem_cgroup *memcg = dead_memcg;
for (; memcg; memcg = parent_mem_cgroup(memcg)
...
}
So the use after free scenario looks like:
CPU1 CPU2
try_to_free_pages
do_try_to_free_pages
shrink_zones
shrink_node
mem_cgroup_iter()
if (!root)
root = root_mem_cgroup;
...
css = css_next_descendant_pre(css, &root->css);
memcg = mem_cgroup_from_css(css);
cmpxchg(&iter->position, pos, memcg);
invalidate_reclaim_iterators(memcg);
...
__mem_cgroup_free()
kfree(memcg);
try_to_free_pages
do_try_to_free_pages
shrink_zones
shrink_node
mem_cgroup_iter()
if (!root)
root = root_mem_cgroup;
...
mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
iter = &mz->iter[reclaim->priority];
pos = READ_ONCE(iter->position);
css_tryget(&pos->css) <- use after free
To avoid this, we should also invalidate root_mem_cgroup.nodeinfo.iter
in invalidate_reclaim_iterators().
[cai@lca.pw: fix -Wparentheses compilation warning]
Link: http://lkml.kernel.org/r/1564580753-17531-1-git-send-email-cai@lca.pw
Link: http://lkml.kernel.org/r/20190730015729.4406-1-miles.chen@mediatek.com
Fixes: 5ac8fb31ad2e ("mm: memcontrol: convert reclaim iterator to simple css refcounting")
Signed-off-by: Miles Chen <miles.chen@mediatek.com>
Signed-off-by: Qian Cai <cai@lca.pw>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
After commit 815744d75152 ("mm: memcontrol: don't batch updates of local
VM stats and events"), the local VM counter are not in sync with the
hierarchical ones.
Below is one example in a leaf memcg on my server (with 8 CPUs):
inactive_file 3567570944
total_inactive_file 3568029696
We find that the deviation is very great because the 'val' in
__mod_memcg_state() is in pages while the effective value in
memcg_stat_show() is in bytes.
So the maximum of this deviation between local VM stats and total VM
stats can be (32 * number_of_cpu * PAGE_SIZE), that may be an
unacceptably great value.
We should keep the local VM stats in sync with the total stats. In
order to keep this behavior the same across counters, this patch updates
__mod_lruvec_state() and __count_memcg_events() as well.
Link: http://lkml.kernel.org/r/1562851979-10610-1-git-send-email-laoar.shao@gmail.com
Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Yafang Shao <shaoyafang@didiglobal.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/rdma/rdma
Pull HMM updates from Jason Gunthorpe:
"Improvements and bug fixes for the hmm interface in the kernel:
- Improve clarity, locking and APIs related to the 'hmm mirror'
feature merged last cycle. In linux-next we now see AMDGPU and
nouveau to be using this API.
- Remove old or transitional hmm APIs. These are hold overs from the
past with no users, or APIs that existed only to manage cross tree
conflicts. There are still a few more of these cleanups that didn't
make the merge window cut off.
- Improve some core mm APIs:
- export alloc_pages_vma() for driver use
- refactor into devm_request_free_mem_region() to manage
DEVICE_PRIVATE resource reservations
- refactor duplicative driver code into the core dev_pagemap
struct
- Remove hmm wrappers of improved core mm APIs, instead have drivers
use the simplified API directly
- Remove DEVICE_PUBLIC
- Simplify the kconfig flow for the hmm users and core code"
* tag 'for-linus-hmm' of git://git.kernel.org/pub/scm/linux/kernel/git/rdma/rdma: (42 commits)
mm: don't select MIGRATE_VMA_HELPER from HMM_MIRROR
mm: remove the HMM config option
mm: sort out the DEVICE_PRIVATE Kconfig mess
mm: simplify ZONE_DEVICE page private data
mm: remove hmm_devmem_add
mm: remove hmm_vma_alloc_locked_page
nouveau: use devm_memremap_pages directly
nouveau: use alloc_page_vma directly
PCI/P2PDMA: use the dev_pagemap internal refcount
device-dax: use the dev_pagemap internal refcount
memremap: provide an optional internal refcount in struct dev_pagemap
memremap: replace the altmap_valid field with a PGMAP_ALTMAP_VALID flag
memremap: remove the data field in struct dev_pagemap
memremap: add a migrate_to_ram method to struct dev_pagemap_ops
memremap: lift the devmap_enable manipulation into devm_memremap_pages
memremap: pass a struct dev_pagemap to ->kill and ->cleanup
memremap: move dev_pagemap callbacks into a separate structure
memremap: validate the pagemap type passed to devm_memremap_pages
mm: factor out a devm_request_free_mem_region helper
mm: export alloc_pages_vma
...
|
|
oom_unkillable_task() can be called from three different contexts i.e.
global OOM, memcg OOM and oom_score procfs interface. At the moment
oom_unkillable_task() does a task_in_mem_cgroup() check on the given
process. Since there is no reason to perform task_in_mem_cgroup()
check for global OOM and oom_score procfs interface, those contexts
provide NULL memcg and skips the task_in_mem_cgroup() check. However
for memcg OOM context, the oom_unkillable_task() is always called from
mem_cgroup_scan_tasks() and thus task_in_mem_cgroup() check becomes
redundant and effectively dead code. So, just remove the
task_in_mem_cgroup() check altogether.
Link: http://lkml.kernel.org/r/20190624212631.87212-2-shakeelb@google.com
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Acked-by: Roman Gushchin <guro@fb.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Paul Jackson <pj@sgi.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Since commit c03cd7738a83 ("cgroup: Include dying leaders with live
threads in PROCS iterations") corrected how CSS_TASK_ITER_PROCS works,
mem_cgroup_scan_tasks() can use CSS_TASK_ITER_PROCS in order to check
only one thread from each thread group.
[penguin-kernel@I-love.SAKURA.ne.jp: remove thread group leader check in oom_evaluate_task()]
Link: http://lkml.kernel.org/r/1560853257-14934-1-git-send-email-penguin-kernel@I-love.SAKURA.ne.jp
Link: http://lkml.kernel.org/r/c763afc8-f0ae-756a-56a7-395f625b95fc@i-love.sakura.ne.jp
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Let's reparent non-root kmem_caches on memcg offlining. This allows us to
release the memory cgroup without waiting for the last outstanding kernel
object (e.g. dentry used by another application).
Since the parent cgroup is already charged, everything we need to do is to
splice the list of kmem_caches to the parent's kmem_caches list, swap the
memcg pointer, drop the css refcounter for each kmem_cache and adjust the
parent's css refcounter.
Please, note that kmem_cache->memcg_params.memcg isn't a stable pointer
anymore. It's safe to read it under rcu_read_lock(), cgroup_mutex held,
or any other way that protects the memory cgroup from being released.
We can race with the slab allocation and deallocation paths. It's not a
big problem: parent's charge and slab global stats are always correct, and
we don't care anymore about the child usage and global stats. The child
cgroup is already offline, so we don't use or show it anywhere.
Local slab stats (NR_SLAB_RECLAIMABLE and NR_SLAB_UNRECLAIMABLE) aren't
used anywhere except count_shadow_nodes(). But even there it won't break
anything: after reparenting "nodes" will be 0 on child level (because
we're already reparenting shrinker lists), and on parent level page stats
always were 0, and this patch won't change anything.
[guro@fb.com: properly handle kmem_caches reparented to root_mem_cgroup]
Link: http://lkml.kernel.org/r/20190620213427.1691847-1-guro@fb.com
Link: http://lkml.kernel.org/r/20190611231813.3148843-11-guro@fb.com
Signed-off-by: Roman Gushchin <guro@fb.com>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Waiman Long <longman@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Andrei Vagin <avagin@gmail.com>
Cc: Qian Cai <cai@lca.pw>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Every slab page charged to a non-root memory cgroup has a pointer to the
memory cgroup and holds a reference to it, which protects a non-empty
memory cgroup from being released. At the same time the page has a
pointer to the corresponding kmem_cache, and also hold a reference to the
kmem_cache. And kmem_cache by itself holds a reference to the cgroup.
So there is clearly some redundancy, which allows to stop setting the
page->mem_cgroup pointer and rely on getting memcg pointer indirectly via
kmem_cache. Further it will allow to change this pointer easier, without
a need to go over all charged pages.
So let's stop setting page->mem_cgroup pointer for slab pages, and stop
using the css refcounter directly for protecting the memory cgroup from
going away. Instead rely on kmem_cache as an intermediate object.
Make sure that vmstats and shrinker lists are working as previously, as
well as /proc/kpagecgroup interface.
Link: http://lkml.kernel.org/r/20190611231813.3148843-10-guro@fb.com
Signed-off-by: Roman Gushchin <guro@fb.com>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Waiman Long <longman@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Andrei Vagin <avagin@gmail.com>
Cc: Qian Cai <cai@lca.pw>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Currently each charged slab page holds a reference to the cgroup to which
it's charged. Kmem_caches are held by the memcg and are released all
together with the memory cgroup. It means that none of kmem_caches are
released unless at least one reference to the memcg exists, which is very
far from optimal.
Let's rework it in a way that allows releasing individual kmem_caches as
soon as the cgroup is offline, the kmem_cache is empty and there are no
pending allocations.
To make it possible, let's introduce a new percpu refcounter for non-root
kmem caches. The counter is initialized to the percpu mode, and is
switched to the atomic mode during kmem_cache deactivation. The counter
is bumped for every charged page and also for every running allocation.
So the kmem_cache can't be released unless all allocations complete.
To shutdown non-active empty kmem_caches, let's reuse the work queue,
previously used for the kmem_cache deactivation. Once the reference
counter reaches 0, let's schedule an asynchronous kmem_cache release.
* I used the following simple approach to test the performance
(stolen from another patchset by T. Harding):
time find / -name fname-no-exist
echo 2 > /proc/sys/vm/drop_caches
repeat 10 times
Results:
orig patched
real 0m1.455s real 0m1.355s
user 0m0.206s user 0m0.219s
sys 0m0.855s sys 0m0.807s
real 0m1.487s real 0m1.699s
user 0m0.221s user 0m0.256s
sys 0m0.806s sys 0m0.948s
real 0m1.515s real 0m1.505s
user 0m0.183s user 0m0.215s
sys 0m0.876s sys 0m0.858s
real 0m1.291s real 0m1.380s
user 0m0.193s user 0m0.198s
sys 0m0.843s sys 0m0.786s
real 0m1.364s real 0m1.374s
user 0m0.180s user 0m0.182s
sys 0m0.868s sys 0m0.806s
real 0m1.352s real 0m1.312s
user 0m0.201s user 0m0.212s
sys 0m0.820s sys 0m0.761s
real 0m1.302s real 0m1.349s
user 0m0.205s user 0m0.203s
sys 0m0.803s sys 0m0.792s
real 0m1.334s real 0m1.301s
user 0m0.194s user 0m0.201s
sys 0m0.806s sys 0m0.779s
real 0m1.426s real 0m1.434s
user 0m0.216s user 0m0.181s
sys 0m0.824s sys 0m0.864s
real 0m1.350s real 0m1.295s
user 0m0.200s user 0m0.190s
sys 0m0.842s sys 0m0.811s
So it looks like the difference is not noticeable in this test.
[cai@lca.pw: fix an use-after-free in kmemcg_workfn()]
Link: http://lkml.kernel.org/r/1560977573-10715-1-git-send-email-cai@lca.pw
Link: http://lkml.kernel.org/r/20190611231813.3148843-9-guro@fb.com
Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Qian Cai <cai@lca.pw>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Waiman Long <longman@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Andrei Vagin <avagin@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Let's separate the page counter modification code out of
__memcg_kmem_uncharge() in a way similar to what
__memcg_kmem_charge() and __memcg_kmem_charge_memcg() work.
This will allow to reuse this code later using a new
memcg_kmem_uncharge_memcg() wrapper, which calls
__memcg_kmem_uncharge_memcg() if memcg_kmem_enabled()
check is passed.
Link: http://lkml.kernel.org/r/20190611231813.3148843-5-guro@fb.com
Signed-off-by: Roman Gushchin <guro@fb.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Waiman Long <longman@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Andrei Vagin <avagin@gmail.com>
Cc: Qian Cai <cai@lca.pw>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The current cgroup OOM memory info dump doesn't include all the memory
we are tracking, nor does it give insight into what the VM tried to do
leading up to the OOM. All that useful info is in memory.stat.
Furthermore, the recursive printing for every child cgroup can
generate absurd amounts of data on the console for larger cgroup
trees, and it's not like we provide a per-cgroup breakdown during
global OOM kills.
When an OOM kill is triggered, print one set of recursive memory.stat
items at the level whose limit triggered the OOM condition.
Example output:
stress invoked oom-killer: gfp_mask=0x100cca(GFP_HIGHUSER_MOVABLE), order=0, oom_score_adj=0
CPU: 2 PID: 210 Comm: stress Not tainted 5.2.0-rc2-mm1-00247-g47d49835983c #135
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.12.0-20181126_142135-anatol 04/01/2014
Call Trace:
dump_stack+0x46/0x60
dump_header+0x4c/0x2d0
oom_kill_process.cold.10+0xb/0x10
out_of_memory+0x200/0x270
? try_to_free_mem_cgroup_pages+0xdf/0x130
mem_cgroup_out_of_memory+0xb7/0xc0
try_charge+0x680/0x6f0
mem_cgroup_try_charge+0xb5/0x160
__add_to_page_cache_locked+0xc6/0x300
? list_lru_destroy+0x80/0x80
add_to_page_cache_lru+0x45/0xc0
pagecache_get_page+0x11b/0x290
filemap_fault+0x458/0x6d0
ext4_filemap_fault+0x27/0x36
__do_fault+0x2f/0xb0
__handle_mm_fault+0x9c5/0x1140
? apic_timer_interrupt+0xa/0x20
handle_mm_fault+0xc5/0x180
__do_page_fault+0x1ab/0x440
? page_fault+0x8/0x30
page_fault+0x1e/0x30
RIP: 0033:0x55c32167fc10
Code: Bad RIP value.
RSP: 002b:00007fff1d031c50 EFLAGS: 00010206
RAX: 000000000dc00000 RBX: 00007fd2db000010 RCX: 00007fd2db000010
RDX: 0000000000000000 RSI: 0000000010001000 RDI: 0000000000000000
RBP: 000055c321680a54 R08: 00000000ffffffff R09: 0000000000000000
R10: 0000000000000022 R11: 0000000000000246 R12: ffffffffffffffff
R13: 0000000000000002 R14: 0000000000001000 R15: 0000000010000000
memory: usage 1024kB, limit 1024kB, failcnt 75131
swap: usage 0kB, limit 9007199254740988kB, failcnt 0
Memory cgroup stats for /foo:
anon 0
file 0
kernel_stack 36864
slab 274432
sock 0
shmem 0
file_mapped 0
file_dirty 0
file_writeback 0
anon_thp 0
inactive_anon 126976
active_anon 0
inactive_file 0
active_file 0
unevictable 0
slab_reclaimable 0
slab_unreclaimable 274432
pgfault 59466
pgmajfault 1617
workingset_refault 2145
workingset_activate 0
workingset_nodereclaim 0
pgrefill 98952
pgscan 200060
pgsteal 59340
pgactivate 40095
pgdeactivate 96787
pglazyfree 0
pglazyfreed 0
thp_fault_alloc 0
thp_collapse_alloc 0
Tasks state (memory values in pages):
[ pid ] uid tgid total_vm rss pgtables_bytes swapents oom_score_adj name
[ 200] 0 200 1121 884 53248 29 0 bash
[ 209] 0 209 905 246 45056 19 0 stress
[ 210] 0 210 66442 56 499712 56349 0 stress
oom-kill:constraint=CONSTRAINT_NONE,nodemask=(null),oom_memcg=/foo,task_memcg=/foo,task=stress,pid=210,uid=0
Memory cgroup out of memory: Killed process 210 (stress) total-vm:265768kB, anon-rss:0kB, file-rss:224kB, shmem-rss:0kB
oom_reaper: reaped process 210 (stress), now anon-rss:0kB, file-rss:0kB, shmem-rss:0kB
[hannes@cmpxchg.org: s/kvmalloc/kmalloc/ per Michal]
Link: http://lkml.kernel.org/r/20190605161133.GA12453@cmpxchg.org
Link: http://lkml.kernel.org/r/20190604210509.9744-1-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The memory controller in cgroup v2 exposes memory.events file for each
memcg which shows the number of times events like low, high, max, oom
and oom_kill have happened for the whole tree rooted at that memcg.
Users can also poll or register notification to monitor the changes in
that file. Any event at any level of the tree rooted at memcg will
notify all the listeners along the path till root_mem_cgroup. There are
existing users which depend on this behavior.
However there are users which are only interested in the events
happening at a specific level of the memcg tree and not in the events in
the underlying tree rooted at that memcg. One such use-case is a
centralized resource monitor which can dynamically adjust the limits of
the jobs running on a system. The jobs can create their sub-hierarchy
for their own sub-tasks. The centralized monitor is only interested in
the events at the top level memcgs of the jobs as it can then act and
adjust the limits of the jobs. Using the current memory.events for such
centralized monitor is very inconvenient. The monitor will keep
receiving events which it is not interested and to find if the received
event is interesting, it has to read memory.event files of the next
level and compare it with the top level one. So, let's introduce
memory.events.local to the memcg which shows and notify for the events
at the memcg level.
Now, does memory.stat and memory.pressure need their local versions. IMHO
no due to the no internal process contraint of the cgroup v2. The
memory.stat file of the top level memcg of a job shows the stats and
vmevents of the whole tree. The local stats or vmevents of the top level
memcg will only change if there is a process running in that memcg but v2
does not allow that. Similarly for memory.pressure there will not be any
process in the internal nodes and thus no chance of local pressure.
Link: http://lkml.kernel.org/r/20190527174643.209172-1-shakeelb@google.com
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Reviewed-by: Roman Gushchin <guro@fb.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Chris Down <chris@chrisdown.name>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The documentation of __GFP_RETRY_MAYFAIL clearly mentioned that the OOM
killer will not be triggered and indeed the page alloc does not invoke OOM
killer for such allocations. However we do trigger memcg OOM killer for
__GFP_RETRY_MAYFAIL. Fix that. This flag will used later to not trigger
oom-killer in the charging path for fanotify and inotify event
allocations.
Link: http://lkml.kernel.org/r/20190514212259.156585-1-shakeelb@google.com
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Amir Goldstein <amir73il@gmail.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Roman Gushchin <guro@fb.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
When we calculate total statistics for memcg1_stats and memcg1_events,
we use the the index 'i' in the for loop as the events index. Actually
we should use memcg1_stats[i] and memcg1_events[i] as the events index.
Link: http://lkml.kernel.org/r/1562116978-19539-1-git-send-email-laoar.shao@gmail.com
Fixes: 42a300353577 ("mm: memcontrol: fix recursive statistics correctness & scalabilty").
Signed-off-by: Yafang Shao <laoar.shao@gmail.com
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Yafang Shao <shaoyafang@didiglobal.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The code hasn't been used since it was added to the tree, and doesn't
appear to actually be usable.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jason Gunthorpe <jgg@mellanox.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Tested-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
|
|
The kernel test robot noticed a 26% will-it-scale pagefault regression
from commit 42a300353577 ("mm: memcontrol: fix recursive statistics
correctness & scalabilty"). This appears to be caused by bouncing the
additional cachelines from the new hierarchical statistics counters.
We can fix this by getting rid of the batched local counters instead.
Originally, there were *only* group-local counters, and they were fully
maintained per cpu. A reader of a stats file high up in the cgroup tree
would have to walk the entire subtree and collect each level's per-cpu
counters to get the recursive view. This was prohibitively expensive,
and so we switched to per-cpu batched updates of the local counters
during a983b5ebee57 ("mm: memcontrol: fix excessive complexity in
memory.stat reporting"), reducing the complexity from nr_subgroups *
nr_cpus to nr_subgroups.
With growing machines and cgroup trees, the tree walk itself became too
expensive for monitoring top-level groups, and this is when the culprit
patch added hierarchy counters on each cgroup level. When the per-cpu
batch size would be reached, both the local and the hierarchy counters
would get batch-updated from the per-cpu delta simultaneously.
This makes local and hierarchical counter reads blazingly fast, but it
unfortunately makes the write-side too cache line intense.
Since local counter reads were never a problem - we only centralized
them to accelerate the hierarchy walk - and use of the local counters
are becoming rarer due to replacement with hierarchical views (ongoing
rework in the page reclaim and workingset code), we can make those local
counters unbatched per-cpu counters again.
The scheme will then be as such:
when a memcg statistic changes, the writer will:
- update the local counter (per-cpu)
- update the batch counter (per-cpu). If the batch is full:
- spill the batch into the group's atomic_t
- spill the batch into all ancestors' atomic_ts
- empty out the batch counter (per-cpu)
when a local memcg counter is read, the reader will:
- collect the local counter from all cpus
when a hiearchy memcg counter is read, the reader will:
- read the atomic_t
We might be able to simplify this further and make the recursive
counters unbatched per-cpu counters as well (batch upward propagation,
but leave per-cpu collection to the readers), but that will require a
more in-depth analysis and testing of all the callsites. Deal with the
immediate regression for now.
Link: http://lkml.kernel.org/r/20190521151647.GB2870@cmpxchg.org
Fixes: 42a300353577 ("mm: memcontrol: fix recursive statistics correctness & scalabilty")
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reported-by: kernel test robot <rong.a.chen@intel.com>
Tested-by: kernel test robot <rong.a.chen@intel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Based on 3 normalized pattern(s):
this program is free software you can redistribute it and or modify
it under the terms of the gnu general public license as published by
the free software foundation either version 2 of the license or at
your option any later version this program is distributed in the
hope that it will be useful but without any warranty without even
the implied warranty of merchantability or fitness for a particular
purpose see the gnu general public license for more details
this program is free software you can redistribute it and or modify
it under the terms of the gnu general public license as published by
the free software foundation either version 2 of the license or at
your option any later version [author] [kishon] [vijay] [abraham]
[i] [kishon]@[ti] [com] this program is distributed in the hope that
it will be useful but without any warranty without even the implied
warranty of merchantability or fitness for a particular purpose see
the gnu general public license for more details
this program is free software you can redistribute it and or modify
it under the terms of the gnu general public license as published by
the free software foundation either version 2 of the license or at
your option any later version [author] [graeme] [gregory]
[gg]@[slimlogic] [co] [uk] [author] [kishon] [vijay] [abraham] [i]
[kishon]@[ti] [com] [based] [on] [twl6030]_[usb] [c] [author] [hema]
[hk] [hemahk]@[ti] [com] this program is distributed in the hope
that it will be useful but without any warranty without even the
implied warranty of merchantability or fitness for a particular
purpose see the gnu general public license for more details
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-or-later
has been chosen to replace the boilerplate/reference in 1105 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Allison Randal <allison@lohutok.net>
Reviewed-by: Richard Fontana <rfontana@redhat.com>
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190527070033.202006027@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
When a cgroup is reclaimed on behalf of a configured limit, reclaim
needs to round-robin through all NUMA nodes that hold pages of the memcg
in question. However, when assembling the mask of candidate NUMA nodes,
the code only consults the *local* cgroup LRU counters, not the
recursive counters for the entire subtree. Cgroup limits are frequently
configured against intermediate cgroups that do not have memory on their
own LRUs. In this case, the node mask will always come up empty and
reclaim falls back to scanning only the current node.
If a cgroup subtree has some memory on one node but the processes are
bound to another node afterwards, the limit reclaim will never age or
reclaim that memory anymore.
To fix this, use the recursive LRU counts for a cgroup subtree to
determine which nodes hold memory of that cgroup.
The code has been broken like this forever, so it doesn't seem to be a
problem in practice. I just noticed it while reviewing the way the LRU
counters are used in general.
Link: http://lkml.kernel.org/r/20190412151507.2769-5-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Reviewed-by: Roman Gushchin <guro@fb.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Right now, when somebody needs to know the recursive memory statistics
and events of a cgroup subtree, they need to walk the entire subtree and
sum up the counters manually.
There are two issues with this:
1. When a cgroup gets deleted, its stats are lost. The state counters
should all be 0 at that point, of course, but the events are not.
When this happens, the event counters, which are supposed to be
monotonic, can go backwards in the parent cgroups.
2. During regular operation, we always have a certain number of lazily
freed cgroups sitting around that have been deleted, have no tasks,
but have a few cache pages remaining. These groups' statistics do not
change until we eventually hit memory pressure, but somebody
watching, say, memory.stat on an ancestor has to iterate those every
time.
This patch addresses both issues by introducing recursive counters at
each level that are propagated from the write side when stats change.
Upward propagation happens when the per-cpu caches spill over into the
local atomic counter. This is the same thing we do during charge and
uncharge, except that the latter uses atomic RMWs, which are more
expensive; stat changes happen at around the same rate. In a sparse
file test (page faults and reclaim at maximum CPU speed) with 5 cgroup
nesting levels, perf shows __mod_memcg_page state at ~1%.
Link: http://lkml.kernel.org/r/20190412151507.2769-4-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Reviewed-by: Roman Gushchin <guro@fb.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
These are getting too big to be inlined in every callsite. They were
stolen from vmstat.c, which already out-of-lines them, and they have
only been growing since. The callsites aren't that hot, either.
Move __mod_memcg_state()
__mod_lruvec_state() and
__count_memcg_events() out of line and add kerneldoc comments.
Link: http://lkml.kernel.org/r/20190412151507.2769-3-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Reviewed-by: Roman Gushchin <guro@fb.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Patch series "mm: memcontrol: memory.stat cost & correctness".
The cgroup memory.stat file holds recursive statistics for the entire
subtree. The current implementation does this tree walk on-demand
whenever the file is read. This is giving us problems in production.
1. The cost of aggregating the statistics on-demand is high. A lot of
system service cgroups are mostly idle and their stats don't change
between reads, yet we always have to check them. There are also always
some lazily-dying cgroups sitting around that are pinned by a handful
of remaining page cache; the same applies to them.
In an application that periodically monitors memory.stat in our
fleet, we have seen the aggregation consume up to 5% CPU time.
2. When cgroups die and disappear from the cgroup tree, so do their
accumulated vm events. The result is that the event counters at
higher-level cgroups can go backwards and confuse some of our
automation, let alone people looking at the graphs over time.
To address both issues, this patch series changes the stat
implementation to spill counts upwards when the counters change.
The upward spilling is batched using the existing per-cpu cache. In a
sparse file stress test with 5 level cgroup nesting, the additional cost
of the flushing was negligible (a little under 1% of CPU at 100% CPU
utilization, compared to the 5% of reading memory.stat during regular
operation).
This patch (of 4):
memcg_page_state(), lruvec_page_state(), memcg_sum_events() are
currently returning the state of the local memcg or lruvec, not the
recursive state.
In practice there is a demand for both versions, although the callers
that want the recursive counts currently sum them up by hand.
Per default, cgroups are considered recursive entities and generally we
expect more users of the recursive counters, with the local counts being
special cases. To reflect that in the name, add a _local suffix to the
current implementations.
The following patch will re-incarnate these functions with recursive
semantics, but with an O(1) implementation.
[hannes@cmpxchg.org: fix bisection hole]
Link: http://lkml.kernel.org/r/20190417160347.GC23013@cmpxchg.org
Link: http://lkml.kernel.org/r/20190412151507.2769-2-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Reviewed-by: Roman Gushchin <guro@fb.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
I spent literally an hour trying to work out why an earlier version of
my memory.events aggregation code doesn't work properly, only to find
out I was calling memcg->events instead of memcg->memory_events, which
is fairly confusing.
This naming seems in need of reworking, so make it harder to do the
wrong thing by using vmevents instead of events, which makes it more
clear that these are vm counters rather than memcg-specific counters.
There are also a few other inconsistent names in both the percpu and
aggregated structs, so these are all cleaned up to be more coherent and
easy to understand.
This commit contains code cleanup only: there are no logic changes.
[akpm@linux-foundation.org: fix it for preceding changes]
Link: http://lkml.kernel.org/r/20190208224319.GA23801@chrisdown.name
Signed-off-by: Chris Down <chris@chrisdown.name>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Roman Gushchin <guro@fb.com>
Cc: Dennis Zhou <dennis@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Only memcg_numa_stat_show() uses those wrappers and the lru bitmasks,
group them together.
Link: http://lkml.kernel.org/r/20190228163020.24100-7-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Roman Gushchin <guro@fb.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
mem_cgroup_nr_lru_pages() is just a convenience wrapper around
memcg_page_state() that takes bitmasks of lru indexes and aggregates the
counts for those.
Replace callsites where the bitmask is simple enough with direct
memcg_page_state() call(s).
Link: http://lkml.kernel.org/r/20190228163020.24100-6-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Roman Gushchin <guro@fb.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
mem_cgroup_node_nr_lru_pages() is just a convenience wrapper around
lruvec_page_state() that takes bitmasks of lru indexes and aggregates the
counts for those.
Replace callsites where the bitmask is simple enough with direct
lruvec_page_state() calls.
This removes the last extern user of mem_cgroup_node_nr_lru_pages(), so
make that function private again, too.
Link: http://lkml.kernel.org/r/20190228163020.24100-5-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Roman Gushchin <guro@fb.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Instead of adding up the node counters, use memcg_page_state() to get the
memcg state directly. This is a bit cheaper and more stream-lined.
Link: http://lkml.kernel.org/r/20190228163020.24100-4-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Roman Gushchin <guro@fb.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Instead of adding up the zone counters, use lruvec_page_state() to get the
node state directly. This is a bit cheaper and more stream-lined.
Link: http://lkml.kernel.org/r/20190228163020.24100-3-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Roman Gushchin <guro@fb.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Since commit a983b5ebee57 ("mm: memcontrol: fix excessive complexity in
memory.stat reporting") memcg dirty and writeback counters are managed
as:
1) per-memcg per-cpu values in range of [-32..32]
2) per-memcg atomic counter
When a per-cpu counter cannot fit in [-32..32] it's flushed to the
atomic. Stat readers only check the atomic. Thus readers such as
balance_dirty_pages() may see a nontrivial error margin: 32 pages per
cpu.
Assuming 100 cpus:
4k x86 page_size: 13 MiB error per memcg
64k ppc page_size: 200 MiB error per memcg
Considering that dirty+writeback are used together for some decisions the
errors double.
This inaccuracy can lead to undeserved oom kills. One nasty case is
when all per-cpu counters hold positive values offsetting an atomic
negative value (i.e. per_cpu[*]=32, atomic=n_cpu*-32).
balance_dirty_pages() only consults the atomic and does not consider
throttling the next n_cpu*32 dirty pages. If the file_lru is in the
13..200 MiB range then there's absolutely no dirty throttling, which
burdens vmscan with only dirty+writeback pages thus resorting to oom
kill.
It could be argued that tiny containers are not supported, but it's more
subtle. It's the amount the space available for file lru that matters.
If a container has memory.max-200MiB of non reclaimable memory, then it
will also suffer such oom kills on a 100 cpu machine.
The following test reliably ooms without this patch. This patch avoids
oom kills.
$ cat test
mount -t cgroup2 none /dev/cgroup
cd /dev/cgroup
echo +io +memory > cgroup.subtree_control
mkdir test
cd test
echo 10M > memory.max
(echo $BASHPID > cgroup.procs && exec /memcg-writeback-stress /foo)
(echo $BASHPID > cgroup.procs && exec dd if=/dev/zero of=/foo bs=2M count=100)
$ cat memcg-writeback-stress.c
/*
* Dirty pages from all but one cpu.
* Clean pages from the non dirtying cpu.
* This is to stress per cpu counter imbalance.
* On a 100 cpu machine:
* - per memcg per cpu dirty count is 32 pages for each of 99 cpus
* - per memcg atomic is -99*32 pages
* - thus the complete dirty limit: sum of all counters 0
* - balance_dirty_pages() only sees atomic count -99*32 pages, which
* it max()s to 0.
* - So a workload can dirty -99*32 pages before balance_dirty_pages()
* cares.
*/
#define _GNU_SOURCE
#include <err.h>
#include <fcntl.h>
#include <sched.h>
#include <stdlib.h>
#include <stdio.h>
#include <sys/stat.h>
#include <sys/sysinfo.h>
#include <sys/types.h>
#include <unistd.h>
static char *buf;
static int bufSize;
static void set_affinity(int cpu)
{
cpu_set_t affinity;
CPU_ZERO(&affinity);
CPU_SET(cpu, &affinity);
if (sched_setaffinity(0, sizeof(affinity), &affinity))
err(1, "sched_setaffinity");
}
static void dirty_on(int output_fd, int cpu)
{
int i, wrote;
set_affinity(cpu);
for (i = 0; i < 32; i++) {
for (wrote = 0; wrote < bufSize; ) {
int ret = write(output_fd, buf+wrote, bufSize-wrote);
if (ret == -1)
err(1, "write");
wrote += ret;
}
}
}
int main(int argc, char **argv)
{
int cpu, flush_cpu = 1, output_fd;
const char *output;
if (argc != 2)
errx(1, "usage: output_file");
output = argv[1];
bufSize = getpagesize();
buf = malloc(getpagesize());
if (buf == NULL)
errx(1, "malloc failed");
output_fd = open(output, O_CREAT|O_RDWR);
if (output_fd == -1)
err(1, "open(%s)", output);
for (cpu = 0; cpu < get_nprocs(); cpu++) {
if (cpu != flush_cpu)
dirty_on(output_fd, cpu);
}
set_affinity(flush_cpu);
if (fsync(output_fd))
err(1, "fsync(%s)", output);
if (close(output_fd))
err(1, "close(%s)", output);
free(buf);
}
Make balance_dirty_pages() and wb_over_bg_thresh() work harder to
collect exact per memcg counters. This avoids the aforementioned oom
kills.
This does not affect the overhead of memory.stat, which still reads the
single atomic counter.
Why not use percpu_counter? memcg already handles cpus going offline, so
no need for that overhead from percpu_counter. And the percpu_counter
spinlocks are more heavyweight than is required.
It probably also makes sense to use exact dirty and writeback counters
in memcg oom reports. But that is saved for later.
Link: http://lkml.kernel.org/r/20190329174609.164344-1-gthelen@google.com
Signed-off-by: Greg Thelen <gthelen@google.com>
Reviewed-by: Roman Gushchin <guro@fb.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: <stable@vger.kernel.org> [4.16+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Commit 230671533d64 ("mm: memory.low hierarchical behavior") missed an
asterisk in one of the comments.
mm/memcontrol.c:5774: warning: bad line: | 0, otherwise.
Link: http://lkml.kernel.org/r/20190301143734.94393-1-cai@lca.pw
Acked-by: Souptick Joarder <jrdr.linux@gmail.com>
Signed-off-by: Qian Cai <cai@lca.pw>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
We have common pattern to access lru_lock from a page pointer:
zone_lru_lock(page_zone(page))
Which is silly, because it unfolds to this:
&NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]->zone_pgdat->lru_lock
while we can simply do
&NODE_DATA(page_to_nid(page))->lru_lock
Remove zone_lru_lock() function, since it's only complicate things. Use
'page_pgdat(page)->lru_lock' pattern instead.
[aryabinin@virtuozzo.com: a slightly better version of __split_huge_page()]
Link: http://lkml.kernel.org/r/20190301121651.7741-1-aryabinin@virtuozzo.com
Link: http://lkml.kernel.org/r/20190228083329.31892-2-aryabinin@virtuozzo.com
Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: William Kucharski <william.kucharski@oracle.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Number of NUMA nodes can't be negative.
This saves a few bytes on x86_64:
add/remove: 0/0 grow/shrink: 4/21 up/down: 27/-265 (-238)
Function old new delta
hv_synic_alloc.cold 88 110 +22
prealloc_shrinker 260 262 +2
bootstrap 249 251 +2
sched_init_numa 1566 1567 +1
show_slab_objects 778 777 -1
s_show 1201 1200 -1
kmem_cache_init 346 345 -1
__alloc_workqueue_key 1146 1145 -1
mem_cgroup_css_alloc 1614 1612 -2
__do_sys_swapon 4702 4699 -3
__list_lru_init 655 651 -4
nic_probe 2379 2374 -5
store_user_store 118 111 -7
red_zone_store 106 99 -7
poison_store 106 99 -7
wq_numa_init 348 338 -10
__kmem_cache_empty 75 65 -10
task_numa_free 186 173 -13
merge_across_nodes_store 351 336 -15
irq_create_affinity_masks 1261 1246 -15
do_numa_crng_init 343 321 -22
task_numa_fault 4760 4737 -23
swapfile_init 179 156 -23
hv_synic_alloc 536 492 -44
apply_wqattrs_prepare 746 695 -51
Link: http://lkml.kernel.org/r/20190201223029.GA15820@avx2
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Currently THP allocation events data is fairly opaque, since you can
only get it system-wide. This patch makes it easier to reason about
transparent hugepage behaviour on a per-memcg basis.
For anonymous THP-backed pages, we already have MEMCG_RSS_HUGE in v1,
which is used for v1's rss_huge [sic]. This is reused here as it's
fairly involved to untangle NR_ANON_THPS right now to make it per-memcg,
since right now some of this is delegated to rmap before we have any
memcg actually assigned to the page. It's a good idea to rework that,
but let's leave untangling THP allocation for a future patch.
[akpm@linux-foundation.org: fix build]
[chris@chrisdown.name: fix memcontrol build when THP is disabled]
Link: http://lkml.kernel.org/r/20190131160802.GA5777@chrisdown.name
Link: http://lkml.kernel.org/r/20190129205852.GA7310@chrisdown.name
Signed-off-by: Chris Down <chris@chrisdown.name>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
If a memory cgroup contains a single process with many threads
(including different process group sharing the mm) then it is possible
to trigger a race when the oom killer complains that there are no oom
elible tasks and complain into the log which is both annoying and
confusing because there is no actual problem. The race looks as
follows:
P1 oom_reaper P2
try_charge try_charge
mem_cgroup_out_of_memory
mutex_lock(oom_lock)
out_of_memory
oom_kill_process(P1,P2)
wake_oom_reaper
mutex_unlock(oom_lock)
oom_reap_task
mutex_lock(oom_lock)
select_bad_process # no victim
The problem is more visible with many threads.
Fix this by checking for fatal_signal_pending from
mem_cgroup_out_of_memory when the oom_lock is already held.
The oom bypass is safe because we do the same early in the try_charge
path already. The situation migh have changed in the mean time. It
should be safe to check for fatal_signal_pending and tsk_is_oom_victim
but for a better code readability abstract the current charge bypass
condition into should_force_charge and reuse it from that path. "
Link: http://lkml.kernel.org/r/01370f70-e1f6-ebe4-b95e-0df21a0bc15e@i-love.sakura.ne.jp
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Kirill Tkhai <ktkhai@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
memcg has a significant number of files exposed to kernfs where their
value is either exposed directly or is "max" in the case of
PAGE_COUNTER_MAX.
This patch makes this generic by providing a single function to do this
work. In combination with the previous patch adding
mem_cgroup_from_seq, this makes all of the seq_show feeder functions
significantly more simple.
Link: http://lkml.kernel.org/r/20190124194100.GA31425@chrisdown.name
Signed-off-by: Chris Down <chris@chrisdown.name>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
This is the start of a series of patches similar to my earlier
DEFINE_MEMCG_MAX_OR_VAL work, but with less Macro Magic(tm).
There are a bunch of places we go from seq_file to mem_cgroup, which
currently requires manually getting the css, then getting the mem_cgroup
from the css. It's in enough places now that having mem_cgroup_from_seq
makes sense (and also makes the next patch a bit nicer).
Link: http://lkml.kernel.org/r/20190124194050.GA31341@chrisdown.name
Signed-off-by: Chris Down <chris@chrisdown.name>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
One of the more common cases of allocation size calculations is finding
the size of a structure that has a zero-sized array at the end, along
with memory for some number of elements for that array. For example:
struct foo {
int stuff;
void *entry[];
};
instance = kmalloc(sizeof(struct foo) + sizeof(void *) * count, GFP_KERNEL);
Instead of leaving these open-coded and prone to type mistakes, we can
now use the new struct_size() helper:
instance = kmalloc(struct_size(instance, entry, count), GFP_KERNEL);
This code was detected with the help of Coccinelle.
Link: http://lkml.kernel.org/r/20190104183726.GA6374@embeddedor
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Move the memcg_kmem_enabled() checks into memcg kmem charge/uncharge
functions, so, the users don't have to explicitly check that condition.
This is purely code cleanup patch without any functional change. Only
the order of checks in memcg_charge_slab() can potentially be changed
but the functionally it will be same. This should not matter as
memcg_charge_slab() is not in the hot path.
Link: http://lkml.kernel.org/r/20190103161203.162375-1-shakeelb@google.com
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Burt Holzman has noticed that memcg v1 doesn't notify about OOM events via
eventfd anymore. The reason is that 29ef680ae7c2 ("memcg, oom: move
out_of_memory back to the charge path") has moved the oom handling back to
the charge path. While doing so the notification was left behind in
mem_cgroup_oom_synchronize.
Fix the issue by replicating the oom hierarchy locking and the
notification.
Link: http://lkml.kernel.org/r/20181224091107.18354-1-mhocko@kernel.org
Fixes: 29ef680ae7c2 ("memcg, oom: move out_of_memory back to the charge path")
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: Burt Holzman <burt@fnal.gov>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com
Cc: <stable@vger.kernel.org> [4.19+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The current oom report doesn't display victim's memcg context during the
global OOM situation. While this information is not strictly needed, it
can be really helpful for containerized environments to locate which
container has lost a process. Now that we have a single line for the oom
context, we can trivially add both the oom memcg (this can be either
global_oom or a specific memcg which hits its hard limits) and task_memcg
which is the victim's memcg.
Below is the single line output in the oom report after this patch.
- global oom context information:
oom-kill:constraint=<constraint>,nodemask=<nodemask>,cpuset=<cpuset>,mems_allowed=<mems_allowed>,global_oom,task_memcg=<memcg>,task=<comm>,pid=<pid>,uid=<uid>
- memcg oom context information:
oom-kill:constraint=<constraint>,nodemask=<nodemask>,cpuset=<cpuset>,mems_allowed=<mems_allowed>,oom_memcg=<memcg>,task_memcg=<memcg>,task=<comm>,pid=<pid>,uid=<uid>
[penguin-kernel@I-love.SAKURA.ne.jp: use pr_cont() in mem_cgroup_print_oom_context()]
Link: http://lkml.kernel.org/r/201812190723.wBJ7NdkN032628@www262.sakura.ne.jp
Link: http://lkml.kernel.org/r/1542799799-36184-2-git-send-email-ufo19890607@gmail.com
Signed-off-by: yuzhoujian <yuzhoujian@didichuxing.com>
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: David Rientjes <rientjes@google.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Cc: Roman Gushchin <guro@fb.com>
Cc: Yang Shi <yang.s@alibaba-inc.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|