summaryrefslogtreecommitdiff
path: root/mm/hugetlb.c
AgeCommit message (Collapse)Author
2021-07-01mm/swapops: rework swap entry manipulation codeAlistair Popple
Both migration and device private pages use special swap entries that are manipluated by a range of inline functions. The arguments to these are somewhat inconsistent so rework them to remove flag type arguments and to make the arguments similar for both read and write entry creation. Link: https://lkml.kernel.org/r/20210616105937.23201-3-apopple@nvidia.com Signed-off-by: Alistair Popple <apopple@nvidia.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Jason Gunthorpe <jgg@nvidia.com> Reviewed-by: Ralph Campbell <rcampbell@nvidia.com> Cc: Ben Skeggs <bskeggs@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org> Cc: Peter Xu <peterx@redhat.com> Cc: Shakeel Butt <shakeelb@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-30hugetlb: address ref count racing in prep_compound_gigantic_pageMike Kravetz
In [1], Jann Horn points out a possible race between prep_compound_gigantic_page and __page_cache_add_speculative. The root cause of the possible race is prep_compound_gigantic_page uncondittionally setting the ref count of pages to zero. It does this because prep_compound_gigantic_page is handed a 'group' of pages from an allocator and needs to convert that group of pages to a compound page. The ref count of each page in this 'group' is one as set by the allocator. However, the ref count of compound page tail pages must be zero. The potential race comes about when ref counted pages are returned from the allocator. When this happens, other mm code could also take a reference on the page. __page_cache_add_speculative is one such example. Therefore, prep_compound_gigantic_page can not just set the ref count of pages to zero as it does today. Doing so would lose the reference taken by any other code. This would lead to BUGs in code checking ref counts and could possibly even lead to memory corruption. There are two possible ways to address this issue. 1) Make all allocators of gigantic groups of pages be able to return a properly constructed compound page. 2) Make prep_compound_gigantic_page be more careful when constructing a compound page. This patch takes approach 2. In prep_compound_gigantic_page, use cmpxchg to only set ref count to zero if it is one. If the cmpxchg fails, call synchronize_rcu() in the hope that the extra ref count will be driopped during a rcu grace period. This is not a performance critical code path and the wait should be accceptable. If the ref count is still inflated after the grace period, then undo any modifications made and return an error. Currently prep_compound_gigantic_page is type void and does not return errors. Modify the two callers to check for and handle error returns. On error, the caller must free the 'group' of pages as they can not be used to form a gigantic page. After freeing pages, the runtime caller (alloc_fresh_huge_page) will retry the allocation once. Boot time allocations can not be retried. The routine prep_compound_page also unconditionally sets the ref count of compound page tail pages to zero. However, in this case the buddy allocator is constructing a compound page from freshly allocated pages. The ref count on those freshly allocated pages is already zero, so the set_page_count(p, 0) is unnecessary and could lead to confusion. Just remove it. [1] https://lore.kernel.org/linux-mm/CAG48ez23q0Jy9cuVnwAe7t_fdhMk2S7N5Hdi-GLcCeq5bsfLxw@mail.gmail.com/ Link: https://lkml.kernel.org/r/20210622021423.154662-3-mike.kravetz@oracle.com Fixes: 58a84aa92723 ("thp: set compound tail page _count to zero") Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Reported-by: Jann Horn <jannh@google.com> Cc: Youquan Song <youquan.song@intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Jan Kara <jack@suse.cz> Cc: John Hubbard <jhubbard@nvidia.com> Cc: "Kirill A . Shutemov" <kirill@shutemov.name> Cc: Matthew Wilcox <willy@infradead.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Muchun Song <songmuchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-30hugetlb: remove prep_compound_huge_page cleanupMike Kravetz
Patch series "Fix prep_compound_gigantic_page ref count adjustment". These patches address the possible race between prep_compound_gigantic_page and __page_cache_add_speculative as described by Jann Horn in [1]. The first patch simply removes the unnecessary/obsolete helper routine prep_compound_huge_page to make the actual fix a little simpler. The second patch is the actual fix and has a detailed explanation in the commit message. This potential issue has existed for almost 10 years and I am unaware of anyone actually hitting the race. I did not cc stable, but would be happy to squash the patches and send to stable if anyone thinks that is a good idea. [1] https://lore.kernel.org/linux-mm/CAG48ez23q0Jy9cuVnwAe7t_fdhMk2S7N5Hdi-GLcCeq5bsfLxw@mail.gmail.com/ This patch (of 2): I could not think of a reliable way to recreate the issue for testing. Rather, I 'simulated errors' to exercise all the error paths. The routine prep_compound_huge_page is a simple wrapper to call either prep_compound_gigantic_page or prep_compound_page. However, it is only called from gather_bootmem_prealloc which only processes gigantic pages. Eliminate the routine and call prep_compound_gigantic_page directly. Link: https://lkml.kernel.org/r/20210622021423.154662-1-mike.kravetz@oracle.com Link: https://lkml.kernel.org/r/20210622021423.154662-2-mike.kravetz@oracle.com Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Jan Kara <jack@suse.cz> Cc: Jann Horn <jannh@google.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: "Kirill A . Shutemov" <kirill@shutemov.name> Cc: Matthew Wilcox <willy@infradead.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Youquan Song <youquan.song@intel.com> Cc: Muchun Song <songmuchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-30mm, hugetlb: fix racy resv_huge_pages underflow on UFFDIO_COPYMina Almasry
On UFFDIO_COPY, if we fail to copy the page contents while holding the hugetlb_fault_mutex, we will drop the mutex and return to the caller after allocating a page that consumed a reservation. In this case there may be a fault that double consumes the reservation. To handle this, we free the allocated page, fix the reservations, and allocate a temporary hugetlb page and return that to the caller. When the caller does the copy outside of the lock, we again check the cache, and allocate a page consuming the reservation, and copy over the contents. Test: Hacked the code locally such that resv_huge_pages underflows produce a warning and the copy_huge_page_from_user() always fails, then: ./tools/testing/selftests/vm/userfaultfd hugetlb_shared 10 2 /tmp/kokonut_test/huge/userfaultfd_test && echo test success ./tools/testing/selftests/vm/userfaultfd hugetlb 10 2 /tmp/kokonut_test/huge/userfaultfd_test && echo test success Both tests succeed and produce no warnings. After the test runs number of free/resv hugepages is correct. [yuehaibing@huawei.com: remove set but not used variable 'vm_alloc_shared'] Link: https://lkml.kernel.org/r/20210601141610.28332-1-yuehaibing@huawei.com [almasrymina@google.com: fix allocation error check and copy func name] Link: https://lkml.kernel.org/r/20210605010626.1459873-1-almasrymina@google.com Link: https://lkml.kernel.org/r/20210528005029.88088-1-almasrymina@google.com Signed-off-by: Mina Almasry <almasrymina@google.com> Signed-off-by: YueHaibing <yuehaibing@huawei.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Peter Xu <peterx@redhat.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-30mm/hugetlb: change parameters of arch_make_huge_pte()Christophe Leroy
Patch series "Subject: [PATCH v2 0/5] Implement huge VMAP and VMALLOC on powerpc 8xx", v2. This series implements huge VMAP and VMALLOC on powerpc 8xx. Powerpc 8xx has 4 page sizes: - 4k - 16k - 512k - 8M At the time being, vmalloc and vmap only support huge pages which are leaf at PMD level. Here the PMD level is 4M, it doesn't correspond to any supported page size. For now, implement use of 16k and 512k pages which is done at PTE level. Support of 8M pages will be implemented later, it requires use of hugepd tables. To allow this, the architecture provides two functions: - arch_vmap_pte_range_map_size() which tells vmap_pte_range() what page size to use. A stub returning PAGE_SIZE is provided when the architecture doesn't provide this function. - arch_vmap_pte_supported_shift() which tells __vmalloc_node_range() what page shift to use for a given area size. A stub returning PAGE_SHIFT is provided when the architecture doesn't provide this function. This patch (of 5): At the time being, arch_make_huge_pte() has the following prototype: pte_t arch_make_huge_pte(pte_t entry, struct vm_area_struct *vma, struct page *page, int writable); vma is used to get the pages shift or size. vma is also used on Sparc to get vm_flags. page is not used. writable is not used. In order to use this function without a vma, replace vma by shift and flags. Also remove the used parameters. Link: https://lkml.kernel.org/r/cover.1620795204.git.christophe.leroy@csgroup.eu Link: https://lkml.kernel.org/r/f4633ac6a7da2f22f31a04a89e0a7026bb78b15b.1620795204.git.christophe.leroy@csgroup.eu Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu> Acked-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport <rppt@kernel.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Uladzislau Rezki <uladzislau.rezki@sony.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-30mm: hugetlb: introduce nr_free_vmemmap_pages in the struct hstateMuchun Song
All the infrastructure is ready, so we introduce nr_free_vmemmap_pages field in the hstate to indicate how many vmemmap pages associated with a HugeTLB page that can be freed to buddy allocator. And initialize it in the hugetlb_vmemmap_init(). This patch is actual enablement of the feature. There are only (RESERVE_VMEMMAP_SIZE / sizeof(struct page)) struct page structs that can be used when CONFIG_HUGETLB_PAGE_FREE_VMEMMAP, so add a BUILD_BUG_ON to catch invalid usage of the tail struct page. Link: https://lkml.kernel.org/r/20210510030027.56044-10-songmuchun@bytedance.com Signed-off-by: Muchun Song <songmuchun@bytedance.com> Acked-by: Mike Kravetz <mike.kravetz@oracle.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Reviewed-by: Miaohe Lin <linmiaohe@huawei.com> Tested-by: Chen Huang <chenhuang5@huawei.com> Tested-by: Bodeddula Balasubramaniam <bodeddub@amazon.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andy Lutomirski <luto@kernel.org> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Barry Song <song.bao.hua@hisilicon.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: HORIGUCHI NAOYA <naoya.horiguchi@nec.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joao Martins <joao.m.martins@oracle.com> Cc: Joerg Roedel <jroedel@suse.de> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Matthew Wilcox <willy@infradead.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Mina Almasry <almasrymina@google.com> Cc: Oliver Neukum <oneukum@suse.com> Cc: Paul E. McKenney <paulmck@kernel.org> Cc: Pawan Gupta <pawan.kumar.gupta@linux.intel.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-30mm: hugetlb: alloc the vmemmap pages associated with each HugeTLB pageMuchun Song
When we free a HugeTLB page to the buddy allocator, we need to allocate the vmemmap pages associated with it. However, we may not be able to allocate the vmemmap pages when the system is under memory pressure. In this case, we just refuse to free the HugeTLB page. This changes behavior in some corner cases as listed below: 1) Failing to free a huge page triggered by the user (decrease nr_pages). User needs to try again later. 2) Failing to free a surplus huge page when freed by the application. Try again later when freeing a huge page next time. 3) Failing to dissolve a free huge page on ZONE_MOVABLE via offline_pages(). This can happen when we have plenty of ZONE_MOVABLE memory, but not enough kernel memory to allocate vmemmmap pages. We may even be able to migrate huge page contents, but will not be able to dissolve the source huge page. This will prevent an offline operation and is unfortunate as memory offlining is expected to succeed on movable zones. Users that depend on memory hotplug to succeed for movable zones should carefully consider whether the memory savings gained from this feature are worth the risk of possibly not being able to offline memory in certain situations. 4) Failing to dissolve a huge page on CMA/ZONE_MOVABLE via alloc_contig_range() - once we have that handling in place. Mainly affects CMA and virtio-mem. Similar to 3). virito-mem will handle migration errors gracefully. CMA might be able to fallback on other free areas within the CMA region. Vmemmap pages are allocated from the page freeing context. In order for those allocations to be not disruptive (e.g. trigger oom killer) __GFP_NORETRY is used. hugetlb_lock is dropped for the allocation because a non sleeping allocation would be too fragile and it could fail too easily under memory pressure. GFP_ATOMIC or other modes to access memory reserves is not used because we want to prevent consuming reserves under heavy hugetlb freeing. [mike.kravetz@oracle.com: fix dissolve_free_huge_page use of tail/head page] Link: https://lkml.kernel.org/r/20210527231225.226987-1-mike.kravetz@oracle.com [willy@infradead.org: fix alloc_vmemmap_page_list documentation warning] Link: https://lkml.kernel.org/r/20210615200242.1716568-6-willy@infradead.org Link: https://lkml.kernel.org/r/20210510030027.56044-7-songmuchun@bytedance.com Signed-off-by: Muchun Song <songmuchun@bytedance.com> Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andy Lutomirski <luto@kernel.org> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Barry Song <song.bao.hua@hisilicon.com> Cc: Bodeddula Balasubramaniam <bodeddub@amazon.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Chen Huang <chenhuang5@huawei.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: HORIGUCHI NAOYA <naoya.horiguchi@nec.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joao Martins <joao.m.martins@oracle.com> Cc: Joerg Roedel <jroedel@suse.de> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Matthew Wilcox <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Mina Almasry <almasrymina@google.com> Cc: Oliver Neukum <oneukum@suse.com> Cc: Paul E. McKenney <paulmck@kernel.org> Cc: Pawan Gupta <pawan.kumar.gupta@linux.intel.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-30mm: hugetlb: defer freeing of HugeTLB pagesMuchun Song
In the subsequent patch, we should allocate the vmemmap pages when freeing a HugeTLB page. But update_and_free_page() can be called under any context, so we cannot use GFP_KERNEL to allocate vmemmap pages. However, we can defer the actual freeing in a kworker to prevent from using GFP_ATOMIC to allocate the vmemmap pages. The __update_and_free_page() is where the call to allocate vmemmmap pages will be inserted. Link: https://lkml.kernel.org/r/20210510030027.56044-6-songmuchun@bytedance.com Signed-off-by: Muchun Song <songmuchun@bytedance.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andy Lutomirski <luto@kernel.org> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Barry Song <song.bao.hua@hisilicon.com> Cc: Bodeddula Balasubramaniam <bodeddub@amazon.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Chen Huang <chenhuang5@huawei.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: HORIGUCHI NAOYA <naoya.horiguchi@nec.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joao Martins <joao.m.martins@oracle.com> Cc: Joerg Roedel <jroedel@suse.de> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Matthew Wilcox <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Mina Almasry <almasrymina@google.com> Cc: Oliver Neukum <oneukum@suse.com> Cc: Paul E. McKenney <paulmck@kernel.org> Cc: Pawan Gupta <pawan.kumar.gupta@linux.intel.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-30mm: hugetlb: free the vmemmap pages associated with each HugeTLB pageMuchun Song
Every HugeTLB has more than one struct page structure. We __know__ that we only use the first 4 (__NR_USED_SUBPAGE) struct page structures to store metadata associated with each HugeTLB. There are a lot of struct page structures associated with each HugeTLB page. For tail pages, the value of compound_head is the same. So we can reuse first page of tail page structures. We map the virtual addresses of the remaining pages of tail page structures to the first tail page struct, and then free these page frames. Therefore, we need to reserve two pages as vmemmap areas. When we allocate a HugeTLB page from the buddy, we can free some vmemmap pages associated with each HugeTLB page. It is more appropriate to do it in the prep_new_huge_page(). The free_vmemmap_pages_per_hpage(), which indicates how many vmemmap pages associated with a HugeTLB page can be freed, returns zero for now, which means the feature is disabled. We will enable it once all the infrastructure is there. [willy@infradead.org: fix documentation warning] Link: https://lkml.kernel.org/r/20210615200242.1716568-5-willy@infradead.org Link: https://lkml.kernel.org/r/20210510030027.56044-5-songmuchun@bytedance.com Signed-off-by: Muchun Song <songmuchun@bytedance.com> Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Oscar Salvador <osalvador@suse.de> Tested-by: Chen Huang <chenhuang5@huawei.com> Tested-by: Bodeddula Balasubramaniam <bodeddub@amazon.com> Acked-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andy Lutomirski <luto@kernel.org> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Barry Song <song.bao.hua@hisilicon.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: HORIGUCHI NAOYA <naoya.horiguchi@nec.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joao Martins <joao.m.martins@oracle.com> Cc: Joerg Roedel <jroedel@suse.de> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Matthew Wilcox <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Mina Almasry <almasrymina@google.com> Cc: Oliver Neukum <oneukum@suse.com> Cc: Paul E. McKenney <paulmck@kernel.org> Cc: Pawan Gupta <pawan.kumar.gupta@linux.intel.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-29mm,hwpoison: make get_hwpoison_page() call get_any_page()Naoya Horiguchi
__get_hwpoison_page() could fail to grab refcount by some race condition, so it's helpful if we can handle it by retrying. We already have retry logic, so make get_hwpoison_page() call get_any_page() when called from memory_failure(). As a result, get_hwpoison_page() can return negative values (i.e. error code), so some callers are also changed to handle error cases. soft_offline_page() does nothing for -EBUSY because that's enough and users in userspace can easily handle it. unpoison_memory() is also unchanged because it's broken and need thorough fixes (will be done later). Link: https://lkml.kernel.org/r/20210603233632.2964832-3-nao.horiguchi@gmail.com Signed-off-by: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Muchun Song <songmuchun@bytedance.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Tony Luck <tony.luck@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-24mm, futex: fix shared futex pgoff on shmem huge pageHugh Dickins
If more than one futex is placed on a shmem huge page, it can happen that waking the second wakes the first instead, and leaves the second waiting: the key's shared.pgoff is wrong. When 3.11 commit 13d60f4b6ab5 ("futex: Take hugepages into account when generating futex_key"), the only shared huge pages came from hugetlbfs, and the code added to deal with its exceptional page->index was put into hugetlb source. Then that was missed when 4.8 added shmem huge pages. page_to_pgoff() is what others use for this nowadays: except that, as currently written, it gives the right answer on hugetlbfs head, but nonsense on hugetlbfs tails. Fix that by calling hugetlbfs-specific hugetlb_basepage_index() on PageHuge tails as well as on head. Yes, it's unconventional to declare hugetlb_basepage_index() there in pagemap.h, rather than in hugetlb.h; but I do not expect anything but page_to_pgoff() ever to need it. [akpm@linux-foundation.org: give hugetlb_basepage_index() prototype the correct scope] Link: https://lkml.kernel.org/r/b17d946b-d09-326e-b42a-52884c36df32@google.com Fixes: 800d8c63b2e9 ("shmem: add huge pages support") Reported-by: Neel Natu <neelnatu@google.com> Signed-off-by: Hugh Dickins <hughd@google.com> Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org> Acked-by: Thomas Gleixner <tglx@linutronix.de> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Zhang Yi <wetpzy@gmail.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Darren Hart <dvhart@infradead.org> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-16mm/hugetlb: expand restore_reserve_on_error functionalityMike Kravetz
The routine restore_reserve_on_error is called to restore reservation information when an error occurs after page allocation. The routine alloc_huge_page modifies the mapping reserve map and potentially the reserve count during allocation. If code calling alloc_huge_page encounters an error after allocation and needs to free the page, the reservation information needs to be adjusted. Currently, restore_reserve_on_error only takes action on pages for which the reserve count was adjusted(HPageRestoreReserve flag). There is nothing wrong with these adjustments. However, alloc_huge_page ALWAYS modifies the reserve map during allocation even if the reserve count is not adjusted. This can cause issues as observed during development of this patch [1]. One specific series of operations causing an issue is: - Create a shared hugetlb mapping Reservations for all pages created by default - Fault in a page in the mapping Reservation exists so reservation count is decremented - Punch a hole in the file/mapping at index previously faulted Reservation and any associated pages will be removed - Allocate a page to fill the hole No reservation entry, so reserve count unmodified Reservation entry added to map by alloc_huge_page - Error after allocation and before instantiating the page Reservation entry remains in map - Allocate a page to fill the hole Reservation entry exists, so decrement reservation count This will cause a reservation count underflow as the reservation count was decremented twice for the same index. A user would observe a very large number for HugePages_Rsvd in /proc/meminfo. This would also likely cause subsequent allocations of hugetlb pages to fail as it would 'appear' that all pages are reserved. This sequence of operations is unlikely to happen, however they were easily reproduced and observed using hacked up code as described in [1]. Address the issue by having the routine restore_reserve_on_error take action on pages where HPageRestoreReserve is not set. In this case, we need to remove any reserve map entry created by alloc_huge_page. A new helper routine vma_del_reservation assists with this operation. There are three callers of alloc_huge_page which do not currently call restore_reserve_on error before freeing a page on error paths. Add those missing calls. [1] https://lore.kernel.org/linux-mm/20210528005029.88088-1-almasrymina@google.com/ Link: https://lkml.kernel.org/r/20210607204510.22617-1-mike.kravetz@oracle.com Fixes: 96b96a96ddee ("mm/hugetlb: fix huge page reservation leak in private mapping error paths" Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Reviewed-by: Mina Almasry <almasrymina@google.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Peter Xu <peterx@redhat.com> Cc: Muchun Song <songmuchun@bytedance.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-16mm,hwpoison: fix race with hugetlb page allocationNaoya Horiguchi
When hugetlb page fault (under overcommitting situation) and memory_failure() race, VM_BUG_ON_PAGE() is triggered by the following race: CPU0: CPU1: gather_surplus_pages() page = alloc_surplus_huge_page() memory_failure_hugetlb() get_hwpoison_page(page) __get_hwpoison_page(page) get_page_unless_zero(page) zero = put_page_testzero(page) VM_BUG_ON_PAGE(!zero, page) enqueue_huge_page(h, page) put_page(page) __get_hwpoison_page() only checks the page refcount before taking an additional one for memory error handling, which is not enough because there's a time window where compound pages have non-zero refcount during hugetlb page initialization. So make __get_hwpoison_page() check page status a bit more for hugetlb pages with get_hwpoison_huge_page(). Checking hugetlb-specific flags under hugetlb_lock makes sure that the hugetlb page is not transitive. It's notable that another new function, HWPoisonHandlable(), is helpful to prevent a race against other transitive page states (like a generic compound page just before PageHuge becomes true). Link: https://lkml.kernel.org/r/20210603233632.2964832-2-nao.horiguchi@gmail.com Fixes: ead07f6a867b ("mm/memory-failure: introduce get_hwpoison_page() for consistent refcount handling") Signed-off-by: Naoya Horiguchi <naoya.horiguchi@nec.com> Reported-by: Muchun Song <songmuchun@bytedance.com> Acked-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Michal Hocko <mhocko@suse.com> Cc: Tony Luck <tony.luck@intel.com> Cc: <stable@vger.kernel.org> [5.12+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-05mm, hugetlb: fix simple resv_huge_pages underflow on UFFDIO_COPYMina Almasry
The userfaultfd hugetlb tests cause a resv_huge_pages underflow. This happens when hugetlb_mcopy_atomic_pte() is called with !is_continue on an index for which we already have a page in the cache. When this happens, we allocate a second page, double consuming the reservation, and then fail to insert the page into the cache and return -EEXIST. To fix this, we first check if there is a page in the cache which already consumed the reservation, and return -EEXIST immediately if so. There is still a rare condition where we fail to copy the page contents AND race with a call for hugetlb_no_page() for this index and again we will underflow resv_huge_pages. That is fixed in a more complicated patch not targeted for -stable. Test: Hacked the code locally such that resv_huge_pages underflows produce a warning, then: ./tools/testing/selftests/vm/userfaultfd hugetlb_shared 10 2 /tmp/kokonut_test/huge/userfaultfd_test && echo test success ./tools/testing/selftests/vm/userfaultfd hugetlb 10 2 /tmp/kokonut_test/huge/userfaultfd_test && echo test success Both tests succeed and produce no warnings. After the test runs number of free/resv hugepages is correct. [mike.kravetz@oracle.com: changelog fixes] Link: https://lkml.kernel.org/r/20210528004649.85298-1-almasrymina@google.com Fixes: 8fb5debc5fcd ("userfaultfd: hugetlbfs: add hugetlb_mcopy_atomic_pte for userfaultfd support") Signed-off-by: Mina Almasry <almasrymina@google.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Peter Xu <peterx@redhat.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-05hugetlb: pass head page to remove_hugetlb_page()Naoya Horiguchi
When memory_failure() or soft_offline_page() is called on a tail page of some hugetlb page, "BUG: unable to handle page fault" error can be triggered. remove_hugetlb_page() dereferences page->lru, so it's assumed that the page points to a head page, but one of the caller, dissolve_free_huge_page(), provides remove_hugetlb_page() with 'page' which could be a tail page. So pass 'head' to it, instead. Link: https://lkml.kernel.org/r/20210526235257.2769473-1-nao.horiguchi@gmail.com Fixes: 6eb4e88a6d27 ("hugetlb: create remove_hugetlb_page() to separate functionality") Signed-off-by: Naoya Horiguchi <naoya.horiguchi@nec.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Reviewed-by: Muchun Song <songmuchun@bytedance.com> Acked-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Matthew Wilcox <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-05-14mm/hugetlb: fix cow where page writtable in childPeter Xu
When rework early cow of pinned hugetlb pages, we moved huge_ptep_get() upper but overlooked a side effect that the huge_ptep_get() will fetch the pte after wr-protection. After moving it upwards, we need explicit wr-protect of child pte or we will keep the write bit set in the child process, which could cause data corrution where the child can write to the original page directly. This issue can also be exposed by "memfd_test hugetlbfs" kselftest. Link: https://lkml.kernel.org/r/20210503234356.9097-3-peterx@redhat.com Fixes: 4eae4efa2c299 ("hugetlb: do early cow when page pinned on src mm") Signed-off-by: Peter Xu <peterx@redhat.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Hugh Dickins <hughd@google.com> Cc: Joel Fernandes (Google) <joel@joelfernandes.org> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-05-07mm: fix typos in commentsIngo Molnar
Fix ~94 single-word typos in locking code comments, plus a few very obvious grammar mistakes. Link: https://lkml.kernel.org/r/20210322212624.GA1963421@gmail.com Link: https://lore.kernel.org/r/20210322205203.GB1959563@gmail.com Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Randy Dunlap <rdunlap@infradead.org> Cc: Bhaskar Chowdhury <unixbhaskar@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-05-05mm: honor PF_MEMALLOC_PIN for all movable pagesPavel Tatashin
PF_MEMALLOC_PIN is only honored for CMA pages, extend this flag to work for any allocations from ZONE_MOVABLE by removing __GFP_MOVABLE from gfp_mask when this flag is passed in the current context. Add is_pinnable_page() to return true if page is in a pinnable page. A pinnable page is not in ZONE_MOVABLE and not of MIGRATE_CMA type. Link: https://lkml.kernel.org/r/20210215161349.246722-8-pasha.tatashin@soleen.com Signed-off-by: Pavel Tatashin <pasha.tatashin@soleen.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: James Morris <jmorris@namei.org> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Michal Hocko <mhocko@kernel.org> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Sasha Levin <sashal@kernel.org> Cc: Steven Rostedt (VMware) <rostedt@goodmis.org> Cc: Tyler Hicks <tyhicks@linux.microsoft.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-05-05mm cma: rename PF_MEMALLOC_NOCMA to PF_MEMALLOC_PINPavel Tatashin
PF_MEMALLOC_NOCMA is used ot guarantee that the allocator will not return pages that might belong to CMA region. This is currently used for long term gup to make sure that such pins are not going to be done on any CMA pages. When PF_MEMALLOC_NOCMA has been introduced we haven't realized that it is focusing on CMA pages too much and that there is larger class of pages that need the same treatment. MOVABLE zone cannot contain any long term pins as well so it makes sense to reuse and redefine this flag for that usecase as well. Rename the flag to PF_MEMALLOC_PIN which defines an allocation context which can only get pages suitable for long-term pins. Also rename: memalloc_nocma_save()/memalloc_nocma_restore to memalloc_pin_save()/memalloc_pin_restore() and make the new functions common. [rppt@linux.ibm.com: fix renaming of PF_MEMALLOC_NOCMA to PF_MEMALLOC_PIN] Link: https://lkml.kernel.org/r/20210331163816.11517-1-rppt@kernel.org Link: https://lkml.kernel.org/r/20210215161349.246722-6-pasha.tatashin@soleen.com Signed-off-by: Pavel Tatashin <pasha.tatashin@soleen.com> Reviewed-by: John Hubbard <jhubbard@nvidia.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Mike Rapoport <rppt@linux.ibm.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: James Morris <jmorris@namei.org> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Michal Hocko <mhocko@kernel.org> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Sasha Levin <sashal@kernel.org> Cc: Steven Rostedt (VMware) <rostedt@goodmis.org> Cc: Tyler Hicks <tyhicks@linux.microsoft.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-05-05userfaultfd: add UFFDIO_CONTINUE ioctlAxel Rasmussen
This ioctl is how userspace ought to resolve "minor" userfaults. The idea is, userspace is notified that a minor fault has occurred. It might change the contents of the page using its second non-UFFD mapping, or not. Then, it calls UFFDIO_CONTINUE to tell the kernel "I have ensured the page contents are correct, carry on setting up the mapping". Note that it doesn't make much sense to use UFFDIO_{COPY,ZEROPAGE} for MINOR registered VMAs. ZEROPAGE maps the VMA to the zero page; but in the minor fault case, we already have some pre-existing underlying page. Likewise, UFFDIO_COPY isn't useful if we have a second non-UFFD mapping. We'd just use memcpy() or similar instead. It turns out hugetlb_mcopy_atomic_pte() already does very close to what we want, if an existing page is provided via `struct page **pagep`. We already special-case the behavior a bit for the UFFDIO_ZEROPAGE case, so just extend that design: add an enum for the three modes of operation, and make the small adjustments needed for the MCOPY_ATOMIC_CONTINUE case. (Basically, look up the existing page, and avoid adding the existing page to the page cache or calling set_page_huge_active() on it.) Link: https://lkml.kernel.org/r/20210301222728.176417-5-axelrasmussen@google.com Signed-off-by: Axel Rasmussen <axelrasmussen@google.com> Reviewed-by: Peter Xu <peterx@redhat.com> Cc: Adam Ruprecht <ruprecht@google.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Cannon Matthews <cannonmatthews@google.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Chinwen Chang <chinwen.chang@mediatek.com> Cc: David Rientjes <rientjes@google.com> Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com> Cc: Huang Ying <ying.huang@intel.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jann Horn <jannh@google.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Lokesh Gidra <lokeshgidra@google.com> Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: "Michal Koutn" <mkoutny@suse.com> Cc: Michel Lespinasse <walken@google.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Mina Almasry <almasrymina@google.com> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Oliver Upton <oupton@google.com> Cc: Shaohua Li <shli@fb.com> Cc: Shawn Anastasio <shawn@anastas.io> Cc: Steven Price <steven.price@arm.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-05-05userfaultfd: hugetlbfs: only compile UFFD helpers if config enabledAxel Rasmussen
For background, mm/userfaultfd.c provides a general mcopy_atomic implementation. But some types of memory (i.e., hugetlb and shmem) need a slightly different implementation, so they provide their own helpers for this. In other words, userfaultfd is the only caller of these functions. This patch achieves two things: 1. Don't spend time compiling code which will end up never being referenced anyway (a small build time optimization). 2. In patches later in this series, we extend the signature of these helpers with UFFD-specific state (a mode enumeration). Once this happens, we *have to* either not compile the helpers, or unconditionally define the UFFD-only state (which seems messier to me). This includes the declarations in the headers, as otherwise they'd yield warnings about implicitly defining the type of those arguments. Link: https://lkml.kernel.org/r/20210301222728.176417-4-axelrasmussen@google.com Signed-off-by: Axel Rasmussen <axelrasmussen@google.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Reviewed-by: Peter Xu <peterx@redhat.com> Cc: Adam Ruprecht <ruprecht@google.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Cannon Matthews <cannonmatthews@google.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Chinwen Chang <chinwen.chang@mediatek.com> Cc: David Rientjes <rientjes@google.com> Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com> Cc: Huang Ying <ying.huang@intel.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jann Horn <jannh@google.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Lokesh Gidra <lokeshgidra@google.com> Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: "Michal Koutn" <mkoutny@suse.com> Cc: Michel Lespinasse <walken@google.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Mina Almasry <almasrymina@google.com> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Oliver Upton <oupton@google.com> Cc: Shaohua Li <shli@fb.com> Cc: Shawn Anastasio <shawn@anastas.io> Cc: Steven Price <steven.price@arm.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-05-05userfaultfd: add minor fault registration modeAxel Rasmussen
Patch series "userfaultfd: add minor fault handling", v9. Overview ======== This series adds a new userfaultfd feature, UFFD_FEATURE_MINOR_HUGETLBFS. When enabled (via the UFFDIO_API ioctl), this feature means that any hugetlbfs VMAs registered with UFFDIO_REGISTER_MODE_MISSING will *also* get events for "minor" faults. By "minor" fault, I mean the following situation: Let there exist two mappings (i.e., VMAs) to the same page(s) (shared memory). One of the mappings is registered with userfaultfd (in minor mode), and the other is not. Via the non-UFFD mapping, the underlying pages have already been allocated & filled with some contents. The UFFD mapping has not yet been faulted in; when it is touched for the first time, this results in what I'm calling a "minor" fault. As a concrete example, when working with hugetlbfs, we have huge_pte_none(), but find_lock_page() finds an existing page. We also add a new ioctl to resolve such faults: UFFDIO_CONTINUE. The idea is, userspace resolves the fault by either a) doing nothing if the contents are already correct, or b) updating the underlying contents using the second, non-UFFD mapping (via memcpy/memset or similar, or something fancier like RDMA, or etc...). In either case, userspace issues UFFDIO_CONTINUE to tell the kernel "I have ensured the page contents are correct, carry on setting up the mapping". Use Case ======== Consider the use case of VM live migration (e.g. under QEMU/KVM): 1. While a VM is still running, we copy the contents of its memory to a target machine. The pages are populated on the target by writing to the non-UFFD mapping, using the setup described above. The VM is still running (and therefore its memory is likely changing), so this may be repeated several times, until we decide the target is "up to date enough". 2. We pause the VM on the source, and start executing on the target machine. During this gap, the VM's user(s) will *see* a pause, so it is desirable to minimize this window. 3. Between the last time any page was copied from the source to the target, and when the VM was paused, the contents of that page may have changed - and therefore the copy we have on the target machine is out of date. Although we can keep track of which pages are out of date, for VMs with large amounts of memory, it is "slow" to transfer this information to the target machine. We want to resume execution before such a transfer would complete. 4. So, the guest begins executing on the target machine. The first time it touches its memory (via the UFFD-registered mapping), userspace wants to intercept this fault. Userspace checks whether or not the page is up to date, and if not, copies the updated page from the source machine, via the non-UFFD mapping. Finally, whether a copy was performed or not, userspace issues a UFFDIO_CONTINUE ioctl to tell the kernel "I have ensured the page contents are correct, carry on setting up the mapping". We don't have to do all of the final updates on-demand. The userfaultfd manager can, in the background, also copy over updated pages once it receives the map of which pages are up-to-date or not. Interaction with Existing APIs ============================== Because this is a feature, a registered VMA could potentially receive both missing and minor faults. I spent some time thinking through how the existing API interacts with the new feature: UFFDIO_CONTINUE cannot be used to resolve non-minor faults, as it does not allocate a new page. If UFFDIO_CONTINUE is used on a non-minor fault: - For non-shared memory or shmem, -EINVAL is returned. - For hugetlb, -EFAULT is returned. UFFDIO_COPY and UFFDIO_ZEROPAGE cannot be used to resolve minor faults. Without modifications, the existing codepath assumes a new page needs to be allocated. This is okay, since userspace must have a second non-UFFD-registered mapping anyway, thus there isn't much reason to want to use these in any case (just memcpy or memset or similar). - If UFFDIO_COPY is used on a minor fault, -EEXIST is returned. - If UFFDIO_ZEROPAGE is used on a minor fault, -EEXIST is returned (or -EINVAL in the case of hugetlb, as UFFDIO_ZEROPAGE is unsupported in any case). - UFFDIO_WRITEPROTECT simply doesn't work with shared memory, and returns -ENOENT in that case (regardless of the kind of fault). Future Work =========== This series only supports hugetlbfs. I have a second series in flight to support shmem as well, extending the functionality. This series is more mature than the shmem support at this point, and the functionality works fully on hugetlbfs, so this series can be merged first and then shmem support will follow. This patch (of 6): This feature allows userspace to intercept "minor" faults. By "minor" faults, I mean the following situation: Let there exist two mappings (i.e., VMAs) to the same page(s). One of the mappings is registered with userfaultfd (in minor mode), and the other is not. Via the non-UFFD mapping, the underlying pages have already been allocated & filled with some contents. The UFFD mapping has not yet been faulted in; when it is touched for the first time, this results in what I'm calling a "minor" fault. As a concrete example, when working with hugetlbfs, we have huge_pte_none(), but find_lock_page() finds an existing page. This commit adds the new registration mode, and sets the relevant flag on the VMAs being registered. In the hugetlb fault path, if we find that we have huge_pte_none(), but find_lock_page() does indeed find an existing page, then we have a "minor" fault, and if the VMA has the userfaultfd registration flag, we call into userfaultfd to handle it. This is implemented as a new registration mode, instead of an API feature. This is because the alternative implementation has significant drawbacks [1]. However, doing it this was requires we allocate a VM_* flag for the new registration mode. On 32-bit systems, there are no unused bits, so this feature is only supported on architectures with CONFIG_ARCH_USES_HIGH_VMA_FLAGS. When attempting to register a VMA in MINOR mode on 32-bit architectures, we return -EINVAL. [1] https://lore.kernel.org/patchwork/patch/1380226/ [peterx@redhat.com: fix minor fault page leak] Link: https://lkml.kernel.org/r/20210322175132.36659-1-peterx@redhat.com Link: https://lkml.kernel.org/r/20210301222728.176417-1-axelrasmussen@google.com Link: https://lkml.kernel.org/r/20210301222728.176417-2-axelrasmussen@google.com Signed-off-by: Axel Rasmussen <axelrasmussen@google.com> Reviewed-by: Peter Xu <peterx@redhat.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Chinwen Chang <chinwen.chang@mediatek.com> Cc: Huang Ying <ying.huang@intel.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jann Horn <jannh@google.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Lokesh Gidra <lokeshgidra@google.com> Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: "Michal Koutn" <mkoutny@suse.com> Cc: Michel Lespinasse <walken@google.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Shaohua Li <shli@fb.com> Cc: Shawn Anastasio <shawn@anastas.io> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Steven Price <steven.price@arm.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Adam Ruprecht <ruprecht@google.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Cannon Matthews <cannonmatthews@google.com> Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Mina Almasry <almasrymina@google.com> Cc: Oliver Upton <oupton@google.com> Cc: Kirill A. Shutemov <kirill@shutemov.name> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-05-05mm: make alloc_contig_range handle in-use hugetlb pagesOscar Salvador
alloc_contig_range() will fail if it finds a HugeTLB page within the range, without a chance to handle them. Since HugeTLB pages can be migrated as any LRU or Movable page, it does not make sense to bail out without trying. Enable the interface to recognize in-use HugeTLB pages so we can migrate them, and have much better chances to succeed the call. Link: https://lkml.kernel.org/r/20210419075413.1064-7-osalvador@suse.de Signed-off-by: Oscar Salvador <osalvador@suse.de> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: David Hildenbrand <david@redhat.com> Cc: Muchun Song <songmuchun@bytedance.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-05-05mm: make alloc_contig_range handle free hugetlb pagesOscar Salvador
alloc_contig_range will fail if it ever sees a HugeTLB page within the range we are trying to allocate, even when that page is free and can be easily reallocated. This has proved to be problematic for some users of alloc_contic_range, e.g: CMA and virtio-mem, where those would fail the call even when those pages lay in ZONE_MOVABLE and are free. We can do better by trying to replace such page. Free hugepages are tricky to handle so as to no userspace application notices disruption, we need to replace the current free hugepage with a new one. In order to do that, a new function called alloc_and_dissolve_huge_page is introduced. This function will first try to get a new fresh hugepage, and if it succeeds, it will replace the old one in the free hugepage pool. The free page replacement is done under hugetlb_lock, so no external users of hugetlb will notice the change. To allocate the new huge page, we use alloc_buddy_huge_page(), so we do not have to deal with any counters, and prep_new_huge_page() is not called. This is valulable because in case we need to free the new page, we only need to call __free_pages(). Once we know that the page to be replaced is a genuine 0-refcounted huge page, we remove the old page from the freelist by remove_hugetlb_page(). Then, we can call __prep_new_huge_page() and __prep_account_new_huge_page() for the new huge page to properly initialize it and increment the hstate->nr_huge_pages counter (previously decremented by remove_hugetlb_page()). Once done, the page is enqueued by enqueue_huge_page() and it is ready to be used. There is one tricky case when page's refcount is 0 because it is in the process of being released. A missing PageHugeFreed bit will tell us that freeing is in flight so we retry after dropping the hugetlb_lock. The race window should be small and the next retry should make a forward progress. E.g: CPU0 CPU1 free_huge_page() isolate_or_dissolve_huge_page PageHuge() == T alloc_and_dissolve_huge_page alloc_buddy_huge_page() spin_lock_irq(hugetlb_lock) // PageHuge() && !PageHugeFreed && // !PageCount() spin_unlock_irq(hugetlb_lock) spin_lock_irq(hugetlb_lock) 1) update_and_free_page PageHuge() == F __free_pages() 2) enqueue_huge_page SetPageHugeFreed() spin_unlock_irq(&hugetlb_lock) spin_lock_irq(hugetlb_lock) 1) PageHuge() == F (freed by case#1 from CPU0) 2) PageHuge() == T PageHugeFreed() == T - proceed with replacing the page In the case above we retry as the window race is quite small and we have high chances to succeed next time. With regard to the allocation, we restrict it to the node the page belongs to with __GFP_THISNODE, meaning we do not fallback on other node's zones. Note that gigantic hugetlb pages are fenced off since there is a cyclic dependency between them and alloc_contig_range. Link: https://lkml.kernel.org/r/20210419075413.1064-6-osalvador@suse.de Signed-off-by: Oscar Salvador <osalvador@suse.de> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: David Hildenbrand <david@redhat.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Muchun Song <songmuchun@bytedance.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-05-05mm,hugetlb: split prep_new_huge_page functionalityOscar Salvador
Currently, prep_new_huge_page() performs two functions. It sets the right state for a new hugetlb, and increases the hstate's counters to account for the new page. Let us split its functionality into two separate functions, decoupling the handling of the counters from initializing a hugepage. The outcome is having __prep_new_huge_page(), which only initializes the page , and __prep_account_new_huge_page(), which adds the new page to the hstate's counters. This allows us to be able to set a hugetlb without having to worry about the counter/locking. It will prove useful in the next patch. prep_new_huge_page() still calls both functions. Link: https://lkml.kernel.org/r/20210419075413.1064-5-osalvador@suse.de Signed-off-by: Oscar Salvador <osalvador@suse.de> Acked-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Reviewed-by: David Hildenbrand <david@redhat.com> Cc: Muchun Song <songmuchun@bytedance.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-05-05mm,hugetlb: drop clearing of flag from prep_new_huge_pageOscar Salvador
Pages allocated via the page allocator or CMA get its private field cleared by means of post_alloc_hook(). Pages allocated during boot, that is directly from the memblock allocator, get cleared by paging_init()-> .. ->memmap_init_zone-> .. ->__init_single_page() before any memblock allocation. Based on this ground, let us remove the clearing of the flag from prep_new_huge_page() as it is not needed. This was a leftover from commit 6c0371490140 ("hugetlb: convert PageHugeFreed to HPageFreed flag"). Previously the explicit clearing was necessary because compound allocations do not get this initialization (see prep_compound_page). Link: https://lkml.kernel.org/r/20210419075413.1064-4-osalvador@suse.de Signed-off-by: Oscar Salvador <osalvador@suse.de> Acked-by: Michal Hocko <mhocko@suse.com> Reviewed-by: David Hildenbrand <david@redhat.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Muchun Song <songmuchun@bytedance.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-05-05hugetlb: add lockdep_assert_held() calls for hugetlb_lockMike Kravetz
After making hugetlb lock irq safe and separating some functionality done under the lock, add some lockdep_assert_held to help verify locking. Link: https://lkml.kernel.org/r/20210409205254.242291-9-mike.kravetz@oracle.com Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Acked-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Miaohe Lin <linmiaohe@huawei.com> Reviewed-by: Muchun Song <songmuchun@bytedance.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.ibm.com> Cc: Barry Song <song.bao.hua@hisilicon.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Hillf Danton <hdanton@sina.com> Cc: HORIGUCHI NAOYA <naoya.horiguchi@nec.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mina Almasry <almasrymina@google.com> Cc: Peter Xu <peterx@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Roman Gushchin <guro@fb.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Waiman Long <longman@redhat.com> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-05-05hugetlb: make free_huge_page irq safeMike Kravetz
Commit c77c0a8ac4c5 ("mm/hugetlb: defer freeing of huge pages if in non-task context") was added to address the issue of free_huge_page being called from irq context. That commit hands off free_huge_page processing to a workqueue if !in_task. However, this doesn't cover all the cases as pointed out by 0day bot lockdep report [1]. : Possible interrupt unsafe locking scenario: : : CPU0 CPU1 : ---- ---- : lock(hugetlb_lock); : local_irq_disable(); : lock(slock-AF_INET); : lock(hugetlb_lock); : <Interrupt> : lock(slock-AF_INET); Shakeel has later explained that this is very likely TCP TX zerocopy from hugetlb pages scenario when the networking code drops a last reference to hugetlb page while having IRQ disabled. Hugetlb freeing path doesn't disable IRQ while holding hugetlb_lock so a lock dependency chain can lead to a deadlock. This commit addresses the issue by doing the following: - Make hugetlb_lock irq safe. This is mostly a simple process of changing spin_*lock calls to spin_*lock_irq* calls. - Make subpool lock irq safe in a similar manner. - Revert the !in_task check and workqueue handoff. [1] https://lore.kernel.org/linux-mm/000000000000f1c03b05bc43aadc@google.com/ Link: https://lkml.kernel.org/r/20210409205254.242291-8-mike.kravetz@oracle.com Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Acked-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Muchun Song <songmuchun@bytedance.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.ibm.com> Cc: Barry Song <song.bao.hua@hisilicon.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Hillf Danton <hdanton@sina.com> Cc: HORIGUCHI NAOYA <naoya.horiguchi@nec.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Mina Almasry <almasrymina@google.com> Cc: Peter Xu <peterx@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Roman Gushchin <guro@fb.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Waiman Long <longman@redhat.com> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-05-05hugetlb: change free_pool_huge_page to remove_pool_huge_pageMike Kravetz
free_pool_huge_page was called with hugetlb_lock held. It would remove a hugetlb page, and then free the corresponding pages to the lower level allocators such as buddy. free_pool_huge_page was called in a loop to remove hugetlb pages and these loops could hold the hugetlb_lock for a considerable time. Create new routine remove_pool_huge_page to replace free_pool_huge_page. remove_pool_huge_page will remove the hugetlb page, and it must be called with the hugetlb_lock held. It will return the removed page and it is the responsibility of the caller to free the page to the lower level allocators. The hugetlb_lock is dropped before freeing to these allocators which results in shorter lock hold times. Add new helper routine to call update_and_free_page for a list of pages. Note: Some changes to the routine return_unused_surplus_pages are in need of explanation. Commit e5bbc8a6c992 ("mm/hugetlb.c: fix reservation race when freeing surplus pages") modified this routine to address a race which could occur when dropping the hugetlb_lock in the loop that removes pool pages. Accounting changes introduced in that commit were subtle and took some thought to understand. This commit removes the cond_resched_lock() and the potential race. Therefore, remove the subtle code and restore the more straight forward accounting effectively reverting the commit. Link: https://lkml.kernel.org/r/20210409205254.242291-7-mike.kravetz@oracle.com Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Reviewed-by: Muchun Song <songmuchun@bytedance.com> Acked-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.ibm.com> Cc: Barry Song <song.bao.hua@hisilicon.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Hillf Danton <hdanton@sina.com> Cc: HORIGUCHI NAOYA <naoya.horiguchi@nec.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Mina Almasry <almasrymina@google.com> Cc: Peter Xu <peterx@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Roman Gushchin <guro@fb.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Waiman Long <longman@redhat.com> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-05-05hugetlb: call update_and_free_page without hugetlb_lockMike Kravetz
With the introduction of remove_hugetlb_page(), there is no need for update_and_free_page to hold the hugetlb lock. Change all callers to drop the lock before calling. With additional code modifications, this will allow loops which decrease the huge page pool to drop the hugetlb_lock with each page to reduce long hold times. The ugly unlock/lock cycle in free_pool_huge_page will be removed in a subsequent patch which restructures free_pool_huge_page. Link: https://lkml.kernel.org/r/20210409205254.242291-6-mike.kravetz@oracle.com Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Acked-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Muchun Song <songmuchun@bytedance.com> Reviewed-by: Miaohe Lin <linmiaohe@huawei.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.ibm.com> Cc: Barry Song <song.bao.hua@hisilicon.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Hillf Danton <hdanton@sina.com> Cc: HORIGUCHI NAOYA <naoya.horiguchi@nec.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mina Almasry <almasrymina@google.com> Cc: Peter Xu <peterx@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Roman Gushchin <guro@fb.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Waiman Long <longman@redhat.com> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-05-05hugetlb: create remove_hugetlb_page() to separate functionalityMike Kravetz
The new remove_hugetlb_page() routine is designed to remove a hugetlb page from hugetlbfs processing. It will remove the page from the active or free list, update global counters and set the compound page destructor to NULL so that PageHuge() will return false for the 'page'. After this call, the 'page' can be treated as a normal compound page or a collection of base size pages. update_and_free_page no longer decrements h->nr_huge_pages{_node} as this is performed in remove_hugetlb_page. The only functionality performed by update_and_free_page is to free the base pages to the lower level allocators. update_and_free_page is typically called after remove_hugetlb_page. remove_hugetlb_page is to be called with the hugetlb_lock held. Creating this routine and separating functionality is in preparation for restructuring code to reduce lock hold times. This commit should not introduce any changes to functionality. Link: https://lkml.kernel.org/r/20210409205254.242291-5-mike.kravetz@oracle.com Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Acked-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Miaohe Lin <linmiaohe@huawei.com> Reviewed-by: Muchun Song <songmuchun@bytedance.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.ibm.com> Cc: Barry Song <song.bao.hua@hisilicon.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Hillf Danton <hdanton@sina.com> Cc: HORIGUCHI NAOYA <naoya.horiguchi@nec.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mina Almasry <almasrymina@google.com> Cc: Peter Xu <peterx@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Roman Gushchin <guro@fb.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Waiman Long <longman@redhat.com> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-05-05hugetlb: add per-hstate mutex to synchronize user adjustmentsMike Kravetz
The helper routine hstate_next_node_to_alloc accesses and modifies the hstate variable next_nid_to_alloc. The helper is used by the routines alloc_pool_huge_page and adjust_pool_surplus. adjust_pool_surplus is called with hugetlb_lock held. However, alloc_pool_huge_page can not be called with the hugetlb lock held as it will call the page allocator. Two instances of alloc_pool_huge_page could be run in parallel or alloc_pool_huge_page could run in parallel with adjust_pool_surplus which may result in the variable next_nid_to_alloc becoming invalid for the caller and pages being allocated on the wrong node. Both alloc_pool_huge_page and adjust_pool_surplus are only called from the routine set_max_huge_pages after boot. set_max_huge_pages is only called as the reusult of a user writing to the proc/sysfs nr_hugepages, or nr_hugepages_mempolicy file to adjust the number of hugetlb pages. It makes little sense to allow multiple adjustment to the number of hugetlb pages in parallel. Add a mutex to the hstate and use it to only allow one hugetlb page adjustment at a time. This will synchronize modifications to the next_nid_to_alloc variable. Link: https://lkml.kernel.org/r/20210409205254.242291-4-mike.kravetz@oracle.com Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Acked-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Reviewed-by: Miaohe Lin <linmiaohe@huawei.com> Reviewed-by: Muchun Song <songmuchun@bytedance.com> Reviewed-by: David Hildenbrand <david@redhat.com> Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.ibm.com> Cc: Barry Song <song.bao.hua@hisilicon.com> Cc: David Rientjes <rientjes@google.com> Cc: Hillf Danton <hdanton@sina.com> Cc: HORIGUCHI NAOYA <naoya.horiguchi@nec.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mina Almasry <almasrymina@google.com> Cc: Peter Xu <peterx@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Roman Gushchin <guro@fb.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Waiman Long <longman@redhat.com> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-05-05hugetlb: no need to drop hugetlb_lock to call cma_releaseMike Kravetz
Now that cma_release is non-blocking and irq safe, there is no need to drop hugetlb_lock before calling. Link: https://lkml.kernel.org/r/20210409205254.242291-3-mike.kravetz@oracle.com Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Acked-by: Roman Gushchin <guro@fb.com> Acked-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Reviewed-by: David Hildenbrand <david@redhat.com> Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.ibm.com> Cc: Barry Song <song.bao.hua@hisilicon.com> Cc: David Rientjes <rientjes@google.com> Cc: Hillf Danton <hdanton@sina.com> Cc: HORIGUCHI NAOYA <naoya.horiguchi@nec.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Mina Almasry <almasrymina@google.com> Cc: Muchun Song <songmuchun@bytedance.com> Cc: Peter Xu <peterx@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Shakeel Butt <shakeelb@google.com> Cc: Waiman Long <longman@redhat.com> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-05-05mm/hugeltb: handle the error case in hugetlb_fix_reserve_counts()Miaohe Lin
A rare out of memory error would prevent removal of the reserve map region for a page. hugetlb_fix_reserve_counts() handles this rare case to avoid dangling with incorrect counts. Unfortunately, hugepage_subpool_get_pages and hugetlb_acct_memory could possibly fail too. We should correctly handle these cases. Link: https://lkml.kernel.org/r/20210410072348.20437-5-linmiaohe@huawei.com Fixes: b5cec28d36f5 ("hugetlbfs: truncate_hugepages() takes a range of pages") Signed-off-by: Miaohe Lin <linmiaohe@huawei.com> Cc: Feilong Lin <linfeilong@huawei.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-05-05mm/hugeltb: clarify (chg - freed) won't go negative in hugetlb_unreserve_pages()Miaohe Lin
The resv_map could be NULL since this routine can be called in the evict inode path for all hugetlbfs inodes and we will have chg = 0 in this case. But (chg - freed) won't go negative as Mike pointed out: "If resv_map is NULL, then no hugetlb pages can be allocated/associated with the file. As a result, remove_inode_hugepages will never find any huge pages associated with the inode and the passed value 'freed' will always be zero." Add a comment clarifying this to make it clear and also avoid confusion. Link: https://lkml.kernel.org/r/20210410072348.20437-4-linmiaohe@huawei.com Signed-off-by: Miaohe Lin <linmiaohe@huawei.com> Cc: Feilong Lin <linfeilong@huawei.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-05-05mm/hugeltb: simplify the return code of __vma_reservation_common()Miaohe Lin
It's guaranteed that the vma is associated with a resv_map, i.e. either VM_MAYSHARE or HPAGE_RESV_OWNER, when the code reaches here or we would have returned via !resv check above. So it's unneeded to check whether HPAGE_RESV_OWNER is set here. Simplify the return code to make it more clear. Link: https://lkml.kernel.org/r/20210410072348.20437-3-linmiaohe@huawei.com Signed-off-by: Miaohe Lin <linmiaohe@huawei.com> Cc: Feilong Lin <linfeilong@huawei.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-05-05mm/hugeltb: remove redundant VM_BUG_ON() in region_add()Miaohe Lin
Patch series "Cleanup and fixup for hugetlb", v2. This series contains cleanups to remove redundant VM_BUG_ON() and simplify the return code. Also this handles the error case in hugetlb_fix_reserve_counts() correctly. More details can be found in the respective changelogs. This patch (of 5): The same VM_BUG_ON() check is already done in the callee. Remove this extra one to simplify the code slightly. Link: https://lkml.kernel.org/r/20210410072348.20437-1-linmiaohe@huawei.com Link: https://lkml.kernel.org/r/20210410072348.20437-2-linmiaohe@huawei.com Signed-off-by: Miaohe Lin <linmiaohe@huawei.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Feilong Lin <linfeilong@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-05-05mm/hugetlb: simplify the code when alloc_huge_page() failed in hugetlb_no_page()Miaohe Lin
Rework the error handling code when alloc_huge_page() failed to remove some duplicated code and simplify the code slightly. Link: https://lkml.kernel.org/r/20210308112809.26107-5-linmiaohe@huawei.com Signed-off-by: Miaohe Lin <linmiaohe@huawei.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-05-05mm/hugetlb: optimize the surplus state transfer code in move_hugetlb_state()Miaohe Lin
We should not transfer the per-node surplus state when we do not cross the node in order to save some cpu cycles Link: https://lkml.kernel.org/r/20210308112809.26107-3-linmiaohe@huawei.com Signed-off-by: Miaohe Lin <linmiaohe@huawei.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-05-05mm/hugetlb: use some helper functions to cleanup codeMiaohe Lin
Patch series "Some cleanups for hugetlb". This series contains cleanups to remove unnecessary VM_BUG_ON_PAGE, use helper function and so on. I also collect some previous patches into this series in case they are forgotten. This patch (of 5): We could use pages_per_huge_page to get the number of pages per hugepage, use get_hstate_idx to calculate hstate index, and use hstate_is_gigantic to check if a hstate is gigantic to make code more succinct. Link: https://lkml.kernel.org/r/20210308112809.26107-1-linmiaohe@huawei.com Link: https://lkml.kernel.org/r/20210308112809.26107-2-linmiaohe@huawei.com Signed-off-by: Miaohe Lin <linmiaohe@huawei.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-05-05mm/hugetlb: remove redundant reservation check condition in alloc_huge_page()Miaohe Lin
vma_resv_map(vma) checks if a reserve map is associated with the vma. The routine vma_needs_reservation() will check vma_resv_map(vma) and return 1 if no reserv map is present. map_chg is set to the return value of vma_needs_reservation(). Therefore, !vma_resv_map(vma) is redundant in the expression: map_chg || avoid_reserve || !vma_resv_map(vma); Remove the redundant check. [Thanks Mike Kravetz for reshaping this commit message!] Link: https://lkml.kernel.org/r/20210301104726.45159-1-linmiaohe@huawei.com Signed-off-by: Miaohe Lin <linmiaohe@huawei.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-05-05hugetlb/userfaultfd: unshare all pmds for hugetlbfs when register wpPeter Xu
Huge pmd sharing for hugetlbfs is racy with userfaultfd-wp because userfaultfd-wp is always based on pgtable entries, so they cannot be shared. Walk the hugetlb range and unshare all such mappings if there is, right before UFFDIO_REGISTER will succeed and return to userspace. This will pair with want_pmd_share() in hugetlb code so that huge pmd sharing is completely disabled for userfaultfd-wp registered range. Link: https://lkml.kernel.org/r/20210218231206.15524-1-peterx@redhat.com Signed-off-by: Peter Xu <peterx@redhat.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Peter Xu <peterx@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Adam Ruprecht <ruprecht@google.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Cannon Matthews <cannonmatthews@google.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Chinwen Chang <chinwen.chang@mediatek.com> Cc: David Rientjes <rientjes@google.com> Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com> Cc: Huang Ying <ying.huang@intel.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jann Horn <jannh@google.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Lokesh Gidra <lokeshgidra@google.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: "Michal Koutn" <mkoutny@suse.com> Cc: Michel Lespinasse <walken@google.com> Cc: Mina Almasry <almasrymina@google.com> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Oliver Upton <oupton@google.com> Cc: Shaohua Li <shli@fb.com> Cc: Shawn Anastasio <shawn@anastas.io> Cc: Steven Price <steven.price@arm.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-05-05mm/hugetlb: move flush_hugetlb_tlb_range() into hugetlb.hPeter Xu
Prepare for it to be called outside of mm/hugetlb.c. Link: https://lkml.kernel.org/r/20210218231204.15474-1-peterx@redhat.com Signed-off-by: Peter Xu <peterx@redhat.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Reviewed-by: Axel Rasmussen <axelrasmussen@google.com> Cc: Adam Ruprecht <ruprecht@google.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Cannon Matthews <cannonmatthews@google.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Chinwen Chang <chinwen.chang@mediatek.com> Cc: David Rientjes <rientjes@google.com> Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com> Cc: Huang Ying <ying.huang@intel.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jann Horn <jannh@google.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Lokesh Gidra <lokeshgidra@google.com> Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: "Michal Koutn" <mkoutny@suse.com> Cc: Michel Lespinasse <walken@google.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Mina Almasry <almasrymina@google.com> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Oliver Upton <oupton@google.com> Cc: Shaohua Li <shli@fb.com> Cc: Shawn Anastasio <shawn@anastas.io> Cc: Steven Price <steven.price@arm.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-05-05hugetlb/userfaultfd: forbid huge pmd sharing when uffd enabledPeter Xu
Huge pmd sharing could bring problem to userfaultfd. The thing is that userfaultfd is running its logic based on the special bits on page table entries, however the huge pmd sharing could potentially share page table entries for different address ranges. That could cause issues on either: - When sharing huge pmd page tables for an uffd write protected range, the newly mapped huge pmd range will also be write protected unexpectedly, or, - When we try to write protect a range of huge pmd shared range, we'll first do huge_pmd_unshare() in hugetlb_change_protection(), however that also means the UFFDIO_WRITEPROTECT could be silently skipped for the shared region, which could lead to data loss. While at it, a few other things are done altogether: - Move want_pmd_share() from mm/hugetlb.c into linux/hugetlb.h, because that's definitely something that arch code would like to use too - ARM64 currently directly check against CONFIG_ARCH_WANT_HUGE_PMD_SHARE when trying to share huge pmd. Switch to the want_pmd_share() helper. - Move vma_shareable() from huge_pmd_share() into want_pmd_share(). [peterx@redhat.com: fix build with !ARCH_WANT_HUGE_PMD_SHARE] Link: https://lkml.kernel.org/r/20210310185359.88297-1-peterx@redhat.com Link: https://lkml.kernel.org/r/20210218231202.15426-1-peterx@redhat.com Signed-off-by: Peter Xu <peterx@redhat.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Reviewed-by: Axel Rasmussen <axelrasmussen@google.com> Tested-by: Naresh Kamboju <naresh.kamboju@linaro.org> Cc: Adam Ruprecht <ruprecht@google.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Cannon Matthews <cannonmatthews@google.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Chinwen Chang <chinwen.chang@mediatek.com> Cc: David Rientjes <rientjes@google.com> Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com> Cc: Huang Ying <ying.huang@intel.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jann Horn <jannh@google.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Lokesh Gidra <lokeshgidra@google.com> Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: "Michal Koutn" <mkoutny@suse.com> Cc: Michel Lespinasse <walken@google.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Mina Almasry <almasrymina@google.com> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Oliver Upton <oupton@google.com> Cc: Shaohua Li <shli@fb.com> Cc: Shawn Anastasio <shawn@anastas.io> Cc: Steven Price <steven.price@arm.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-05-05hugetlb: pass vma into huge_pte_alloc() and huge_pmd_share()Peter Xu
Patch series "hugetlb: Disable huge pmd unshare for uffd-wp", v4. This series tries to disable huge pmd unshare of hugetlbfs backed memory for uffd-wp. Although uffd-wp of hugetlbfs is still during rfc stage, the idea of this series may be needed for multiple tasks (Axel's uffd minor fault series, and Mike's soft dirty series), so I picked it out from the larger series. This patch (of 4): It is a preparation work to be able to behave differently in the per architecture huge_pte_alloc() according to different VMA attributes. Pass it deeper into huge_pmd_share() so that we can avoid the find_vma() call. [peterx@redhat.com: build fix] Link: https://lkml.kernel.org/r/20210304164653.GB397383@xz-x1Link: https://lkml.kernel.org/r/20210218230633.15028-1-peterx@redhat.com Link: https://lkml.kernel.org/r/20210218230633.15028-2-peterx@redhat.com Signed-off-by: Peter Xu <peterx@redhat.com> Suggested-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Adam Ruprecht <ruprecht@google.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Cannon Matthews <cannonmatthews@google.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Chinwen Chang <chinwen.chang@mediatek.com> Cc: David Rientjes <rientjes@google.com> Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com> Cc: Huang Ying <ying.huang@intel.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jann Horn <jannh@google.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Lokesh Gidra <lokeshgidra@google.com> Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: "Michal Koutn" <mkoutny@suse.com> Cc: Michel Lespinasse <walken@google.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Mina Almasry <almasrymina@google.com> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Oliver Upton <oupton@google.com> Cc: Shaohua Li <shli@fb.com> Cc: Shawn Anastasio <shawn@anastas.io> Cc: Steven Price <steven.price@arm.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-04-30mm/page_alloc: combine __alloc_pages and __alloc_pages_nodemaskMatthew Wilcox (Oracle)
There are only two callers of __alloc_pages() so prune the thicket of alloc_page variants by combining the two functions together. Current callers of __alloc_pages() simply add an extra 'NULL' parameter and current callers of __alloc_pages_nodemask() call __alloc_pages() instead. Link: https://lkml.kernel.org/r/20210225150642.2582252-4-willy@infradead.org Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Mike Rapoport <rppt@linux.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-03-25hugetlb_cgroup: fix imbalanced css_get and css_put pair for shared mappingsMiaohe Lin
The current implementation of hugetlb_cgroup for shared mappings could have different behavior. Consider the following two scenarios: 1.Assume initial css reference count of hugetlb_cgroup is 1: 1.1 Call hugetlb_reserve_pages with from = 1, to = 2. So css reference count is 2 associated with 1 file_region. 1.2 Call hugetlb_reserve_pages with from = 2, to = 3. So css reference count is 3 associated with 2 file_region. 1.3 coalesce_file_region will coalesce these two file_regions into one. So css reference count is 3 associated with 1 file_region now. 2.Assume initial css reference count of hugetlb_cgroup is 1 again: 2.1 Call hugetlb_reserve_pages with from = 1, to = 3. So css reference count is 2 associated with 1 file_region. Therefore, we might have one file_region while holding one or more css reference counts. This inconsistency could lead to imbalanced css_get() and css_put() pair. If we do css_put one by one (i.g. hole punch case), scenario 2 would put one more css reference. If we do css_put all together (i.g. truncate case), scenario 1 will leak one css reference. The imbalanced css_get() and css_put() pair would result in a non-zero reference when we try to destroy the hugetlb cgroup. The hugetlb cgroup directory is removed __but__ associated resource is not freed. This might result in OOM or can not create a new hugetlb cgroup in a busy workload ultimately. In order to fix this, we have to make sure that one file_region must hold exactly one css reference. So in coalesce_file_region case, we should release one css reference before coalescence. Also only put css reference when the entire file_region is removed. The last thing to note is that the caller of region_add() will only hold one reference to h_cg->css for the whole contiguous reservation region. But this area might be scattered when there are already some file_regions reside in it. As a result, many file_regions may share only one h_cg->css reference. In order to ensure that one file_region must hold exactly one css reference, we should do css_get() for each file_region and release the reference held by caller when they are done. [linmiaohe@huawei.com: fix imbalanced css_get and css_put pair for shared mappings] Link: https://lkml.kernel.org/r/20210316023002.53921-1-linmiaohe@huawei.com Link: https://lkml.kernel.org/r/20210301120540.37076-1-linmiaohe@huawei.com Fixes: 075a61d07a8e ("hugetlb_cgroup: add accounting for shared mappings") Reported-by: kernel test robot <lkp@intel.com> (auto build test ERROR) Signed-off-by: Miaohe Lin <linmiaohe@huawei.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Cc: Wanpeng Li <liwp.linux@gmail.com> Cc: Mina Almasry <almasrymina@google.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-03-13hugetlb: do early cow when page pinned on src mmPeter Xu
This is the last missing piece of the COW-during-fork effort when there're pinned pages found. One can reference 70e806e4e645 ("mm: Do early cow for pinned pages during fork() for ptes", 2020-09-27) for more information, since we do similar things here rather than pte this time, but just for hugetlb. Note that after Jason's recent work on 57efa1fe5957 ("mm/gup: prevent gup_fast from racing with COW during fork", 2020-12-15) which is safer and easier to understand, we're safe now within the whole copy_page_range() against gup-fast, we don't need the wr-protect trick that proposed in 70e806e4e645 anymore. Link: https://lkml.kernel.org/r/20210217233547.93892-6-peterx@redhat.com Signed-off-by: Peter Xu <peterx@redhat.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Reviewed-by: Jason Gunthorpe <jgg@ziepe.ca> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Daniel Vetter <daniel@ffwll.ch> Cc: David Airlie <airlied@linux.ie> Cc: David Gibson <david@gibson.dropbear.id.au> Cc: Gal Pressman <galpress@amazon.com> Cc: Jan Kara <jack@suse.cz> Cc: Jann Horn <jannh@google.com> Cc: Kirill Shutemov <kirill@shutemov.name> Cc: Kirill Tkhai <ktkhai@virtuozzo.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Roland Scheidegger <sroland@vmware.com> Cc: VMware Graphics <linux-graphics-maintainer@vmware.com> Cc: Wei Zhang <wzam@amazon.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-03-13mm: use is_cow_mapping() across tree where properPeter Xu
After is_cow_mapping() is exported in mm.h, replace some manual checks elsewhere throughout the tree but start to use the new helper. Link: https://lkml.kernel.org/r/20210217233547.93892-5-peterx@redhat.com Signed-off-by: Peter Xu <peterx@redhat.com> Reviewed-by: Jason Gunthorpe <jgg@ziepe.ca> Cc: VMware Graphics <linux-graphics-maintainer@vmware.com> Cc: Roland Scheidegger <sroland@vmware.com> Cc: David Airlie <airlied@linux.ie> Cc: Daniel Vetter <daniel@ffwll.ch> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Christoph Hellwig <hch@lst.de> Cc: David Gibson <david@gibson.dropbear.id.au> Cc: Gal Pressman <galpress@amazon.com> Cc: Jan Kara <jack@suse.cz> Cc: Jann Horn <jannh@google.com> Cc: Kirill Shutemov <kirill@shutemov.name> Cc: Kirill Tkhai <ktkhai@virtuozzo.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Wei Zhang <wzam@amazon.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-03-13hugetlb: break earlier in add_reservation_in_range() when we canPeter Xu
All the regions maintained in hugetlb reserved map is inclusive on "from" but exclusive on "to". We can break earlier even if rg->from==t because it already means no possible intersection. This does not need a Fixes in all cases because when it happens (rg->from==t) we'll not break out of the loop while we should, however the next thing we'd do is still add the last file_region we'd need and quit the loop in the next round. So this change is not a bugfix (since the old code should still run okay iiuc), but we'd better still touch it up to make it logically sane. Link: https://lkml.kernel.org/r/20210217233547.93892-3-peterx@redhat.com Signed-off-by: Peter Xu <peterx@redhat.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Reviewed-by: Miaohe Lin <linmiaohe@huawei.com> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Daniel Vetter <daniel@ffwll.ch> Cc: David Airlie <airlied@linux.ie> Cc: David Gibson <david@gibson.dropbear.id.au> Cc: Gal Pressman <galpress@amazon.com> Cc: Jan Kara <jack@suse.cz> Cc: Jann Horn <jannh@google.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Kirill Shutemov <kirill@shutemov.name> Cc: Kirill Tkhai <ktkhai@virtuozzo.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Roland Scheidegger <sroland@vmware.com> Cc: VMware Graphics <linux-graphics-maintainer@vmware.com> Cc: Wei Zhang <wzam@amazon.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>