Age | Commit message (Collapse) | Author |
|
Currently hugepage migration is available only for soft offlining, but
it's also useful for some other users of page migration (clearly because
users of hugepage can enjoy the benefit of mempolicy and memory hotplug.)
So this patchset tries to extend such users to support hugepage migration.
The target of this patchset is to enable hugepage migration for NUMA
related system calls (migrate_pages(2), move_pages(2), and mbind(2)), and
memory hotplug.
This patchset does not add hugepage migration for memory compaction,
because users of memory compaction mainly expect to construct thp by
arranging raw pages, and there's little or no need to compact hugepages.
CMA, another user of page migration, can have benefit from hugepage
migration, but is not enabled to support it for now (just because of lack
of testing and expertise in CMA.)
Hugepage migration of non pmd-based hugepage (for example 1GB hugepage in
x86_64, or hugepages in architectures like ia64) is not enabled for now
(again, because of lack of testing.)
As for how these are achived, I extended the API (migrate_pages()) to
handle hugepage (with patch 1 and 2) and adjusted code of each caller to
check and collect movable hugepages (with patch 3-7). Remaining 2 patches
are kind of miscellaneous ones to avoid unexpected behavior. Patch 8 is
about making sure that we only migrate pmd-based hugepages. And patch 9
is about choosing appropriate zone for hugepage allocation.
My test is mainly functional one, simply kicking hugepage migration via
each entry point and confirm that migration is done correctly. Test code
is available here:
git://github.com/Naoya-Horiguchi/test_hugepage_migration_extension.git
And I always run libhugetlbfs test when changing hugetlbfs's code. With
this patchset, no regression was found in the test.
This patch (of 9):
Before enabling each user of page migration to support hugepage,
this patch enables the list of pages for migration to link not only
LRU pages, but also hugepages. As a result, putback_movable_pages()
and migrate_pages() can handle both of LRU pages and hugepages.
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Andi Kleen <ak@linux.intel.com>
Reviewed-by: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Acked-by: Hillf Danton <dhillf@gmail.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Rik van Riel <riel@redhat.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
If we fail with a reserved page, just calling put_page() is not
sufficient, because put_page() invoke free_huge_page() at last step and it
doesn't know whether a page comes from a reserved pool or not. So it
doesn't do anything related to reserved count. This makes reserve count
lower than how we need, because reserve count already decrease in
dequeue_huge_page_vma(). This patch fix this situation.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Davidlohr Bueso <davidlohr@hp.com>
Cc: David Gibson <david@gibson.dropbear.id.au>
Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Cc: Hillf Danton <dhillf@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
We don't need to grab a page_table_lock when we try to release a page.
So, defer to grab a page_table_lock.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com>
Reviewed-by: Davidlohr Bueso <davidlohr@hp.com>
Cc: David Gibson <david@gibson.dropbear.id.au>
Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Cc: Hillf Danton <dhillf@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
is_vma_resv_set(vma, HPAGE_RESV_OWNER) implys that this mapping is for
private. So we don't need to check whether this mapping is for shared or
not.
This patch is just for clean-up.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Reviewed-by: Davidlohr Bueso <davidlohr@hp.com>
Cc: David Gibson <david@gibson.dropbear.id.au>
Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Cc: Hillf Danton <dhillf@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
If we alloc hugepage with avoid_reserve, we don't dequeue reserved one.
So, we should check subpool counter when avoid_reserve. This patch
implement it.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Davidlohr Bueso <davidlohr@hp.com>
Cc: David Gibson <david@gibson.dropbear.id.au>
Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Cc: Hillf Danton <dhillf@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
'reservations' is so long name as a variable and we use 'resv_map' to
represent 'struct resv_map' in other place. To reduce confusion and
unreadability, change it.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Reviewed-by: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Reviewed-by: Davidlohr Bueso <davidlohr@hp.com>
Cc: David Gibson <david@gibson.dropbear.id.au>
Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Cc: Hillf Danton <dhillf@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Don't use the reserve pool when soft offlining a hugepage. Check we have
free pages outside the reserve pool before we dequeue the huge page.
Otherwise, we can steal other's reserve page.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Reviewed-by: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Reviewed-by: Davidlohr Bueso <davidlohr@hp.com>
Cc: David Gibson <david@gibson.dropbear.id.au>
Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Cc: Hillf Danton <dhillf@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
If a vma with VM_NORESERVE allocate a new page for page cache, we should
check whether this area is reserved or not. If this address is already
reserved by other process(in case of chg == 0), we should decrement
reserve count, because this allocated page will go into page cache and
currently, there is no way to know that this page comes from reserved pool
or not when releasing inode. This may introduce over-counting problem to
reserved count. With following example code, you can easily reproduce
this situation.
Assume 2MB, nr_hugepages = 100
size = 20 * MB;
flag = MAP_SHARED;
p = mmap(NULL, size, PROT_READ|PROT_WRITE, flag, fd, 0);
if (p == MAP_FAILED) {
fprintf(stderr, "mmap() failed: %s\n", strerror(errno));
return -1;
}
flag = MAP_SHARED | MAP_NORESERVE;
q = mmap(NULL, size, PROT_READ|PROT_WRITE, flag, fd, 0);
if (q == MAP_FAILED) {
fprintf(stderr, "mmap() failed: %s\n", strerror(errno));
}
q[0] = 'c';
After finish the program, run 'cat /proc/meminfo'. You can see below
result.
HugePages_Free: 100
HugePages_Rsvd: 1
To fix this, we should check our mapping type and tracked region. If our
mapping is VM_NORESERVE, VM_MAYSHARE and chg is 0, this imply that current
allocated page will go into page cache which is already reserved region
when mapping is created. In this case, we should decrease reserve count.
As implementing above, this patch solve the problem.
[akpm@linux-foundation.org: fix spelling in comment]
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Reviewed-by: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Hillf Danton <dhillf@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Davidlohr Bueso <davidlohr.bueso@hp.com>
Cc: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Now, Checking condition of decrement_hugepage_resv_vma() and
vma_has_reserves() is same, so we can clean-up this function with
vma_has_reserves(). Additionally, decrement_hugepage_resv_vma() has only
one call site, so we can remove function and embed it into
dequeue_huge_page_vma() directly. This patch implement it.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Reviewed-by: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Hillf Danton <dhillf@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Davidlohr Bueso <davidlohr.bueso@hp.com>
Cc: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
If we map the region with MAP_NORESERVE and MAP_SHARED, we can skip to
check reserve counting and eventually we cannot be ensured to allocate a
huge page in fault time. With following example code, you can easily find
this situation.
Assume 2MB, nr_hugepages = 100
fd = hugetlbfs_unlinked_fd();
if (fd < 0)
return 1;
size = 200 * MB;
flag = MAP_SHARED;
p = mmap(NULL, size, PROT_READ|PROT_WRITE, flag, fd, 0);
if (p == MAP_FAILED) {
fprintf(stderr, "mmap() failed: %s\n", strerror(errno));
return -1;
}
size = 2 * MB;
flag = MAP_ANONYMOUS | MAP_SHARED | MAP_HUGETLB | MAP_NORESERVE;
p = mmap(NULL, size, PROT_READ|PROT_WRITE, flag, -1, 0);
if (p == MAP_FAILED) {
fprintf(stderr, "mmap() failed: %s\n", strerror(errno));
}
p[0] = '0';
sleep(10);
During executing sleep(10), run 'cat /proc/meminfo' on another process.
HugePages_Free: 99
HugePages_Rsvd: 100
Number of free should be higher or equal than number of reserve, but this
aren't. This represent that non reserved shared mapping steal a reserved
page. Non reserved shared mapping should not eat into reserve space.
If we consider VM_NORESERVE in vma_has_reserve() and return 0 which mean
that we don't have reserved pages, then we check that we have enough free
pages in dequeue_huge_page_vma(). This prevent to steal a reserved page.
With this change, above test generate a SIGBUG which is correct, because
all free pages are reserved and non reserved shared mapping can't get a
free page.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Reviewed-by: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Hillf Danton <dhillf@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Davidlohr Bueso <davidlohr.bueso@hp.com>
Cc: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Currently, we use a page with mapped count 1 in page cache for cow
optimization. If we find this condition, we don't allocate a new page and
copy contents. Instead, we map this page directly. This may introduce a
problem that writting to private mapping overwrite hugetlb file directly.
You can find this situation with following code.
size = 20 * MB;
flag = MAP_SHARED;
p = mmap(NULL, size, PROT_READ|PROT_WRITE, flag, fd, 0);
if (p == MAP_FAILED) {
fprintf(stderr, "mmap() failed: %s\n", strerror(errno));
return -1;
}
p[0] = 's';
fprintf(stdout, "BEFORE STEAL PRIVATE WRITE: %c\n", p[0]);
munmap(p, size);
flag = MAP_PRIVATE;
p = mmap(NULL, size, PROT_READ|PROT_WRITE, flag, fd, 0);
if (p == MAP_FAILED) {
fprintf(stderr, "mmap() failed: %s\n", strerror(errno));
}
p[0] = 'c';
munmap(p, size);
flag = MAP_SHARED;
p = mmap(NULL, size, PROT_READ|PROT_WRITE, flag, fd, 0);
if (p == MAP_FAILED) {
fprintf(stderr, "mmap() failed: %s\n", strerror(errno));
return -1;
}
fprintf(stdout, "AFTER STEAL PRIVATE WRITE: %c\n", p[0]);
munmap(p, size);
We can see that "AFTER STEAL PRIVATE WRITE: c", not "AFTER STEAL PRIVATE
WRITE: s". If we turn off this optimization to a page in page cache, the
problem is disappeared.
So, I change the trigger condition of optimization. If this page is not
AnonPage, we don't do optimization. This makes this optimization turning
off for a page cache.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Hillf Danton <dhillf@gmail.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Davidlohr Bueso <davidlohr.bueso@hp.com>
Cc: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
If list is empty, list_for_each_entry_safe() doesn't do anything. So,
this check is redundant. Remove it.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Hillf Danton <dhillf@gmail.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Davidlohr Bueso <davidlohr.bueso@hp.com>
Cc: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Current node iteration code have a minor problem which do one more node
rotation if we can't succeed to allocate. For example, if we start to
allocate at node 0, we stop to iterate at node 0. Then we start to
allocate at node 1 for next allocation.
I introduce new macros "for_each_node_mask_to_[alloc|free]" and fix and
clean-up node iteration code to alloc or free. This makes code more
understandable.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Hillf Danton <dhillf@gmail.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Davidlohr Bueso <davidlohr.bueso@hp.com>
Cc: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Unify successful allocation paths to make the code more readable. There
are no functional changes.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Hillf Danton <dhillf@gmail.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Davidlohr Bueso <davidlohr.bueso@hp.com>
Cc: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The name of the mutex written in comment is wrong. Fix it.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Hillf Danton <dhillf@gmail.com>
Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Davidlohr Bueso <davidlohr.bueso@hp.com>
Cc: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
In this time we are holding a hugetlb_lock, so hstate values can't be
changed. If we don't have any usable free huge page in this time, we
don't need to proceed with the processing. So move this code up.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Hillf Danton <dhillf@gmail.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Davidlohr Bueso <davidlohr.bueso@hp.com>
Cc: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The use of strict_strtoul() is not preferred, because strict_strtoul() is
obsolete. Thus, kstrtoul() should be used.
Signed-off-by: Jingoo Han <jg1.han@samsung.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Ben Tebulin reported:
"Since v3.7.2 on two independent machines a very specific Git
repository fails in 9/10 cases on git-fsck due to an SHA1/memory
failures. This only occurs on a very specific repository and can be
reproduced stably on two independent laptops. Git mailing list ran
out of ideas and for me this looks like some very exotic kernel issue"
and bisected the failure to the backport of commit 53a59fc67f97 ("mm:
limit mmu_gather batching to fix soft lockups on !CONFIG_PREEMPT").
That commit itself is not actually buggy, but what it does is to make it
much more likely to hit the partial TLB invalidation case, since it
introduces a new case in tlb_next_batch() that previously only ever
happened when running out of memory.
The real bug is that the TLB gather virtual memory range setup is subtly
buggered. It was introduced in commit 597e1c3580b7 ("mm/mmu_gather:
enable tlb flush range in generic mmu_gather"), and the range handling
was already fixed at least once in commit e6c495a96ce0 ("mm: fix the TLB
range flushed when __tlb_remove_page() runs out of slots"), but that fix
was not complete.
The problem with the TLB gather virtual address range is that it isn't
set up by the initial tlb_gather_mmu() initialization (which didn't get
the TLB range information), but it is set up ad-hoc later by the
functions that actually flush the TLB. And so any such case that forgot
to update the TLB range entries would potentially miss TLB invalidates.
Rather than try to figure out exactly which particular ad-hoc range
setup was missing (I personally suspect it's the hugetlb case in
zap_huge_pmd(), which didn't have the same logic as zap_pte_range()
did), this patch just gets rid of the problem at the source: make the
TLB range information available to tlb_gather_mmu(), and initialize it
when initializing all the other tlb gather fields.
This makes the patch larger, but conceptually much simpler. And the end
result is much more understandable; even if you want to play games with
partial ranges when invalidating the TLB contents in chunks, now the
range information is always there, and anybody who doesn't want to
bother with it won't introduce subtle bugs.
Ben verified that this fixes his problem.
Reported-bisected-and-tested-by: Ben Tebulin <tebulin@googlemail.com>
Build-testing-by: Stephen Rothwell <sfr@canb.auug.org.au>
Build-testing-by: Richard Weinberger <richard.weinberger@gmail.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: stable@vger.kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Enhance adjust_managed_page_count() to adjust totalhigh_pages for
highmem pages. And change code which directly adjusts totalram_pages to
use adjust_managed_page_count() because it adjusts totalram_pages,
totalhigh_pages and zone->managed_pages altogether in a safe way.
Remove inc_totalhigh_pages() and dec_totalhigh_pages() from xen/balloon
driver bacause adjust_managed_page_count() has already adjusted
totalhigh_pages.
This patch also fixes two bugs:
1) enhances virtio_balloon driver to adjust totalhigh_pages when
reserve/unreserve pages.
2) enhance memory_hotplug.c to adjust totalhigh_pages when hot-removing
memory.
We still need to deal with modifications of totalram_pages in file
arch/powerpc/platforms/pseries/cmm.c, but need help from PPC experts.
[akpm@linux-foundation.org: remove ifdef, per Wanpeng Li, virtio_balloon.c cleanup, per Sergei]
[akpm@linux-foundation.org: export adjust_managed_page_count() to modules, for drivers/virtio/virtio_balloon.c]
Signed-off-by: Jiang Liu <jiang.liu@huawei.com>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: "Michael S. Tsirkin" <mst@redhat.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Jeremy Fitzhardinge <jeremy@goop.org>
Cc: Wen Congyang <wency@cn.fujitsu.com>
Cc: Tang Chen <tangchen@cn.fujitsu.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Minchan Kim <minchan@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: <sworddragon2@aol.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jianguo Wu <wujianguo@huawei.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Russell King <rmk@arm.linux.org.uk>
Cc: Sergei Shtylyov <sergei.shtylyov@cogentembedded.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Use the already existing interface huge_page_shift instead of h->order +
PAGE_SHIFT.
Signed-off-by: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/cmarinas/linux-aarch64
Pull ARM64 updates from Catalin Marinas:
"Main features:
- KVM and Xen ports to AArch64
- Hugetlbfs and transparent huge pages support for arm64
- Applied Micro X-Gene Kconfig entry and dts file
- Cache flushing improvements
For arm64 huge pages support, there are x86 changes moving part of
arch/x86/mm/hugetlbpage.c into mm/hugetlb.c to be re-used by arm64"
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/cmarinas/linux-aarch64: (66 commits)
arm64: Add initial DTS for APM X-Gene Storm SOC and APM Mustang board
arm64: Add defines for APM ARMv8 implementation
arm64: Enable APM X-Gene SOC family in the defconfig
arm64: Add Kconfig option for APM X-Gene SOC family
arm64/Makefile: provide vdso_install target
ARM64: mm: THP support.
ARM64: mm: Raise MAX_ORDER for 64KB pages and THP.
ARM64: mm: HugeTLB support.
ARM64: mm: Move PTE_PROT_NONE bit.
ARM64: mm: Make PAGE_NONE pages read only and no-execute.
ARM64: mm: Restore memblock limit when map_mem finished.
mm: thp: Correct the HPAGE_PMD_ORDER check.
x86: mm: Remove general hugetlb code from x86.
mm: hugetlb: Copy general hugetlb code from x86 to mm.
x86: mm: Remove x86 version of huge_pmd_share.
mm: hugetlb: Copy huge_pmd_share from x86 to mm.
arm64: KVM: document kernel object mappings in HYP
arm64: KVM: MAINTAINERS update
arm64: KVM: userspace API documentation
arm64: KVM: enable initialization of a 32bit vcpu
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull locking changes from Ingo Molnar:
"Four miscellanous standalone fixes for futexes, rtmutexes and
Kconfig.locks."
* 'core-locking-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
futex: Use freezable blocking call
futex: Take hugepages into account when generating futex_key
rtmutex: Document rt_mutex_adjust_prio_chain()
locking: Fix copy/paste errors of "ARCH_INLINE_*_UNLOCK_BH"
|
|
The futex_keys of process shared futexes are generated from the page
offset, the mapping host and the mapping index of the futex user space
address. This should result in an unique identifier for each futex.
Though this is not true when futexes are located in different subpages
of an hugepage. The reason is, that the mapping index for all those
futexes evaluates to the index of the base page of the hugetlbfs
mapping. So a futex at offset 0 of the hugepage mapping and another
one at offset PAGE_SIZE of the same hugepage mapping have identical
futex_keys. This happens because the futex code blindly uses
page->index.
Steps to reproduce the bug:
1. Map a file from hugetlbfs. Initialize pthread_mutex1 at offset 0
and pthread_mutex2 at offset PAGE_SIZE of the hugetlbfs
mapping.
The mutexes must be initialized as PTHREAD_PROCESS_SHARED because
PTHREAD_PROCESS_PRIVATE mutexes are not affected by this issue as
their keys solely depend on the user space address.
2. Lock mutex1 and mutex2
3. Create thread1 and in the thread function lock mutex1, which
results in thread1 blocking on the locked mutex1.
4. Create thread2 and in the thread function lock mutex2, which
results in thread2 blocking on the locked mutex2.
5. Unlock mutex2. Despite the fact that mutex2 got unlocked, thread2
still blocks on mutex2 because the futex_key points to mutex1.
To solve this issue we need to take the normal page index of the page
which contains the futex into account, if the futex is in an hugetlbfs
mapping. In other words, we calculate the normal page mapping index of
the subpage in the hugetlbfs mapping.
Mappings which are not based on hugetlbfs are not affected and still
use page->index.
Thanks to Mel Gorman who provided a patch for adding proper evaluation
functions to the hugetlbfs code to avoid exposing hugetlbfs specific
details to the futex code.
[ tglx: Massaged changelog ]
Signed-off-by: Zhang Yi <zhang.yi20@zte.com.cn>
Reviewed-by: Jiang Biao <jiang.biao2@zte.com.cn>
Tested-by: Ma Chenggong <ma.chenggong@zte.com.cn>
Reviewed-by: 'Mel Gorman' <mgorman@suse.de>
Acked-by: 'Darren Hart' <dvhart@linux.intel.com>
Cc: 'Peter Zijlstra' <peterz@infradead.org>
Cc: stable@vger.kernel.org
Link: http://lkml.kernel.org/r/000101ce71a6%24a83c5880%24f8b50980%24@com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
|
|
The huge_pte_alloc, huge_pte_offset and follow_huge_p[mu]d
functions in x86/mm/hugetlbpage.c do not rely on any architecture
specific knowledge other than the fact that pmds and puds can be
treated as huge ptes.
To allow other architectures to use this code (and reduce the need
for code duplication), this patch copies these functions into mm,
replaces the use of pud_large with pud_huge and provides a config
flag to activate them:
CONFIG_ARCH_WANT_GENERAL_HUGETLB
If CONFIG_ARCH_WANT_HUGE_PMD_SHARE is also active then the
huge_pmd_share code will be called by huge_pte_alloc (othewise we
call pmd_alloc and skip the sharing code).
Signed-off-by: Steve Capper <steve.capper@linaro.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Under x86, multiple puds can be made to reference the same bank of
huge pmds provided that they represent a full PUD_SIZE of shared
huge memory that is aligned to a PUD_SIZE boundary.
The code to share pmds does not require any architecture specific
knowledge other than the fact that pmds can be indexed, thus can
be beneficial to some other architectures.
This patch copies the huge pmd sharing (and unsharing) logic from
x86/ to mm/ and introduces a new config option to activate it:
CONFIG_ARCH_WANTS_HUGE_PMD_SHARE
Signed-off-by: Steve Capper <steve.capper@linaro.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Andrew Morton <akpm@linux-foundation.org>
|
|
When we have a page fault for the address which is backed by a hugepage
under migration, the kernel can't wait correctly and do busy looping on
hugepage fault until the migration finishes. As a result, users who try
to kick hugepage migration (via soft offlining, for example) occasionally
experience long delay or soft lockup.
This is because pte_offset_map_lock() can't get a correct migration entry
or a correct page table lock for hugepage. This patch introduces
migration_entry_wait_huge() to solve this.
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Reviewed-by: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: <stable@vger.kernel.org> [2.6.35+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial
Pull trivial tree updates from Jiri Kosina:
"Usual stuff, mostly comment fixes, typo fixes, printk fixes and small
code cleanups"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial: (45 commits)
mm: Convert print_symbol to %pSR
gfs2: Convert print_symbol to %pSR
m32r: Convert print_symbol to %pSR
iostats.txt: add easy-to-find description for field 6
x86 cmpxchg.h: fix wrong comment
treewide: Fix typo in printk and comments
doc: devicetree: Fix various typos
docbook: fix 8250 naming in device-drivers
pata_pdc2027x: Fix compiler warning
treewide: Fix typo in printks
mei: Fix comments in drivers/misc/mei
treewide: Fix typos in kernel messages
pm44xx: Fix comment for "CONFIG_CPU_IDLE"
doc: Fix typo "CONFIG_CGROUP_CGROUP_MEMCG_SWAP"
mmzone: correct "pags" to "pages" in comment.
kernel-parameters: remove outdated 'noresidual' parameter
Remove spurious _H suffixes from ifdef comments
sound: Remove stray pluses from Kconfig file
radio-shark: Fix printk "CONFIG_LED_CLASS"
doc: put proper reference to CONFIG_MODULE_SIG_ENFORCE
...
|
|
Particularly in oom conditions, it's troublesome that hugetlb memory is
not displayed. All other meminfo that is emitted will not add up to
what is expected, and there is no artifact left in the kernel log to
show that a potentially significant amount of memory is actually
allocated as hugepages which are not available to be reclaimed.
Booting with hugepages=8192 on the command line, this memory is now
shown in oom conditions. For example, with echo m >
/proc/sysrq-trigger:
Node 0 hugepages_total=2048 hugepages_free=2048 hugepages_surp=0 hugepages_size=2048kB
Node 1 hugepages_total=2048 hugepages_free=2048 hugepages_surp=0 hugepages_size=2048kB
Node 2 hugepages_total=2048 hugepages_free=2048 hugepages_surp=0 hugepages_size=2048kB
Node 3 hugepages_total=2048 hugepages_free=2048 hugepages_surp=0 hugepages_size=2048kB
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: David Rientjes <rientjes@google.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Commit abf09bed3cce ("s390/mm: implement software dirty bits")
introduced another difference in the pte layout vs. the pmd layout on
s390, thoroughly breaking the s390 support for hugetlbfs. This requires
replacing some more pte_xxx functions in mm/hugetlbfs.c with a
huge_pte_xxx version.
This patch introduces those huge_pte_xxx functions and their generic
implementation in asm-generic/hugetlb.h, which will now be included on
all architectures supporting hugetlbfs apart from s390. This change
will be a no-op for those architectures.
[akpm@linux-foundation.org: fix warning]
Signed-off-by: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: Hillf Danton <dhillf@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.cz> [for !s390 parts]
Cc: Tony Luck <tony.luck@intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
With applying the previous patch "hugetlbfs: stop setting VM_DONTDUMP in
initializing vma(VM_HUGETLB)" to reenable hugepage coredump, if a memory
error happens on a hugepage and the affected processes try to access the
error hugepage, we hit VM_BUG_ON(atomic_read(&page->_count) <= 0) in
get_page().
The reason for this bug is that coredump-related code doesn't recognise
"hugepage hwpoison entry" with which a pmd entry is replaced when a memory
error occurs on a hugepage.
In other words, physical address information is stored in different bit
layout between hugepage hwpoison entry and pmd entry, so
follow_hugetlb_page() which is called in get_dump_page() returns a wrong
page from a given address.
The expected behavior is like this:
absent is_swap_pte FOLL_DUMP Expected behavior
-------------------------------------------------------------------
true false false hugetlb_fault
false true false hugetlb_fault
false false false return page
true false true skip page (to avoid allocation)
false true true hugetlb_fault
false false true return page
With this patch, we can call hugetlb_fault() and take proper actions (we
wait for migration entries, fail with VM_FAULT_HWPOISON_LARGE for
hwpoisoned entries,) and as the result we can dump all hugepages except
for hwpoisoned ones.
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Rik van Riel <riel@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: HATAYAMA Daisuke <d.hatayama@jp.fujitsu.com>
Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: <stable@vger.kernel.org> [2.6.34+?]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
accouting
hugetlb_total_pages is used for overcommit calculations but the current
implementation considers only the default hugetlb page size (which is
either the first defined hugepage size or the one specified by
default_hugepagesz kernel boot parameter).
If the system is configured for more than one hugepage size, which is
possible since commit a137e1cc6d6e ("hugetlbfs: per mount huge page
sizes") then the overcommit estimation done by __vm_enough_memory()
(resp. shown by meminfo_proc_show) is not precise - there is an
impression of more available/allowed memory. This can lead to an
unexpected ENOMEM/EFAULT resp. SIGSEGV when memory is accounted.
Testcase:
boot: hugepagesz=1G hugepages=1
the default overcommit ratio is 50
before patch:
egrep 'CommitLimit' /proc/meminfo
CommitLimit: 55434168 kB
after patch:
egrep 'CommitLimit' /proc/meminfo
CommitLimit: 54909880 kB
[akpm@linux-foundation.org: coding-style tweak]
Signed-off-by: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Hillf Danton <dhillf@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: <stable@vger.kernel.org> [3.0+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Sync with Linus' tree to be able to apply patch to the newly
added ITG-3200 driver.
|
|
Removed the following sparse warnings:
* mm/hugetlb.c:1764:6: warning: symbol
'hugetlb_unregister_node' was not declared.
Should it be static?
* mm/hugetlb.c:1808:6: warning: symbol
'hugetlb_register_node' was not declared.
Should it be static?
Signed-off-by: Claudiu Ghioc <claudiu.ghioc@gmail.com>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull vfs pile (part one) from Al Viro:
"Assorted stuff - cleaning namei.c up a bit, fixing ->d_name/->d_parent
locking violations, etc.
The most visible changes here are death of FS_REVAL_DOT (replaced with
"has ->d_weak_revalidate()") and a new helper getting from struct file
to inode. Some bits of preparation to xattr method interface changes.
Misc patches by various people sent this cycle *and* ocfs2 fixes from
several cycles ago that should've been upstream right then.
PS: the next vfs pile will be xattr stuff."
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (46 commits)
saner proc_get_inode() calling conventions
proc: avoid extra pde_put() in proc_fill_super()
fs: change return values from -EACCES to -EPERM
fs/exec.c: make bprm_mm_init() static
ocfs2/dlm: use GFP_ATOMIC inside a spin_lock
ocfs2: fix possible use-after-free with AIO
ocfs2: Fix oops in ocfs2_fast_symlink_readpage() code path
get_empty_filp()/alloc_file() leave both ->f_pos and ->f_version zero
target: writev() on single-element vector is pointless
export kernel_write(), convert open-coded instances
fs: encode_fh: return FILEID_INVALID if invalid fid_type
kill f_vfsmnt
vfs: kill FS_REVAL_DOT by adding a d_weak_revalidate dentry op
nfsd: handle vfs_getattr errors in acl protocol
switch vfs_getattr() to struct path
default SET_PERSONALITY() in linux/elf.h
ceph: prepopulate inodes only when request is aborted
d_hash_and_lookup(): export, switch open-coded instances
9p: switch v9fs_set_create_acl() to inode+fid, do it before d_instantiate()
9p: split dropping the acls from v9fs_set_create_acl()
...
|
|
Use long type for page counts in mm_populate() so as to avoid integer
overflow when running the following test code:
int main(void) {
void *p = mmap(NULL, 0x100000000000, PROT_READ,
MAP_PRIVATE | MAP_ANON, -1, 0);
printf("p: %p\n", p);
mlockall(MCL_CURRENT);
printf("done\n");
return 0;
}
Signed-off-by: Michel Lespinasse <walken@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Cc: Michal Hocko <mhocko@suse.cz>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Hillf Danton <dhillf@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
remove_migration_pte
When setting a huge PTE, besides calling pte_mkhuge(), we also need to
call arch_make_huge_pte(), which we indeed do in make_huge_pte(), but we
forget to do in hugetlb_change_protection() and remove_migration_pte().
Signed-off-by: Zhigang Lu <zlu@tilera.com>
Signed-off-by: Chris Metcalf <cmetcalf@tilera.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Hillf Danton <dhillf@gmail.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Build kernel with CONFIG_HUGETLBFS=y,CONFIG_HUGETLB_PAGE=y and
CONFIG_CGROUP_HUGETLB=y, then specify hugepagesz=xx boot option, system
will fail to boot.
This failure is caused by following code path:
setup_hugepagesz
hugetlb_add_hstate
hugetlb_cgroup_file_init
cgroup_add_cftypes
kzalloc <--slab is *not available* yet
For this path, slab is not available yet, so memory allocated will be
failed, and cause WARN_ON() in hugetlb_cgroup_file_init().
So I move hugetlb_cgroup_file_init() into hugetlb_init().
[akpm@linux-foundation.org: tweak coding-style, remove pointless __init on inlined function]
[akpm@linux-foundation.org: fix warning]
Signed-off-by: Jianguo Wu <wujianguo@huawei.com>
Signed-off-by: Jiang Liu <jiang.liu@huawei.com>
Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/mel/linux-balancenuma
Pull Automatic NUMA Balancing bare-bones from Mel Gorman:
"There are three implementations for NUMA balancing, this tree
(balancenuma), numacore which has been developed in tip/master and
autonuma which is in aa.git.
In almost all respects balancenuma is the dumbest of the three because
its main impact is on the VM side with no attempt to be smart about
scheduling. In the interest of getting the ball rolling, it would be
desirable to see this much merged for 3.8 with the view to building
scheduler smarts on top and adapting the VM where required for 3.9.
The most recent set of comparisons available from different people are
mel: https://lkml.org/lkml/2012/12/9/108
mingo: https://lkml.org/lkml/2012/12/7/331
tglx: https://lkml.org/lkml/2012/12/10/437
srikar: https://lkml.org/lkml/2012/12/10/397
The results are a mixed bag. In my own tests, balancenuma does
reasonably well. It's dumb as rocks and does not regress against
mainline. On the other hand, Ingo's tests shows that balancenuma is
incapable of converging for this workloads driven by perf which is bad
but is potentially explained by the lack of scheduler smarts. Thomas'
results show balancenuma improves on mainline but falls far short of
numacore or autonuma. Srikar's results indicate we all suffer on a
large machine with imbalanced node sizes.
My own testing showed that recent numacore results have improved
dramatically, particularly in the last week but not universally.
We've butted heads heavily on system CPU usage and high levels of
migration even when it shows that overall performance is better.
There are also cases where it regresses. Of interest is that for
specjbb in some configurations it will regress for lower numbers of
warehouses and show gains for higher numbers which is not reported by
the tool by default and sometimes missed in treports. Recently I
reported for numacore that the JVM was crashing with
NullPointerExceptions but currently it's unclear what the source of
this problem is. Initially I thought it was in how numacore batch
handles PTEs but I'm no longer think this is the case. It's possible
numacore is just able to trigger it due to higher rates of migration.
These reports were quite late in the cycle so I/we would like to start
with this tree as it contains much of the code we can agree on and has
not changed significantly over the last 2-3 weeks."
* tag 'balancenuma-v11' of git://git.kernel.org/pub/scm/linux/kernel/git/mel/linux-balancenuma: (50 commits)
mm/rmap, migration: Make rmap_walk_anon() and try_to_unmap_anon() more scalable
mm/rmap: Convert the struct anon_vma::mutex to an rwsem
mm: migrate: Account a transhuge page properly when rate limiting
mm: numa: Account for failed allocations and isolations as migration failures
mm: numa: Add THP migration for the NUMA working set scanning fault case build fix
mm: numa: Add THP migration for the NUMA working set scanning fault case.
mm: sched: numa: Delay PTE scanning until a task is scheduled on a new node
mm: sched: numa: Control enabling and disabling of NUMA balancing if !SCHED_DEBUG
mm: sched: numa: Control enabling and disabling of NUMA balancing
mm: sched: Adapt the scanning rate if a NUMA hinting fault does not migrate
mm: numa: Use a two-stage filter to restrict pages being migrated for unlikely task<->node relationships
mm: numa: migrate: Set last_nid on newly allocated page
mm: numa: split_huge_page: Transfer last_nid on tail page
mm: numa: Introduce last_nid to the page frame
sched: numa: Slowly increase the scanning period as NUMA faults are handled
mm: numa: Rate limit setting of pte_numa if node is saturated
mm: numa: Rate limit the amount of memory that is migrated between nodes
mm: numa: Structures for Migrate On Fault per NUMA migration rate limiting
mm: numa: Migrate pages handled during a pmd_numa hinting fault
mm: numa: Migrate on reference policy
...
|
|
Merge misc VM changes from Andrew Morton:
"The rest of most-of-MM. The other MM bits await a slab merge.
This patch includes the addition of a huge zero_page. Not a
performance boost but it an save large amounts of physical memory in
some situations.
Also a bunch of Fujitsu engineers are working on memory hotplug.
Which, as it turns out, was badly broken. About half of their patches
are included here; the remainder are 3.8 material."
However, this merge disables CONFIG_MOVABLE_NODE, which was totally
broken. We don't add new features with "default y", nor do we add
Kconfig questions that are incomprehensible to most people without any
help text. Does the feature even make sense without compaction or
memory hotplug?
* akpm: (54 commits)
mm/bootmem.c: remove unused wrapper function reserve_bootmem_generic()
mm/memory.c: remove unused code from do_wp_page()
asm-generic, mm: pgtable: consolidate zero page helpers
mm/hugetlb.c: fix warning on freeing hwpoisoned hugepage
hwpoison, hugetlbfs: fix RSS-counter warning
hwpoison, hugetlbfs: fix "bad pmd" warning in unmapping hwpoisoned hugepage
mm: protect against concurrent vma expansion
memcg: do not check for mm in __mem_cgroup_count_vm_event
tmpfs: support SEEK_DATA and SEEK_HOLE (reprise)
mm: provide more accurate estimation of pages occupied by memmap
fs/buffer.c: remove redundant initialization in alloc_page_buffers()
fs/buffer.c: do not inline exported function
writeback: fix a typo in comment
mm: introduce new field "managed_pages" to struct zone
mm, oom: remove statically defined arch functions of same name
mm, oom: remove redundant sleep in pagefault oom handler
mm, oom: cleanup pagefault oom handler
memory_hotplug: allow online/offline memory to result movable node
numa: add CONFIG_MOVABLE_NODE for movable-dedicated node
mm, memcg: avoid unnecessary function call when memcg is disabled
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial
Pull trivial branch from Jiri Kosina:
"Usual stuff -- comment/printk typo fixes, documentation updates, dead
code elimination."
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial: (39 commits)
HOWTO: fix double words typo
x86 mtrr: fix comment typo in mtrr_bp_init
propagate name change to comments in kernel source
doc: Update the name of profiling based on sysfs
treewide: Fix typos in various drivers
treewide: Fix typos in various Kconfig
wireless: mwifiex: Fix typo in wireless/mwifiex driver
messages: i2o: Fix typo in messages/i2o
scripts/kernel-doc: check that non-void fcts describe their return value
Kernel-doc: Convention: Use a "Return" section to describe return values
radeon: Fix typo and copy/paste error in comments
doc: Remove unnecessary declarations from Documentation/accounting/getdelays.c
various: Fix spelling of "asynchronous" in comments.
Fix misspellings of "whether" in comments.
eisa: Fix spelling of "asynchronous".
various: Fix spelling of "registered" in comments.
doc: fix quite a few typos within Documentation
target: iscsi: fix comment typos in target/iscsi drivers
treewide: fix typo of "suport" in various comments and Kconfig
treewide: fix typo of "suppport" in various comments
...
|
|
Fix the warning from __list_del_entry() which is triggered when a process
tries to do free_huge_page() for a hwpoisoned hugepage.
free_huge_page() can be called for hwpoisoned hugepage from
unpoison_memory(). This function gets refcount once and clears
PageHWPoison, and then puts refcount twice to return the hugepage back to
free pool. The second put_page() finally reaches free_huge_page().
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Andi Kleen <andi.kleen@intel.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
When a process which used a hwpoisoned hugepage tries to exit() or
munmap(), the kernel can print out "bad pmd" message because page table
walker in free_pgtables() encounters 'hwpoisoned entry' on pmd.
This is because currently we fail to clear the hwpoisoned entry in
__unmap_hugepage_range(), so this patch simply does it.
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Andi Kleen <andi.kleen@intel.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
N_HIGH_MEMORY stands for the nodes that has normal or high memory.
N_MEMORY stands for the nodes that has any memory.
The code here need to handle with the nodes which have memory, we should
use N_MEMORY instead.
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Acked-by: Hillf Danton <dhillf@gmail.com>
Signed-off-by: Wen Congyang <wency@cn.fujitsu.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Hillf Danton <dhillf@gmail.com>
Cc: Lin Feng <linfeng@cn.fujitsu.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
We use a static array to store struct node. In many cases, we don't have
too many nodes, and some memory will be unused. Convert it to per-device
dynamically allocated memory.
Signed-off-by: Wen Congyang <wency@cn.fujitsu.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Jiang Liu <liuj97@gmail.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
This will be used for three kinds of purposes:
- to optimize mprotect()
- to speed up working set scanning for working set areas that
have not been touched
- to more accurately scan per real working set
No change in functionality from this patch.
Suggested-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
I've legally changed my name with New York State, the US Social Security
Administration, et al. This patch propagates the name change and change
in initials and login to comments in the kernel source as well.
Signed-off-by: Nadia Yvette Chambers <nyc@holomorphy.com>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
|
|
Acked-by: David Rientjes <rientjes@google.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
In order to allow sleeping during mmu notifier calls, we need to avoid
invoking them under the page table spinlock. This patch solves the
problem by calling invalidate_page notification after releasing the lock
(but before freeing the page itself), or by wrapping the page invalidation
with calls to invalidate_range_begin and invalidate_range_end.
To prevent accidental changes to the invalidate_range_end arguments after
the call to invalidate_range_begin, the patch introduces a convention of
saving the arguments in consistently named locals:
unsigned long mmun_start; /* For mmu_notifiers */
unsigned long mmun_end; /* For mmu_notifiers */
...
mmun_start = ...
mmun_end = ...
mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
...
mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
The patch changes code to use this convention for all calls to
mmu_notifier_invalidate_range_start/end, except those where the calls are
close enough so that anyone who glances at the code can see the values
aren't changing.
This patchset is a preliminary step towards on-demand paging design to be
added to the RDMA stack.
Why do we want on-demand paging for Infiniband?
Applications register memory with an RDMA adapter using system calls,
and subsequently post IO operations that refer to the corresponding
virtual addresses directly to HW. Until now, this was achieved by
pinning the memory during the registration calls. The goal of on demand
paging is to avoid pinning the pages of registered memory regions (MRs).
This will allow users the same flexibility they get when swapping any
other part of their processes address spaces. Instead of requiring the
entire MR to fit in physical memory, we can allow the MR to be larger,
and only fit the current working set in physical memory.
Why should anyone care? What problems are users currently experiencing?
This can make programming with RDMA much simpler. Today, developers
that are working with more data than their RAM can hold need either to
deregister and reregister memory regions throughout their process's
life, or keep a single memory region and copy the data to it. On demand
paging will allow these developers to register a single MR at the
beginning of their process's life, and let the operating system manage
which pages needs to be fetched at a given time. In the future, we
might be able to provide a single memory access key for each process
that would provide the entire process's address as one large memory
region, and the developers wouldn't need to register memory regions at
all.
Is there any prospect that any other subsystems will utilise these
infrastructural changes? If so, which and how, etc?
As for other subsystems, I understand that XPMEM wanted to sleep in
MMU notifiers, as Christoph Lameter wrote at
http://lkml.indiana.edu/hypermail/linux/kernel/0802.1/0460.html and
perhaps Andrea knows about other use cases.
Scheduling in mmu notifications is required since we need to sync the
hardware with the secondary page tables change. A TLB flush of an IO
device is inherently slower than a CPU TLB flush, so our design works by
sending the invalidation request to the device, and waiting for an
interrupt before exiting the mmu notifier handler.
Avi said:
kvm may be a buyer. kvm::mmu_lock, which serializes guest page
faults, also protects long operations such as destroying large ranges.
It would be good to convert it into a spinlock, but as it is used inside
mmu notifiers, this cannot be done.
(there are alternatives, such as keeping the spinlock and using a
generation counter to do the teardown in O(1), which is what the "may"
is doing up there).
[akpm@linux-foundation.orgpossible speed tweak in hugetlb_cow(), cleanups]
Signed-off-by: Andrea Arcangeli <andrea@qumranet.com>
Signed-off-by: Sagi Grimberg <sagig@mellanox.com>
Signed-off-by: Haggai Eran <haggaie@mellanox.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com>
Cc: Or Gerlitz <ogerlitz@mellanox.com>
Cc: Haggai Eran <haggaie@mellanox.com>
Cc: Shachar Raindel <raindel@mellanox.com>
Cc: Liran Liss <liranl@mellanox.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Avi Kivity <avi@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|