Age | Commit message (Collapse) | Author |
|
It wasn't used anywhere, so lets drop it.
Reviewed-by: Christophe Leroy <christophe.leroy@c-s.fr>
Reviewed-by: Thiago Jung Bauermann <bauerman@linux.ibm.com>
Signed-off-by: Sven Schnelle <svens@stackframe.org>
Signed-off-by: Helge Deller <deller@gmx.de>
|
|
It's not used anywhere so just drop it.
Signed-off-by: Sven Schnelle <svens@stackframe.org>
Reviewed-by: Thiago Jung Bauermann <bauerman@linux.ibm.com>
Signed-off-by: Helge Deller <deller@gmx.de>
|
|
We're not using them, so we can drop the parsing.
Signed-off-by: Sven Schnelle <svens@stackframe.org>
Reviewed-by: Thiago Jung Bauermann <bauerman@linux.ibm.com>
Signed-off-by: Helge Deller <deller@gmx.de>
|
|
Change the order to have a 64/32/16 order, no functional change.
Signed-off-by: Sven Schnelle <svens@stackframe.org>
Reviewed-by: Thiago Jung Bauermann <bauerman@linux.ibm.com>
Signed-off-by: Helge Deller <deller@gmx.de>
|
|
Right now powerpc provides an implementation to read elf files
with the kexec_file_load() syscall. Make that available as a public
kexec interface so it can be re-used on other architectures.
Signed-off-by: Sven Schnelle <svens@stackframe.org>
Reviewed-by: Thiago Jung Bauermann <bauerman@linux.ibm.com>
Signed-off-by: Helge Deller <deller@gmx.de>
|
|
Daniel Borkmann says:
====================
The following pull-request contains BPF updates for your *net-next* tree.
The main changes are:
1) Add the ability to use unaligned chunks in the AF_XDP umem. By
relaxing where the chunks can be placed, it allows to use an
arbitrary buffer size and place whenever there is a free
address in the umem. Helps more seamless DPDK AF_XDP driver
integration. Support for i40e, ixgbe and mlx5e, from Kevin and
Maxim.
2) Addition of a wakeup flag for AF_XDP tx and fill rings so the
application can wake up the kernel for rx/tx processing which
avoids busy-spinning of the latter, useful when app and driver
is located on the same core. Support for i40e, ixgbe and mlx5e,
from Magnus and Maxim.
3) bpftool fixes for printf()-like functions so compiler can actually
enforce checks, bpftool build system improvements for custom output
directories, and addition of 'bpftool map freeze' command, from Quentin.
4) Support attaching/detaching XDP programs from 'bpftool net' command,
from Daniel.
5) Automatic xskmap cleanup when AF_XDP socket is released, and several
barrier/{read,write}_once fixes in AF_XDP code, from Björn.
6) Relicense of bpf_helpers.h/bpf_endian.h for future libbpf
inclusion as well as libbpf versioning improvements, from Andrii.
7) Several new BPF kselftests for verifier precision tracking, from Alexei.
8) Several BPF kselftest fixes wrt endianess to run on s390x, from Ilya.
9) And more BPF kselftest improvements all over the place, from Stanislav.
10) Add simple BPF map op cache for nfp driver to batch dumps, from Jakub.
11) AF_XDP socket umem mapping improvements for 32bit archs, from Ivan.
12) Add BPF-to-BPF call and BTF line info support for s390x JIT, from Yauheni.
13) Small optimization in arm64 JIT to spare 1 insns for BPF_MOD, from Jerin.
14) Fix an error check in bpf_tcp_gen_syncookie() helper, from Petar.
15) Various minor fixes and cleanups, from Nathan, Masahiro, Masanari,
Peter, Wei, Yue.
====================
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/maz/arm-platforms into irq/core
Pull irqchip updates for Linux 5.4 from Marc Zyngier:
- Large GICv3 updates to support new PPI and SPI ranges
- Conver all alloc_fwnode() users to use PAs instead of VAs
- Add support for Marvell's MMP3 irqchip
- Add support for Amlogic Meson SM1
- Various cleanups and fixes
|
|
If we disable the compiler's auto-initialization feature, if
-fplugin-arg-structleak_plugin-byref or -ftrivial-auto-var-init=pattern
are disabled, arch_hw_breakpoint may be used before initialization after:
9a4903dde2c86 ("perf/hw_breakpoint: Split attribute parse and commit")
On our ARM platform, the struct step_ctrl in arch_hw_breakpoint, which
used to be zero-initialized by kzalloc(), may be used in
arch_install_hw_breakpoint() without initialization.
Signed-off-by: Mark-PK Tsai <mark-pk.tsai@mediatek.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Alix Wu <alix.wu@mediatek.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: YJ Chiang <yj.chiang@mediatek.com>
Link: https://lkml.kernel.org/r/20190906060115.9460-1-mark-pk.tsai@mediatek.com
[ Minor edits. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
The following crash was observed:
Unable to handle kernel NULL pointer dereference at 0000000000000158
Internal error: Oops: 96000004 [#1] SMP
pc : resend_irqs+0x68/0xb0
lr : resend_irqs+0x64/0xb0
...
Call trace:
resend_irqs+0x68/0xb0
tasklet_action_common.isra.6+0x84/0x138
tasklet_action+0x2c/0x38
__do_softirq+0x120/0x324
run_ksoftirqd+0x44/0x60
smpboot_thread_fn+0x1ac/0x1e8
kthread+0x134/0x138
ret_from_fork+0x10/0x18
The reason for this is that the interrupt resend mechanism happens in soft
interrupt context, which is a asynchronous mechanism versus other
operations on interrupts. free_irq() does not take resend handling into
account. Thus, the irq descriptor might be already freed before the resend
tasklet is executed. resend_irqs() does not check the return value of the
interrupt descriptor lookup and derefences the return value
unconditionally.
1):
__setup_irq
irq_startup
check_irq_resend // activate softirq to handle resend irq
2):
irq_domain_free_irqs
irq_free_descs
free_desc
call_rcu(&desc->rcu, delayed_free_desc)
3):
__do_softirq
tasklet_action
resend_irqs
desc = irq_to_desc(irq)
desc->handle_irq(desc) // desc is NULL --> Ooops
Fix this by adding a NULL pointer check in resend_irqs() before derefencing
the irq descriptor.
Fixes: a4633adcdbc1 ("[PATCH] genirq: add genirq sw IRQ-retrigger")
Signed-off-by: Yunfeng Ye <yeyunfeng@huawei.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Zhiqiang Liu <liuzhiqiang26@huawei.com>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/1630ae13-5c8e-901e-de09-e740b6a426a7@huawei.com
|
|
ENOTSUPP is not supposed to be returned to userspace. This was found on an
OpenPower machine, where the RTC does not support set_alarm.
On that system, a clock_nanosleep(CLOCK_REALTIME_ALARM, ...) results in
"524 Unknown error 524"
Replace it with EOPNOTSUPP which results in the expected "95 Operation not
supported" error.
Fixes: 1c6b39ad3f01 (alarmtimers: Return -ENOTSUPP if no RTC device is present)
Signed-off-by: Thadeu Lima de Souza Cascardo <cascardo@canonical.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20190903171802.28314-1-cascardo@canonical.com
|
|
The problem can be seen in the following two tests:
0: (bf) r3 = r10
1: (55) if r3 != 0x7b goto pc+0
2: (7a) *(u64 *)(r3 -8) = 0
3: (79) r4 = *(u64 *)(r10 -8)
..
0: (85) call bpf_get_prandom_u32#7
1: (bf) r3 = r10
2: (55) if r3 != 0x7b goto pc+0
3: (7b) *(u64 *)(r3 -8) = r0
4: (79) r4 = *(u64 *)(r10 -8)
When backtracking need to mark R4 it will mark slot fp-8.
But ST or STX into fp-8 could belong to the same block of instructions.
When backtracing is done the parent state may have fp-8 slot
as "unallocated stack". Which will cause verifier to warn
and incorrectly reject such programs.
Writes into stack via non-R10 register are rare. llvm always
generates canonical stack spill/fill.
For such pathological case fall back to conservative precision
tracking instead of rejecting.
Reported-by: syzbot+c8d66267fd2b5955287e@syzkaller.appspotmail.com
Fixes: b5dc0163d8fd ("bpf: precise scalar_value tracking")
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
|
|
The recent change to avoid taking the expiry lock when a timer is currently
migrated missed to add a bracket at the end of the if statement leading to
compile errors. Since that commit the variable `migration_base' is always
used but it is only available on SMP configuration thus leading to another
compile error. The changelog says "The timer base and base->cpu_base
cannot be NULL in the code path", so it is safe to limit this check to SMP
configurations only.
Add the missing bracket to the if statement and hide `migration_base'
behind CONFIG_SMP bars.
[ tglx: Mark the functions inline ... ]
Fixes: 68b2c8c1e4210 ("hrtimer: Don't take expiry_lock when timer is currently migrated")
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190904145527.eah7z56ntwobqm6j@linutronix.de
|
|
Since BUG() and WARN() may use a trap (e.g. UD2 on x86) to
get the address where the BUG() has occurred, kprobes can not
do single-step out-of-line that instruction. So prohibit
probing on such address.
Without this fix, if someone put a kprobe on WARN(), the
kernel will crash with invalid opcode error instead of
outputing warning message, because kernel can not find
correct bug address.
Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org>
Acked-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Acked-by: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com>
Cc: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
Cc: David S . Miller <davem@davemloft.net>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Naveen N . Rao <naveen.n.rao@linux.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/156750890133.19112.3393666300746167111.stgit@devnote2
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
logic and code
Thadeu Lima de Souza Cascardo reported that 'chrt' broke on recent kernels:
$ chrt -p $$
chrt: failed to get pid 26306's policy: Argument list too long
and he has root-caused the bug to the following commit increasing sched_attr
size and breaking sched_read_attr() into returning -EFBIG:
a509a7cd7974 ("sched/uclamp: Extend sched_setattr() to support utilization clamping")
The other, bigger bug is that the whole sched_getattr() and sched_read_attr()
logic of checking non-zero bits in new ABI components is arguably broken,
and pretty much any extension of the ABI will spuriously break the ABI.
That's way too fragile.
Instead implement the perf syscall's extensible ABI instead, which we
already implement on the sched_setattr() side:
- if user-attributes have the same size as kernel attributes then the
logic is unchanged.
- if user-attributes are larger than the kernel knows about then simply
skip the extra bits, but set attr->size to the (smaller) kernel size
so that tooling can (in principle) handle older kernel as well.
- if user-attributes are smaller than the kernel knows about then just
copy whatever user-space can accept.
Also clean up the whole logic:
- Simplify the code flow - there's no need for 'ret' for example.
- Standardize on 'kattr/uattr' and 'ksize/usize' naming to make sure we
always know which side we are dealing with.
- Why is it called 'read' when what it does is to copy to user? This
code is so far away from VFS read() semantics that the naming is
actively confusing. Name it sched_attr_copy_to_user() instead, which
mirrors other copy_to_user() functionality.
- Move the attr->size assignment from the head of sched_getattr() to the
sched_attr_copy_to_user() function. Nothing else within the kernel
should care about the size of the structure.
With these fixes the sched_getattr() syscall now nicely supports an
extensible ABI in both a forward and backward compatible fashion, and
will also fix the chrt bug.
As an added bonus the bogus -EFBIG return is removed as well, which as
Thadeu noted should have been -E2BIG to begin with.
Reported-by: Thadeu Lima de Souza Cascardo <cascardo@canonical.com>
Tested-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Tested-by: Thadeu Lima de Souza Cascardo <cascardo@canonical.com>
Acked-by: Thadeu Lima de Souza Cascardo <cascardo@canonical.com>
Cc: Arnaldo Carvalho de Melo <acme@infradead.org>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Patrick Bellasi <patrick.bellasi@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: a509a7cd7974 ("sched/uclamp: Extend sched_setattr() to support utilization clamping")
Link: https://lkml.kernel.org/r/20190904075532.GA26751@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
The play_idle resolution is 1ms. The intel_powerclamp bases the idle
duration on jiffies. The idle injection API is also using msec based
duration but has no user yet.
Unfortunately, msec based time does not fit well when we want to
inject idle cycle precisely with shallow idle state.
In order to set the scene for the incoming idle injection user, move
the precision up to usec when calling play_idle.
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
Recently device pass-through stops working for Linux VM running on Hyper-V.
git-bisect shows the regression is caused by the recent commit
467a3bb97432 ("PCI: hv: Allocate a named fwnode ..."), but the root cause
is that the commit d59f6617eef0 forgets to set the domain->fwnode for
IRQCHIP_FWNODE_NAMED*, and as a result:
1. The domain->fwnode remains to be NULL.
2. irq_find_matching_fwspec() returns NULL since "h->fwnode == fwnode" is
false, and pci_set_bus_msi_domain() sets the Hyper-V PCI root bus's
msi_domain to NULL.
3. When the device is added onto the root bus, the device's dev->msi_domain
is set to NULL in pci_set_msi_domain().
4. When a device driver tries to enable MSI-X, pci_msi_setup_msi_irqs()
calls arch_setup_msi_irqs(), which uses the native MSI chip (i.e.
arch/x86/kernel/apic/msi.c: pci_msi_controller) to set up the irqs, but
actually pci_msi_setup_msi_irqs() is supposed to call
msi_domain_alloc_irqs() with the hbus->irq_domain, which is created in
hv_pcie_init_irq_domain() and is associated with the Hyper-V chip
hv_msi_irq_chip. Consequently, the irq line is not properly set up, and
the device driver can not receive any interrupt.
Fixes: d59f6617eef0 ("genirq: Allow fwnode to carry name information only")
Fixes: 467a3bb97432 ("PCI: hv: Allocate a named fwnode instead of an address-based one")
Reported-by: Lili Deng <v-lide@microsoft.com>
Signed-off-by: Dexuan Cui <decui@microsoft.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/PU1P153MB01694D9AF625AC335C600C5FBFBE0@PU1P153MB0169.APCP153.PROD.OUTLOOK.COM
|
|
The supported clamp indexes are defined in 'enum clamp_id', however, because
of the code logic in some of the first utilization clamping series version,
sometimes we needed to use 'unsigned int' to represent indices.
This is not more required since the final version of the uclamp_* APIs can
always use the proper enum uclamp_id type.
Fix it with a bulk rename now that we have all the bits merged.
Signed-off-by: Patrick Bellasi <patrick.bellasi@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Michal Koutny <mkoutny@suse.com>
Acked-by: Tejun Heo <tj@kernel.org>
Cc: Alessio Balsini <balsini@android.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Paul Turner <pjt@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Perret <quentin.perret@arm.com>
Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com>
Cc: Steve Muckle <smuckle@google.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Todd Kjos <tkjos@google.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Link: https://lkml.kernel.org/r/20190822132811.31294-7-patrick.bellasi@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
On updates of task group (TG) clamp values, ensure that these new values
are enforced on all RUNNABLE tasks of the task group, i.e. all RUNNABLE
tasks are immediately boosted and/or capped as requested.
Do that each time we update effective clamps from cpu_util_update_eff().
Use the *cgroup_subsys_state (css) to walk the list of tasks in each
affected TG and update their RUNNABLE tasks.
Update each task by using the same mechanism used for cpu affinity masks
updates, i.e. by taking the rq lock.
Signed-off-by: Patrick Bellasi <patrick.bellasi@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Michal Koutny <mkoutny@suse.com>
Acked-by: Tejun Heo <tj@kernel.org>
Cc: Alessio Balsini <balsini@android.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Paul Turner <pjt@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Perret <quentin.perret@arm.com>
Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com>
Cc: Steve Muckle <smuckle@google.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Todd Kjos <tkjos@google.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Link: https://lkml.kernel.org/r/20190822132811.31294-6-patrick.bellasi@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
When a task specific clamp value is configured via sched_setattr(2), this
value is accounted in the corresponding clamp bucket every time the task is
{en,de}qeued. However, when cgroups are also in use, the task specific
clamp values could be restricted by the task_group (TG) clamp values.
Update uclamp_cpu_inc() to aggregate task and TG clamp values. Every time a
task is enqueued, it's accounted in the clamp bucket tracking the smaller
clamp between the task specific value and its TG effective value. This
allows to:
1. ensure cgroup clamps are always used to restrict task specific requests,
i.e. boosted not more than its TG effective protection and capped at
least as its TG effective limit.
2. implement a "nice-like" policy, where tasks are still allowed to request
less than what enforced by their TG effective limits and protections
Do this by exploiting the concept of "effective" clamp, which is already
used by a TG to track parent enforced restrictions.
Apply task group clamp restrictions only to tasks belonging to a child
group. While, for tasks in the root group or in an autogroup, system
defaults are still enforced.
Signed-off-by: Patrick Bellasi <patrick.bellasi@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Michal Koutny <mkoutny@suse.com>
Acked-by: Tejun Heo <tj@kernel.org>
Cc: Alessio Balsini <balsini@android.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Paul Turner <pjt@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Perret <quentin.perret@arm.com>
Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com>
Cc: Steve Muckle <smuckle@google.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Todd Kjos <tkjos@google.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Link: https://lkml.kernel.org/r/20190822132811.31294-5-patrick.bellasi@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
The clamp values are not tunable at the level of the root task group.
That's for two main reasons:
- the root group represents "system resources" which are always
entirely available from the cgroup standpoint.
- when tuning/restricting "system resources" makes sense, tuning must
be done using a system wide API which should also be available when
control groups are not.
When a system wide restriction is available, cgroups should be aware of
its value in order to know exactly how much "system resources" are
available for the subgroups.
Utilization clamping supports already the concepts of:
- system defaults: which define the maximum possible clamp values
usable by tasks.
- effective clamps: which allows a parent cgroup to constraint (maybe
temporarily) its descendants without losing the information related
to the values "requested" from them.
Exploit these two concepts and bind them together in such a way that,
whenever system default are tuned, the new values are propagated to
(possibly) restrict or relax the "effective" value of nested cgroups.
When cgroups are in use, force an update of all the RUNNABLE tasks.
Otherwise, keep things simple and do just a lazy update next time each
task will be enqueued.
Do that since we assume a more strict resource control is required when
cgroups are in use. This allows also to keep "effective" clamp values
updated in case we need to expose them to user-space.
Signed-off-by: Patrick Bellasi <patrick.bellasi@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Michal Koutny <mkoutny@suse.com>
Acked-by: Tejun Heo <tj@kernel.org>
Cc: Alessio Balsini <balsini@android.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Paul Turner <pjt@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Perret <quentin.perret@arm.com>
Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com>
Cc: Steve Muckle <smuckle@google.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Todd Kjos <tkjos@google.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Link: https://lkml.kernel.org/r/20190822132811.31294-4-patrick.bellasi@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
In order to properly support hierarchical resources control, the cgroup
delegation model requires that attribute writes from a child group never
fail but still are locally consistent and constrained based on parent's
assigned resources. This requires to properly propagate and aggregate
parent attributes down to its descendants.
Implement this mechanism by adding a new "effective" clamp value for each
task group. The effective clamp value is defined as the smaller value
between the clamp value of a group and the effective clamp value of its
parent. This is the actual clamp value enforced on tasks in a task group.
Since it's possible for a cpu.uclamp.min value to be bigger than the
cpu.uclamp.max value, ensure local consistency by restricting each
"protection" (i.e. min utilization) with the corresponding "limit"
(i.e. max utilization).
Do that at effective clamps propagation to ensure all user-space write
never fails while still always tracking the most restrictive values.
Signed-off-by: Patrick Bellasi <patrick.bellasi@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Michal Koutny <mkoutny@suse.com>
Acked-by: Tejun Heo <tj@kernel.org>
Cc: Alessio Balsini <balsini@android.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Paul Turner <pjt@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Perret <quentin.perret@arm.com>
Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com>
Cc: Steve Muckle <smuckle@google.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Todd Kjos <tkjos@google.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Link: https://lkml.kernel.org/r/20190822132811.31294-3-patrick.bellasi@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
The cgroup CPU bandwidth controller allows to assign a specified
(maximum) bandwidth to the tasks of a group. However this bandwidth is
defined and enforced only on a temporal base, without considering the
actual frequency a CPU is running on. Thus, the amount of computation
completed by a task within an allocated bandwidth can be very different
depending on the actual frequency the CPU is running that task.
The amount of computation can be affected also by the specific CPU a
task is running on, especially when running on asymmetric capacity
systems like Arm's big.LITTLE.
With the availability of schedutil, the scheduler is now able
to drive frequency selections based on actual task utilization.
Moreover, the utilization clamping support provides a mechanism to
bias the frequency selection operated by schedutil depending on
constraints assigned to the tasks currently RUNNABLE on a CPU.
Giving the mechanisms described above, it is now possible to extend the
cpu controller to specify the minimum (or maximum) utilization which
should be considered for tasks RUNNABLE on a cpu.
This makes it possible to better defined the actual computational
power assigned to task groups, thus improving the cgroup CPU bandwidth
controller which is currently based just on time constraints.
Extend the CPU controller with a couple of new attributes uclamp.{min,max}
which allow to enforce utilization boosting and capping for all the
tasks in a group.
Specifically:
- uclamp.min: defines the minimum utilization which should be considered
i.e. the RUNNABLE tasks of this group will run at least at a
minimum frequency which corresponds to the uclamp.min
utilization
- uclamp.max: defines the maximum utilization which should be considered
i.e. the RUNNABLE tasks of this group will run up to a
maximum frequency which corresponds to the uclamp.max
utilization
These attributes:
a) are available only for non-root nodes, both on default and legacy
hierarchies, while system wide clamps are defined by a generic
interface which does not depends on cgroups. This system wide
interface enforces constraints on tasks in the root node.
b) enforce effective constraints at each level of the hierarchy which
are a restriction of the group requests considering its parent's
effective constraints. Root group effective constraints are defined
by the system wide interface.
This mechanism allows each (non-root) level of the hierarchy to:
- request whatever clamp values it would like to get
- effectively get only up to the maximum amount allowed by its parent
c) have higher priority than task-specific clamps, defined via
sched_setattr(), thus allowing to control and restrict task requests.
Add two new attributes to the cpu controller to collect "requested"
clamp values. Allow that at each non-root level of the hierarchy.
Keep it simple by not caring now about "effective" values computation
and propagation along the hierarchy.
Update sysctl_sched_uclamp_handler() to use the newly introduced
uclamp_mutex so that we serialize system default updates with cgroup
relate updates.
Signed-off-by: Patrick Bellasi <patrick.bellasi@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Michal Koutny <mkoutny@suse.com>
Acked-by: Tejun Heo <tj@kernel.org>
Cc: Alessio Balsini <balsini@android.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Paul Turner <pjt@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Perret <quentin.perret@arm.com>
Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com>
Cc: Steve Muckle <smuckle@google.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Todd Kjos <tkjos@google.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Link: https://lkml.kernel.org/r/20190822132811.31294-2-patrick.bellasi@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
SD_BALANCE_{FORK,EXEC} and SD_WAKE_AFFINE are stripped in sd_init()
for any sched domains with a NUMA distance greater than 2 hops
(RECLAIM_DISTANCE). The idea being that it's expensive to balance
across domains that far apart.
However, as is rather unfortunately explained in:
commit 32e45ff43eaf ("mm: increase RECLAIM_DISTANCE to 30")
the value for RECLAIM_DISTANCE is based on node distance tables from
2011-era hardware.
Current AMD EPYC machines have the following NUMA node distances:
node distances:
node 0 1 2 3 4 5 6 7
0: 10 16 16 16 32 32 32 32
1: 16 10 16 16 32 32 32 32
2: 16 16 10 16 32 32 32 32
3: 16 16 16 10 32 32 32 32
4: 32 32 32 32 10 16 16 16
5: 32 32 32 32 16 10 16 16
6: 32 32 32 32 16 16 10 16
7: 32 32 32 32 16 16 16 10
where 2 hops is 32.
The result is that the scheduler fails to load balance properly across
NUMA nodes on different sockets -- 2 hops apart.
For example, pinning 16 busy threads to NUMA nodes 0 (CPUs 0-7) and 4
(CPUs 32-39) like so,
$ numactl -C 0-7,32-39 ./spinner 16
causes all threads to fork and remain on node 0 until the active
balancer kicks in after a few seconds and forcibly moves some threads
to node 4.
Override node_reclaim_distance for AMD Zen.
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Suravee.Suthikulpanit@amd.com
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Thomas.Lendacky@amd.com
Cc: Tony Luck <tony.luck@intel.com>
Link: https://lkml.kernel.org/r/20190808195301.13222-3-matt@codeblueprint.co.uk
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
do_sched_cfs_period_timer() will refill cfs_b runtime and call
distribute_cfs_runtime to unthrottle cfs_rq, sometimes cfs_b->runtime
will allocate all quota to one cfs_rq incorrectly, then other cfs_rqs
attached to this cfs_b can't get runtime and will be throttled.
We find that one throttled cfs_rq has non-negative
cfs_rq->runtime_remaining and cause an unexpetced cast from s64 to u64
in snippet:
distribute_cfs_runtime() {
runtime = -cfs_rq->runtime_remaining + 1;
}
The runtime here will change to a large number and consume all
cfs_b->runtime in this cfs_b period.
According to Ben Segall, the throttled cfs_rq can have
account_cfs_rq_runtime called on it because it is throttled before
idle_balance, and the idle_balance calls update_rq_clock to add time
that is accounted to the task.
This commit prevents cfs_rq to be assgined new runtime if it has been
throttled until that distribute_cfs_runtime is called.
Signed-off-by: Liangyan <liangyan.peng@linux.alibaba.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Reviewed-by: Ben Segall <bsegall@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: shanpeic@linux.alibaba.com
Cc: stable@vger.kernel.org
Cc: xlpang@linux.alibaba.com
Fixes: d3d9dc330236 ("sched: Throttle entities exceeding their allowed bandwidth")
Link: https://lkml.kernel.org/r/20190826121633.6538-1-liangyan.peng@linux.alibaba.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
r8152 conflicts are the NAPI fixes in 'net' overlapping with
some tasklet stuff in net-next
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Pull networking fixes from David Miller:
1) Fix some length checks during OGM processing in batman-adv, from
Sven Eckelmann.
2) Fix regression that caused netfilter conntrack sysctls to not be
per-netns any more. From Florian Westphal.
3) Use after free in netpoll, from Feng Sun.
4) Guard destruction of pfifo_fast per-cpu qdisc stats with
qdisc_is_percpu_stats(), from Davide Caratti. Similar bug is fixed
in pfifo_fast_enqueue().
5) Fix memory leak in mld_del_delrec(), from Eric Dumazet.
6) Handle neigh events on internal ports correctly in nfp, from John
Hurley.
7) Clear SKB timestamp in NF flow table code so that it does not
confuse fq scheduler. From Florian Westphal.
8) taprio destroy can crash if it is invoked in a failure path of
taprio_init(), because the list head isn't setup properly yet and
the list del is unconditional. Perform the list add earlier to
address this. From Vladimir Oltean.
9) Make sure to reapply vlan filters on device up, in aquantia driver.
From Dmitry Bogdanov.
10) sgiseeq driver releases DMA memory using free_page() instead of
dma_free_attrs(). From Christophe JAILLET.
* git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net: (58 commits)
net: seeq: Fix the function used to release some memory in an error handling path
enetc: Add missing call to 'pci_free_irq_vectors()' in probe and remove functions
net: bcmgenet: use ethtool_op_get_ts_info()
tc-testing: don't hardcode 'ip' in nsPlugin.py
net: dsa: microchip: add KSZ8563 compatibility string
dt-bindings: net: dsa: document additional Microchip KSZ8563 switch
net: aquantia: fix out of memory condition on rx side
net: aquantia: linkstate irq should be oneshot
net: aquantia: reapply vlan filters on up
net: aquantia: fix limit of vlan filters
net: aquantia: fix removal of vlan 0
net/sched: cbs: Set default link speed to 10 Mbps in cbs_set_port_rate
taprio: Set default link speed to 10 Mbps in taprio_set_picos_per_byte
taprio: Fix kernel panic in taprio_destroy
net: dsa: microchip: fill regmap_config name
rxrpc: Fix lack of conn cleanup when local endpoint is cleaned up [ver #2]
net: stmmac: dwmac-rk: Don't fail if phy regulator is absent
amd-xgbe: Fix error path in xgbe_mod_init()
netfilter: nft_meta_bridge: Fix get NFT_META_BRI_IIFVPROTO in network byteorder
mac80211: Correctly set noencrypt for PAE frames
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace
Pull tracing fixes from Steven Rostedt:
"Small fixes and minor cleanups for tracing:
- Make exported ftrace function not static
- Fix NULL pointer dereference in reading probes as they are created
- Fix NULL pointer dereference in k/uprobe clean up path
- Various documentation fixes"
* tag 'trace-v5.3-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace:
tracing: Correct kdoc formats
ftrace/x86: Remove mcount() declaration
tracing/probe: Fix null pointer dereference
tracing: Make exported ftrace_set_clr_event non-static
ftrace: Check for successful allocation of hash
ftrace: Check for empty hash and comment the race with registering probes
ftrace: Fix NULL pointer dereference in t_probe_next()
|
|
Fix the following kdoc warnings:
kernel/trace/trace.c:1579: warning: Function parameter or member 'tr' not described in 'update_max_tr_single'
kernel/trace/trace.c:1579: warning: Function parameter or member 'tsk' not described in 'update_max_tr_single'
kernel/trace/trace.c:1579: warning: Function parameter or member 'cpu' not described in 'update_max_tr_single'
kernel/trace/trace.c:1776: warning: Function parameter or member 'type' not described in 'register_tracer'
kernel/trace/trace.c:2239: warning: Function parameter or member 'task' not described in 'tracing_record_taskinfo'
kernel/trace/trace.c:2239: warning: Function parameter or member 'flags' not described in 'tracing_record_taskinfo'
kernel/trace/trace.c:2269: warning: Function parameter or member 'prev' not described in 'tracing_record_taskinfo_sched_switch'
kernel/trace/trace.c:2269: warning: Function parameter or member 'next' not described in 'tracing_record_taskinfo_sched_switch'
kernel/trace/trace.c:2269: warning: Function parameter or member 'flags' not described in 'tracing_record_taskinfo_sched_switch'
kernel/trace/trace.c:3078: warning: Function parameter or member 'ip' not described in 'trace_vbprintk'
kernel/trace/trace.c:3078: warning: Function parameter or member 'fmt' not described in 'trace_vbprintk'
kernel/trace/trace.c:3078: warning: Function parameter or member 'args' not described in 'trace_vbprintk'
Link: http://lkml.kernel.org/r/20190828052549.2472-2-jakub.kicinski@netronome.com
Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
|
|
BUG: KASAN: null-ptr-deref in trace_probe_cleanup+0x8d/0xd0
Read of size 8 at addr 0000000000000000 by task syz-executor.0/9746
trace_probe_cleanup+0x8d/0xd0
free_trace_kprobe.part.14+0x15/0x50
alloc_trace_kprobe+0x23e/0x250
Link: http://lkml.kernel.org/r/1565220563-980-1-git-send-email-danielliu861@gmail.com
Fixes: e3dc9f898ef9c ("tracing/probe: Add trace_event_call accesses APIs")
Signed-off-by: Xinpeng Liu <danielliu861@gmail.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
|
|
The function ftrace_set_clr_event is declared static and marked
EXPORT_SYMBOL_GPL(), which is at best an odd combination. Because the
function was decided to be a part of API, this commit removes the static
attribute and adds the declaration to the header.
Link: http://lkml.kernel.org/r/20190704172110.27041-1-efremov@linux.com
Fixes: f45d1225adb04 ("tracing: Kernel access to Ftrace instances")
Reviewed-by: Joe Jin <joe.jin@oracle.com>
Signed-off-by: Denis Efremov <efremov@linux.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
|
|
Daniel Borkmann says:
====================
pull-request: bpf 2019-08-31
The following pull-request contains BPF updates for your *net* tree.
The main changes are:
1) Fix 32-bit zero-extension during constant blinding which
has been causing a regression on ppc64, from Naveen.
2) Fix a latency bug in nfp driver when updating stack index
register, from Jiong.
====================
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
In register_ftrace_function_probe(), we are not checking the return
value of alloc_and_copy_ftrace_hash(). The subsequent call to
ftrace_match_records() may end up dereferencing the same. Add a check to
ensure this doesn't happen.
Link: http://lkml.kernel.org/r/26e92574f25ad23e7cafa3cf5f7a819de1832cbe.1562249521.git.naveen.n.rao@linux.vnet.ibm.com
Cc: stable@vger.kernel.org
Fixes: 1ec3a81a0cf42 ("ftrace: Have each function probe use its own ftrace_ops")
Signed-off-by: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
|
|
The race between adding a function probe and reading the probes that exist
is very subtle. It needs a comment. Also, the issue can also happen if the
probe has has the EMPTY_HASH as its func_hash.
Cc: stable@vger.kernel.org
Fixes: 7b60f3d876156 ("ftrace: Dynamically create the probe ftrace_ops for the trace_array")
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
|
|
LTP testsuite on powerpc results in the below crash:
Unable to handle kernel paging request for data at address 0x00000000
Faulting instruction address: 0xc00000000029d800
Oops: Kernel access of bad area, sig: 11 [#1]
LE SMP NR_CPUS=2048 NUMA PowerNV
...
CPU: 68 PID: 96584 Comm: cat Kdump: loaded Tainted: G W
NIP: c00000000029d800 LR: c00000000029dac4 CTR: c0000000001e6ad0
REGS: c0002017fae8ba10 TRAP: 0300 Tainted: G W
MSR: 9000000000009033 <SF,HV,EE,ME,IR,DR,RI,LE> CR: 28022422 XER: 20040000
CFAR: c00000000029d90c DAR: 0000000000000000 DSISR: 40000000 IRQMASK: 0
...
NIP [c00000000029d800] t_probe_next+0x60/0x180
LR [c00000000029dac4] t_mod_start+0x1a4/0x1f0
Call Trace:
[c0002017fae8bc90] [c000000000cdbc40] _cond_resched+0x10/0xb0 (unreliable)
[c0002017fae8bce0] [c0000000002a15b0] t_start+0xf0/0x1c0
[c0002017fae8bd30] [c0000000004ec2b4] seq_read+0x184/0x640
[c0002017fae8bdd0] [c0000000004a57bc] sys_read+0x10c/0x300
[c0002017fae8be30] [c00000000000b388] system_call+0x5c/0x70
The test (ftrace_set_ftrace_filter.sh) is part of ftrace stress tests
and the crash happens when the test does 'cat
$TRACING_PATH/set_ftrace_filter'.
The address points to the second line below, in t_probe_next(), where
filter_hash is dereferenced:
hash = iter->probe->ops.func_hash->filter_hash;
size = 1 << hash->size_bits;
This happens due to a race with register_ftrace_function_probe(). A new
ftrace_func_probe is created and added into the func_probes list in
trace_array under ftrace_lock. However, before initializing the filter,
we drop ftrace_lock, and re-acquire it after acquiring regex_lock. If
another process is trying to read set_ftrace_filter, it will be able to
acquire ftrace_lock during this window and it will end up seeing a NULL
filter_hash.
Fix this by just checking for a NULL filter_hash in t_probe_next(). If
the filter_hash is NULL, then this probe is just being added and we can
simply return from here.
Link: http://lkml.kernel.org/r/05e021f757625cbbb006fad41380323dbe4e3b43.1562249521.git.naveen.n.rao@linux.vnet.ibm.com
Cc: stable@vger.kernel.org
Fixes: 7b60f3d876156 ("ftrace: Dynamically create the probe ftrace_ops for the trace_array")
Signed-off-by: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
|
|
* for-next/atomics: (10 commits)
Rework LSE instruction selection to use static keys instead of alternatives
|
|
On architectures that discard .exit.* sections at runtime, a
warning is printed for each jump label that is used within an
in-kernel __exit annotated function:
can't patch jump_label at ehci_hcd_cleanup+0x8/0x3c
WARNING: CPU: 0 PID: 1 at kernel/jump_label.c:410 __jump_label_update+0x12c/0x138
As these functions will never get executed (they are free'd along
with the rest of initmem) - we do not need to patch them and should
not display any warnings.
The warning is displayed because the test required to satisfy
jump_entry_is_init is based on init_section_contains (__init_begin to
__init_end) whereas the test in __jump_label_update is based on
init_kernel_text (_sinittext to _einittext) via kernel_text_address).
Fixes: 19483677684b ("jump_label: Annotate entries that operate on __init code earlier")
Signed-off-by: Andrew Murray <andrew.murray@arm.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
|
|
The state tracking changes broke the expiry active check by not writing to
it and instead sitting timers_active, which is already set.
That's not a big issue as the actual expiry is protected by sighand lock,
so concurrent handling is not possible. That means that the second task
which invokes that function executes the expiry code for nothing.
Write to the proper flag.
Also add a check whether the flag is set into check_process_timers(). That
check had been missing in the code before the rework already. The check for
another task handling the expiry of process wide timers was only done in
the fastpath check. If the fastpath check returns true because a per task
timer expired, then the checking of process wide timers was done in
parallel which is as explained above just a waste of cycles.
Fixes: 244d49e30653 ("posix-cpu-timers: Move state tracking to struct posix_cputimers")
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Frederic Weisbecker <frederic@kernel.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 fixes from Will Deacon:
"Hot on the heels of our last set of fixes are a few more for -rc7.
Two of them are fixing issues with our virtual interrupt controller
implementation in KVM/arm, while the other is a longstanding but
straightforward kallsyms fix which was been acked by Masami and
resolves an initialisation failure in kprobes observed on arm64.
- Fix GICv2 emulation bug (KVM)
- Fix deadlock in virtual GIC interrupt injection code (KVM)
- Fix kprobes blacklist init failure due to broken kallsyms lookup"
* tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux:
KVM: arm/arm64: vgic-v2: Handle SGI bits in GICD_I{S,C}PENDR0 as WI
KVM: arm/arm64: vgic: Fix potential deadlock when ap_list is long
kallsyms: Don't let kallsyms_lookup_size_offset() fail on retrieving the first symbol
|
|
sched_timer must be initialized with the _HARD mode suffix to ensure expiry
in hard interrupt context on RT.
The previous conversion to HARD expiry mode missed on one instance in
tick_nohz_switch_to_nohz(). Fix it up.
Fixes: 902a9f9c50905 ("tick: Mark tick related hrtimers to expiry in hard interrupt context")
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190823113845.12125-3-bigeasy@linutronix.de
|
|
When CONFIG_CPUMASK_OFFSTACK isn't enabled, 'cpumask_var_t' is as
'typedef struct cpumask cpumask_var_t[1]',
so the argument 'node_to_cpumask' alloc_nodes_vectors() can't be declared
as 'const cpumask_var_t *'
Fixes the following warning:
kernel/irq/affinity.c: In function '__irq_build_affinity_masks':
alloc_nodes_vectors(numvecs, node_to_cpumask, cpu_mask,
^
kernel/irq/affinity.c:128:13: note: expected 'const struct cpumask (*)[1]' but argument is of type 'struct cpumask (*)[1]'
static void alloc_nodes_vectors(unsigned int numvecs,
^
Fixes: b1a5a73e64e9 ("genirq/affinity: Spread vectors on node according to nr_cpu ratio")
Reported-by: kbuild test robot <lkp@intel.com>
Signed-off-by: Ming Lei <ming.lei@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190828085815.19931-1-ming.lei@redhat.com
|
|
Using a linear O(N) search for timer insertion affects execution time and
D-cache footprint badly with a larger number of timers.
Switch the storage to a timerqueue which is already used for hrtimers and
alarmtimers. It does not affect the size of struct k_itimer as it.alarm is
still larger.
The extra list head for the expiry list will go away later once the expiry
is moved into task work context.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lkml.kernel.org/r/alpine.DEB.2.21.1908272129220.1939@nanos.tec.linutronix.de
|
|
Put it where it belongs and clean up the ifdeffery in fork completely.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190821192922.743229404@linutronix.de
|
|
Both thread and process expiry functions have the same functionality for
sending signals for soft and hard RLIMITs duplicated in 4 different
ways.
Split it out into a common function and cleanup the callsites.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lkml.kernel.org/r/20190821192922.653276779@linutronix.de
|
|
The soft RLIMIT expiry code checks whether the soft limit is greater than
the hard limit. That's pointless because if the soft RLIMIT is greater than
the hard RLIMIT then that code cannot be reached as the hard RLIMIT check
is before that and already killed the process.
Remove it.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lkml.kernel.org/r/20190821192922.548747613@linutronix.de
|
|
Instead of dividing A to match the units of B it's more efficient to
multiply B to match the units of A.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lkml.kernel.org/r/20190821192922.458286860@linutronix.de
|
|
With the array based samples and expiry cache, the expiry function can use
a loop to collect timers from the clock specific lists.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lkml.kernel.org/r/20190821192922.365469982@linutronix.de
|
|
Deactivation of the expiry cache is done by setting all clock caches to
0. That requires to have a check for zero in all places which update the
expiry cache:
if (cache == 0 || new < cache)
cache = new;
Use U64_MAX as the deactivated value, which allows to remove the zero
checks when updating the cache and reduces it to the obvious check:
if (new < cache)
cache = new;
This also removes the weird workaround in do_prlimit() which was required
to convert a RLIMIT_CPU value of 0 (immediate expiry) to 1 because handing
in 0 to the posix CPU timer code would have effectively disarmed it.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lkml.kernel.org/r/20190821192922.275086128@linutronix.de
|
|
The comment above the function which arms RLIMIT_CPU in the posix CPU timer
code makes no sense at all. It claims that the kernel does not return an
error code when it rejected the attempt to set RLIMIT_CPU. That's clearly
bogus as the code does an error check and the rlimit is only set and
activated when the permission checks are ok. In case of a rejection an
appropriate error code is returned.
This is a historical and outdated comment which got dragged along even when
the rlimit handling code was rewritten.
Replace it with an explanation why the setup function is not called when
the rlimit value is RLIM_INFINITY and how the 'disarming' is handled.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lkml.kernel.org/r/20190821192922.185511287@linutronix.de
|