Age | Commit message (Collapse) | Author |
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull locking updates from Ingo Molnar:
"These are the locking updates for v5.10:
- Add deadlock detection for recursive read-locks.
The rationale is outlined in commit 224ec489d3cd ("lockdep/
Documention: Recursive read lock detection reasoning")
The main deadlock pattern we want to detect is:
TASK A: TASK B:
read_lock(X);
write_lock(X);
read_lock_2(X);
- Add "latch sequence counters" (seqcount_latch_t):
A sequence counter variant where the counter even/odd value is used
to switch between two copies of protected data. This allows the
read path, typically NMIs, to safely interrupt the write side
critical section.
We utilize this new variant for sched-clock, and to make x86 TSC
handling safer.
- Other seqlock cleanups, fixes and enhancements
- KCSAN updates
- LKMM updates
- Misc updates, cleanups and fixes"
* tag 'locking-core-2020-10-12' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (67 commits)
lockdep: Revert "lockdep: Use raw_cpu_*() for per-cpu variables"
lockdep: Fix lockdep recursion
lockdep: Fix usage_traceoverflow
locking/atomics: Check atomic-arch-fallback.h too
locking/seqlock: Tweak DEFINE_SEQLOCK() kernel doc
lockdep: Optimize the memory usage of circular queue
seqlock: Unbreak lockdep
seqlock: PREEMPT_RT: Do not starve seqlock_t writers
seqlock: seqcount_LOCKNAME_t: Introduce PREEMPT_RT support
seqlock: seqcount_t: Implement all read APIs as statement expressions
seqlock: Use unique prefix for seqcount_t property accessors
seqlock: seqcount_LOCKNAME_t: Standardize naming convention
seqlock: seqcount latch APIs: Only allow seqcount_latch_t
rbtree_latch: Use seqcount_latch_t
x86/tsc: Use seqcount_latch_t
timekeeping: Use seqcount_latch_t
time/sched_clock: Use seqcount_latch_t
seqlock: Introduce seqcount_latch_t
mm/swap: Do not abuse the seqcount_t latching API
time/sched_clock: Use raw_read_seqcount_latch() during suspend
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull timekeeping updates from Thomas Gleixner:
"Updates for timekeeping, timers and related drivers:
Core:
- Early boot support for the NMI safe timekeeper by utilizing
local_clock() up to the point where timekeeping is initialized.
This allows printk() to store multiple timestamps in the ringbuffer
which is useful for coordinating dmesg information across a fleet
of machines.
- Provide a multi-timestamp accessor for printk()
- Make timer init more robust by checking for invalid timer flags.
- Comma vs semicolon fixes
Drivers:
- Support for new platforms in existing drivers (SP804 and Renesas
CMT)
- Comma vs semicolon fixes
* tag 'timers-core-2020-10-12' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
clocksource/drivers/armada-370-xp: Use semicolons rather than commas to separate statements
clocksource/drivers/mps2-timer: Use semicolons rather than commas to separate statements
timers: Mask invalid flags in do_init_timer()
clocksource/drivers/sp804: Enable Hisilicon sp804 timer 64bit mode
clocksource/drivers/sp804: Add support for Hisilicon sp804 timer
clocksource/drivers/sp804: Support non-standard register offset
clocksource/drivers/sp804: Prepare for support non-standard register offset
clocksource/drivers/sp804: Remove a mismatched comment
clocksource/drivers/sp804: Delete the leading "__" of some functions
clocksource/drivers/sp804: Remove unused sp804_timer_disable() and timer-sp804.h
clocksource/drivers/sp804: Cleanup clk_get_sys()
dt-bindings: timer: renesas,cmt: Document r8a774e1 CMT support
dt-bindings: timer: renesas,cmt: Document r8a7742 CMT support
alarmtimer: Convert comma to semicolon
timekeeping: Provide multi-timestamp accessor to NMI safe timekeeper
timekeeping: Utilize local_clock() for NMI safe timekeeper during early boot
|
|
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
do_init_timer() accepts any combination of timer flags handed in by the
caller without a sanity check, but only TIMER_DEFFERABLE, TIMER_PINNED and
TIMER_IRQSAFE are valid.
If the supplied flags have other bits set, this could result in
malfunction. If bits are set in TIMER_CPUMASK the first timer usage could
deference a cpu base which is outside the range of possible CPUs. If
TIMER_MIGRATION is set, then the switch_timer_base() will live lock.
Prevent that with a sanity check which warns when invalid flags are
supplied and masks them out.
[ tglx: Made it WARN_ON_ONCE() and added context to the changelog ]
Signed-off-by: Qianli Zhao <zhaoqianli@xiaomi.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/9d79a8aa4eb56713af7379f99f062dedabcde140.1597326756.git.zhaoqianli@xiaomi.com
|
|
This should make it harder for the kernel to corrupt the debug object
descriptor, used to call functions to fixup state and track debug objects,
by moving the structure to read-only memory.
Signed-off-by: Stephen Boyd <swboyd@chromium.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/r/20200815004027.2046113-3-swboyd@chromium.org
|
|
Latch sequence counters are a multiversion concurrency control mechanism
where the seqcount_t counter even/odd value is used to switch between
two data storage copies. This allows the seqcount_t read path to safely
interrupt its write side critical section (e.g. from NMIs).
Initially, latch sequence counters were implemented as a single write
function, raw_write_seqcount_latch(), above plain seqcount_t. The read
path was expected to use plain seqcount_t raw_read_seqcount().
A specialized read function was later added, raw_read_seqcount_latch(),
and became the standardized way for latch read paths. Having unique read
and write APIs meant that latch sequence counters are basically a data
type of their own -- just inappropriately overloading plain seqcount_t.
The seqcount_latch_t data type was thus introduced at seqlock.h.
Use that new data type instead of seqcount_raw_spinlock_t. This ensures
that only latch-safe APIs are to be used with the sequence counter.
Note that the use of seqcount_raw_spinlock_t was not very useful in the
first place. Only the "raw_" subset of seqcount_t APIs were used at
timekeeping.c. This subset was created for contexts where lockdep cannot
be used. seqcount_LOCKTYPE_t's raison d'être -- verifying that the
seqcount_t writer serialization lock is held -- cannot thus be done.
References: 0c3351d451ae ("seqlock: Use raw_ prefix instead of _no_lockdep")
References: 55f3560df975 ("seqlock: Extend seqcount API with associated locks")
Signed-off-by: Ahmed S. Darwish <a.darwish@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200827114044.11173-6-a.darwish@linutronix.de
|
|
Latch sequence counters have unique read and write APIs, and thus
seqcount_latch_t was recently introduced at seqlock.h.
Use that new data type instead of plain seqcount_t. This adds the
necessary type-safety and ensures only latching-safe seqcount APIs are
to be used.
Signed-off-by: Ahmed S. Darwish <a.darwish@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200827114044.11173-5-a.darwish@linutronix.de
|
|
sched_clock uses seqcount_t latching to switch between two storage
places protected by the sequence counter. This allows it to have
interruptible, NMI-safe, seqcount_t write side critical sections.
Since 7fc26327b756 ("seqlock: Introduce raw_read_seqcount_latch()"),
raw_read_seqcount_latch() became the standardized way for seqcount_t
latch read paths. Due to the dependent load, it has one read memory
barrier less than the currently used raw_read_seqcount() API.
Use raw_read_seqcount_latch() for the suspend path.
Commit aadd6e5caaac ("time/sched_clock: Use raw_read_seqcount_latch()")
missed changing that instance of raw_read_seqcount().
References: 1809bfa44e10 ("timers, sched/clock: Avoid deadlock during read from NMI")
Signed-off-by: Ahmed S. Darwish <a.darwish@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200715092345.GA231464@debian-buster-darwi.lab.linutronix.de
|
|
Replace a comma between expression statements by a semicolon.
Signed-off-by: Xu Wang <vulab@iscas.ac.cn>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Stephen Boyd <sboyd@kernel.org>
Link: https://lore.kernel.org/r/20200818062651.21680-1-vulab@iscas.ac.cn
|
|
Replace the existing /* fall through */ comments and its variants with
the new pseudo-keyword macro fallthrough[1]. Also, remove unnecessary
fall-through markings when it is the case.
[1] https://www.kernel.org/doc/html/v5.7/process/deprecated.html?highlight=fallthrough#implicit-switch-case-fall-through
Signed-off-by: Gustavo A. R. Silva <gustavoars@kernel.org>
|
|
printk wants to store various timestamps (MONOTONIC, REALTIME, BOOTTIME) to
make correlation of dmesg from several systems easier.
Provide an interface to retrieve all three timestamps in one go.
There are some caveats:
1) Boot time and late sleep time injection
Boot time is a racy access on 32bit systems if the sleep time injection
happens late during resume and not in timekeeping_resume(). That could be
avoided by expanding struct tk_read_base with boot offset for 32bit and
adding more overhead to the update. As this is a hard to observe once per
resume event which can be filtered with reasonable effort using the
accurate mono/real timestamps, it's probably not worth the trouble.
Aside of that it might be possible on 32 and 64 bit to observe the
following when the sleep time injection happens late:
CPU 0 CPU 1
timekeeping_resume()
ktime_get_fast_timestamps()
mono, real = __ktime_get_real_fast()
inject_sleep_time()
update boot offset
boot = mono + bootoffset;
That means that boot time already has the sleep time adjustment, but
real time does not. On the next readout both are in sync again.
Preventing this for 64bit is not really feasible without destroying the
careful cache layout of the timekeeper because the sequence count and
struct tk_read_base would then need two cache lines instead of one.
2) Suspend/resume timestamps
Access to the time keeper clock source is disabled accross the innermost
steps of suspend/resume. The accessors still work, but the timestamps
are frozen until time keeping is resumed which happens very early.
For regular suspend/resume there is no observable difference vs. sched
clock, but it might affect some of the nasty low level debug printks.
OTOH, access to sched clock is not guaranteed accross suspend/resume on
all systems either so it depends on the hardware in use.
If that turns out to be a real problem then this could be mitigated by
using sched clock in a similar way as during early boot. But it's not as
trivial as on early boot because it needs some careful protection
against the clock monotonic timestamp jumping backwards on resume.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Petr Mladek <pmladek@suse.com>
Link: https://lore.kernel.org/r/20200814115512.159981360@linutronix.de
|
|
During early boot the NMI safe timekeeper returns 0 until the first
clocksource becomes available.
This prevents it from being used for printk or other facilities which today
use sched clock. sched clock can be available way before timekeeping is
initialized.
The obvious workaround for this is to utilize the early sched clock in the
default dummy clock read function until a clocksource becomes available.
After switching to the clocksource clock MONOTONIC and BOOTTIME will not
jump because the timekeeping_init() bases clock MONOTONIC on sched clock
and the offset between clock MONOTONIC and BOOTTIME is zero during boot.
Clock REALTIME cannot provide useful timestamps during early boot up to
the point where a persistent clock becomes available, which is either in
timekeeping_init() or later when the RTC driver which might depend on I2C
or other subsystems is initialized.
There is a minor difference to sched_clock() vs. suspend/resume. As the
timekeeper clock source might not be accessible during suspend, after
timekeeping_suspend() timestamps freeze up to the point where
timekeeping_resume() is invoked. OTOH this is true for some sched clock
implementations as well.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Petr Mladek <pmladek@suse.com>
Link: https://lore.kernel.org/r/20200814115512.041422402@linutronix.de
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull timekeeping updates from Thomas Gleixner:
"A set of timekeeping/VDSO updates:
- Preparatory work to allow S390 to switch over to the generic VDSO
implementation.
S390 requires that the VDSO data pointer is handed in to the
counter read function when time namespace support is enabled.
Adding the pointer is a NOOP for all other architectures because
the compiler is supposed to optimize that out when it is unused in
the architecture specific inline. The change also solved a similar
problem for MIPS which fortunately has time namespaces not yet
enabled.
S390 needs to update clock related VDSO data independent of the
timekeeping updates. This was solved so far with yet another
sequence counter in the S390 implementation. A better solution is
to utilize the already existing VDSO sequence count for this. The
core code now exposes helper functions which allow to serialize
against the timekeeper code and against concurrent readers.
S390 needs extra data for their clock readout function. The initial
common VDSO data structure did not provide a way to add that. It
now has an embedded architecture specific struct embedded which
defaults to an empty struct.
Doing this now avoids tree dependencies and conflicts post rc1 and
allows all other architectures which work on generic VDSO support
to work from a common upstream base.
- A trivial comment fix"
* tag 'timers-urgent-2020-08-14' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
time: Delete repeated words in comments
lib/vdso: Allow to add architecture-specific vdso data
timekeeping/vsyscall: Provide vdso_update_begin/end()
vdso/treewide: Add vdso_data pointer argument to __arch_get_hw_counter()
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull more timer updates from Thomas Gleixner:
"A set of posix CPU timer changes which allows to defer the heavy work
of posix CPU timers into task work context. The tick interrupt is
reduced to a quick check which queues the work which is doing the
heavy lifting before returning to user space or going back to guest
mode. Moving this out is deferring the signal delivery slightly but
posix CPU timers are inaccurate by nature as they depend on the tick
so there is no real damage. The relevant test cases all passed.
This lifts the last offender for RT out of the hard interrupt context
tick handler, but it also has the general benefit that the actual
heavy work is accounted to the task/process and not to the tick
interrupt itself.
Further optimizations are possible to break long sighand lock hold and
interrupt disabled (on !RT kernels) times when a massive amount of
posix CPU timers (which are unpriviledged) is armed for a
task/process.
This is currently only enabled for x86 because the architecture has to
ensure that task work is handled in KVM before entering a guest, which
was just established for x86 with the new common entry/exit code which
got merged post 5.8 and is not the case for other KVM architectures"
* tag 'timers-core-2020-08-14' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86: Select POSIX_CPU_TIMERS_TASK_WORK
posix-cpu-timers: Provide mechanisms to defer timer handling to task_work
posix-cpu-timers: Split run_posix_cpu_timers()
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull locking updates from Thomas Gleixner:
"A set of locking fixes and updates:
- Untangle the header spaghetti which causes build failures in
various situations caused by the lockdep additions to seqcount to
validate that the write side critical sections are non-preemptible.
- The seqcount associated lock debug addons which were blocked by the
above fallout.
seqcount writers contrary to seqlock writers must be externally
serialized, which usually happens via locking - except for strict
per CPU seqcounts. As the lock is not part of the seqcount, lockdep
cannot validate that the lock is held.
This new debug mechanism adds the concept of associated locks.
sequence count has now lock type variants and corresponding
initializers which take a pointer to the associated lock used for
writer serialization. If lockdep is enabled the pointer is stored
and write_seqcount_begin() has a lockdep assertion to validate that
the lock is held.
Aside of the type and the initializer no other code changes are
required at the seqcount usage sites. The rest of the seqcount API
is unchanged and determines the type at compile time with the help
of _Generic which is possible now that the minimal GCC version has
been moved up.
Adding this lockdep coverage unearthed a handful of seqcount bugs
which have been addressed already independent of this.
While generally useful this comes with a Trojan Horse twist: On RT
kernels the write side critical section can become preemtible if
the writers are serialized by an associated lock, which leads to
the well known reader preempts writer livelock. RT prevents this by
storing the associated lock pointer independent of lockdep in the
seqcount and changing the reader side to block on the lock when a
reader detects that a writer is in the write side critical section.
- Conversion of seqcount usage sites to associated types and
initializers"
* tag 'locking-urgent-2020-08-10' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (25 commits)
locking/seqlock, headers: Untangle the spaghetti monster
locking, arch/ia64: Reduce <asm/smp.h> header dependencies by moving XTP bits into the new <asm/xtp.h> header
x86/headers: Remove APIC headers from <asm/smp.h>
seqcount: More consistent seqprop names
seqcount: Compress SEQCNT_LOCKNAME_ZERO()
seqlock: Fold seqcount_LOCKNAME_init() definition
seqlock: Fold seqcount_LOCKNAME_t definition
seqlock: s/__SEQ_LOCKDEP/__SEQ_LOCK/g
hrtimer: Use sequence counter with associated raw spinlock
kvm/eventfd: Use sequence counter with associated spinlock
userfaultfd: Use sequence counter with associated spinlock
NFSv4: Use sequence counter with associated spinlock
iocost: Use sequence counter with associated spinlock
raid5: Use sequence counter with associated spinlock
vfs: Use sequence counter with associated spinlock
timekeeping: Use sequence counter with associated raw spinlock
xfrm: policy: Use sequence counters with associated lock
netfilter: nft_set_rbtree: Use sequence counter with associated rwlock
netfilter: conntrack: Use sequence counter with associated spinlock
sched: tasks: Use sequence counter with associated spinlock
...
|
|
Drop repeated words in kernel/time/. {when, one, into}
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: John Stultz <john.stultz@linaro.org>
Link: https://lore.kernel.org/r/20200807033248.8452-1-rdunlap@infradead.org
|
|
Running posix CPU timers in hard interrupt context has a few downsides:
- For PREEMPT_RT it cannot work as the expiry code needs to take
sighand lock, which is a 'sleeping spinlock' in RT. The original RT
approach of offloading the posix CPU timer handling into a high
priority thread was clumsy and provided no real benefit in general.
- For fine grained accounting it's just wrong to run this in context of
the timer interrupt because that way a process specific CPU time is
accounted to the timer interrupt.
- Long running timer interrupts caused by a large amount of expiring
timers which can be created and armed by unpriviledged user space.
There is no hard requirement to expire them in interrupt context.
If the signal is targeted at the task itself then it won't be delivered
before the task returns to user space anyway. If the signal is targeted at
a supervisor process then it might be slightly delayed, but posix CPU
timers are inaccurate anyway due to the fact that they are tied to the
tick.
Provide infrastructure to schedule task work which allows splitting the
posix CPU timer code into a quick check in interrupt context and a thread
context expiry and signal delivery function. This has to be enabled by
architectures as it requires that the architecture specific KVM
implementation handles pending task work before exiting to guest mode.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20200730102337.783470146@linutronix.de
|
|
Split it up as a preparatory step to move the heavy lifting out of
interrupt context.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20200730102337.677439437@linutronix.de
|
|
Architectures can have the requirement to add additional architecture
specific data to the VDSO data page which needs to be updated independent
of the timekeeper updates.
To protect these updates vs. concurrent readers and a conflicting update
through timekeeping, provide helper functions to make such updates safe.
vdso_update_begin() takes the timekeeper_lock to protect against a
potential update from timekeeper code and increments the VDSO sequence
count to signal data inconsistency to concurrent readers. vdso_update_end()
makes the sequence count even again to signal data consistency and drops
the timekeeper lock.
[ Sven: Add interrupt disable handling to the functions ]
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Sven Schnelle <svens@linux.ibm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20200804150124.41692-3-svens@linux.ibm.com
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull timer updates from Thomas Gleixner:
"Time, timers and related driver updates:
- Prevent unnecessary timer softirq invocations by extending the
tracking of the next expiring timer in the timer wheel beyond the
existing NOHZ functionality.
The tracking overhead at enqueue time is within the noise, but on
sensitive workloads the avoidance of the soft interrupt invocation
is a measurable improvement.
- The obligatory new clocksource driver for Ingenic X100 OST
- The usual fixes, improvements, cleanups and extensions for newer
chip variants all over the driver space"
* tag 'timers-core-2020-08-04' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (28 commits)
timers: Recalculate next timer interrupt only when necessary
clocksource/drivers/ingenic: Add support for the Ingenic X1000 OST.
dt-bindings: timer: Add Ingenic X1000 OST bindings.
clocksource/drivers: Replace HTTP links with HTTPS ones
clocksource/drivers/nomadik-mtu: Handle 32kHz clock
clocksource/drivers/sh_cmt: Use "kHz" for kilohertz
clocksource/drivers/imx: Add support for i.MX TPM driver with ARM64
clocksource/drivers/ingenic: Add high resolution timer support for SMP/SMT.
timers: Lower base clock forwarding threshold
timers: Remove must_forward_clk
timers: Spare timer softirq until next expiry
timers: Expand clk forward logic beyond nohz
timers: Reuse next expiry cache after nohz exit
timers: Always keep track of next expiry
timers: Optimize _next_timer_interrupt() level iteration
timers: Add comments about calc_index() ceiling work
timers: Move trigger_dyntick_cpu() to enqueue_timer()
timers: Use only bucket expiry for base->next_expiry value
timers: Preserve higher bits of expiration on index calculation
clocksource/drivers/timer-atmel-tcb: Add sama5d2 support
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux
Pull thread updates from Christian Brauner:
"This contains the changes to add the missing support for attaching to
time namespaces via pidfds.
Last cycle setns() was changed to support attaching to multiple
namespaces atomically. This requires all namespaces to have a point of
no return where they can't fail anymore.
Specifically, <namespace-type>_install() is allowed to perform
permission checks and install the namespace into the new struct nsset
that it has been given but it is not allowed to make visible changes
to the affected task. Once <namespace-type>_install() returns,
anything that the given namespace type additionally requires to be
setup needs to ideally be done in a function that can't fail or if it
fails the failure must be non-fatal.
For time namespaces the relevant functions that fell into this
category were timens_set_vvar_page() and vdso_join_timens(). The
latter could still fail although it didn't need to. This function is
only implemented for vdso_join_timens() in current mainline. As
discussed on-list (cf. [1]), in order to make setns() support time
namespaces when attaching to multiple namespaces at once properly we
changed vdso_join_timens() to always succeed. So vdso_join_timens()
replaces the mmap_write_lock_killable() with mmap_read_lock().
Please note that arm is about to grow vdso support for time namespaces
(possibly this merge window). We've synced on this change and arm64
also uses mmap_read_lock(), i.e. makes vdso_join_timens() a function
that can't fail. Once the changes here and the arm64 changes have
landed, vdso_join_timens() should be turned into a void function so
it's obvious to callers and implementers on other architectures that
the expectation is that it can't fail.
We didn't do this right away because it would've introduced
unnecessary merge conflicts between the two trees for no major gain.
As always, tests included"
[1]: https://lore.kernel.org/lkml/20200611110221.pgd3r5qkjrjmfqa2@wittgenstein
* tag 'threads-v5.9' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux:
tests: add CLONE_NEWTIME setns tests
nsproxy: support CLONE_NEWTIME with setns()
timens: add timens_commit() helper
timens: make vdso_join_timens() always succeed
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Ingo Molnar:
- Improve uclamp performance by using a static key for the fast path
- Add the "sched_util_clamp_min_rt_default" sysctl, to optimize for
better power efficiency of RT tasks on battery powered devices.
(The default is to maximize performance & reduce RT latencies.)
- Improve utime and stime tracking accuracy, which had a fixed boundary
of error, which created larger and larger relative errors as the
values become larger. This is now replaced with more precise
arithmetics, using the new mul_u64_u64_div_u64() helper in math64.h.
- Improve the deadline scheduler, such as making it capacity aware
- Improve frequency-invariant scheduling
- Misc cleanups in energy/power aware scheduling
- Add sched_update_nr_running tracepoint to track changes to nr_running
- Documentation additions and updates
- Misc cleanups and smaller fixes
* tag 'sched-core-2020-08-03' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (54 commits)
sched/doc: Factorize bits between sched-energy.rst & sched-capacity.rst
sched/doc: Document capacity aware scheduling
sched: Document arch_scale_*_capacity()
arm, arm64: Fix selection of CONFIG_SCHED_THERMAL_PRESSURE
Documentation/sysctl: Document uclamp sysctl knobs
sched/uclamp: Add a new sysctl to control RT default boost value
sched/uclamp: Fix a deadlock when enabling uclamp static key
sched: Remove duplicated tick_nohz_full_enabled() check
sched: Fix a typo in a comment
sched/uclamp: Remove unnecessary mutex_init()
arm, arm64: Select CONFIG_SCHED_THERMAL_PRESSURE
sched: Cleanup SCHED_THERMAL_PRESSURE kconfig entry
arch_topology, sched/core: Cleanup thermal pressure definition
trace/events/sched.h: fix duplicated word
linux/sched/mm.h: drop duplicated words in comments
smp: Fix a potential usage of stale nr_cpus
sched/fair: update_pick_idlest() Select group with lowest group_util when idle_cpus are equal
sched: nohz: stop passing around unused "ticks" parameter.
sched: Better document ttwu()
sched: Add a tracepoint to track rq->nr_running
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull RCU updates from Ingo Molnar:
- kfree_rcu updates
- RCU tasks updates
- Read-side scalability tests
- SRCU updates
- Torture-test updates
- Documentation updates
- Miscellaneous fixes
* tag 'core-rcu-2020-08-03' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (109 commits)
torture: Remove obsolete "cd $KVM"
torture: Avoid duplicate specification of qemu command
torture: Dump ftrace at shutdown only if requested
torture: Add kvm-tranform.sh script for qemu-cmd files
torture: Add more tracing crib notes to kvm.sh
torture: Improve diagnostic for KCSAN-incapable compilers
torture: Correctly summarize build-only runs
torture: Pass --kmake-arg to all make invocations
rcutorture: Check for unwatched readers
torture: Abstract out console-log error detection
torture: Add a stop-run capability
torture: Create qemu-cmd in --buildonly runs
rcu/rcutorture: Replace 0 with false
torture: Add --allcpus argument to the kvm.sh script
torture: Remove whitespace from identify_qemu_vcpus output
rcutorture: NULL rcu_torture_current earlier in cleanup code
rcutorture: Handle non-statistic bang-string error messages
torture: Set configfile variable to current scenario
rcutorture: Add races with task-exit processing
locktorture: Use true and false to assign to bool variables
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 and cross-arch updates from Catalin Marinas:
"Here's a slightly wider-spread set of updates for 5.9.
Going outside the usual arch/arm64/ area is the removal of
read_barrier_depends() series from Will and the MSI/IOMMU ID
translation series from Lorenzo.
The notable arm64 updates include ARMv8.4 TLBI range operations and
translation level hint, time namespace support, and perf.
Summary:
- Removal of the tremendously unpopular read_barrier_depends()
barrier, which is a NOP on all architectures apart from Alpha, in
favour of allowing architectures to override READ_ONCE() and do
whatever dance they need to do to ensure address dependencies
provide LOAD -> LOAD/STORE ordering.
This work also offers a potential solution if compilers are shown
to convert LOAD -> LOAD address dependencies into control
dependencies (e.g. under LTO), as weakly ordered architectures will
effectively be able to upgrade READ_ONCE() to smp_load_acquire().
The latter case is not used yet, but will be discussed further at
LPC.
- Make the MSI/IOMMU input/output ID translation PCI agnostic,
augment the MSI/IOMMU ACPI/OF ID mapping APIs to accept an input ID
bus-specific parameter and apply the resulting changes to the
device ID space provided by the Freescale FSL bus.
- arm64 support for TLBI range operations and translation table level
hints (part of the ARMv8.4 architecture version).
- Time namespace support for arm64.
- Export the virtual and physical address sizes in vmcoreinfo for
makedumpfile and crash utilities.
- CPU feature handling cleanups and checks for programmer errors
(overlapping bit-fields).
- ACPI updates for arm64: disallow AML accesses to EFI code regions
and kernel memory.
- perf updates for arm64.
- Miscellaneous fixes and cleanups, most notably PLT counting
optimisation for module loading, recordmcount fix to ignore
relocations other than R_AARCH64_CALL26, CMA areas reserved for
gigantic pages on 16K and 64K configurations.
- Trivial typos, duplicate words"
Link: http://lkml.kernel.org/r/20200710165203.31284-1-will@kernel.org
Link: http://lkml.kernel.org/r/20200619082013.13661-1-lorenzo.pieralisi@arm.com
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (82 commits)
arm64: use IRQ_STACK_SIZE instead of THREAD_SIZE for irq stack
arm64/mm: save memory access in check_and_switch_context() fast switch path
arm64: sigcontext.h: delete duplicated word
arm64: ptrace.h: delete duplicated word
arm64: pgtable-hwdef.h: delete duplicated words
bus: fsl-mc: Add ACPI support for fsl-mc
bus/fsl-mc: Refactor the MSI domain creation in the DPRC driver
of/irq: Make of_msi_map_rid() PCI bus agnostic
of/irq: make of_msi_map_get_device_domain() bus agnostic
dt-bindings: arm: fsl: Add msi-map device-tree binding for fsl-mc bus
of/device: Add input id to of_dma_configure()
of/iommu: Make of_map_rid() PCI agnostic
ACPI/IORT: Add an input ID to acpi_dma_configure()
ACPI/IORT: Remove useless PCI bus walk
ACPI/IORT: Make iort_msi_map_rid() PCI agnostic
ACPI/IORT: Make iort_get_device_domain IRQ domain agnostic
ACPI/IORT: Make iort_match_node_callback walk the ACPI namespace for NC
arm64: enable time namespace support
arm64/vdso: Restrict splitting VVAR VMA
arm64/vdso: Handle faults on timens page
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-rcu into core/rcu
Pull the v5.9 RCU bits from Paul E. McKenney:
- Documentation updates
- Miscellaneous fixes
- kfree_rcu updates
- RCU tasks updates
- Read-side scalability tests
- SRCU updates
- Torture-test updates
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
This modifies the first 32 bits out of the 128 bits of a random CPU's
net_rand_state on interrupt or CPU activity to complicate remote
observations that could lead to guessing the network RNG's internal
state.
Note that depending on some network devices' interrupt rate moderation
or binding, this re-seeding might happen on every packet or even almost
never.
In addition, with NOHZ some CPUs might not even get timer interrupts,
leaving their local state rarely updated, while they are running
networked processes making use of the random state. For this reason, we
also perform this update in update_process_times() in order to at least
update the state when there is user or system activity, since it's the
only case we care about.
Reported-by: Amit Klein <aksecurity@gmail.com>
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Eric Dumazet <edumazet@google.com>
Cc: "Jason A. Donenfeld" <Jason@zx2c4.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Kees Cook <keescook@chromium.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Willy Tarreau <w@1wt.eu>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
A sequence counter write side critical section must be protected by some
form of locking to serialize writers. A plain seqcount_t does not
contain the information of which lock must be held when entering a write
side critical section.
Use the new seqcount_raw_spinlock_t data type, which allows to associate
a raw spinlock with the sequence counter. This enables lockdep to verify
that the raw spinlock used for writer serialization is held when the
write side critical section is entered.
If lockdep is disabled this lock association is compiled out and has
neither storage size nor runtime overhead.
Signed-off-by: Ahmed S. Darwish <a.darwish@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200720155530.1173732-25-a.darwish@linutronix.de
|
|
A sequence counter write side critical section must be protected by some
form of locking to serialize writers. A plain seqcount_t does not
contain the information of which lock must be held when entering a write
side critical section.
Use the new seqcount_raw_spinlock_t data type, which allows to associate
a raw spinlock with the sequence counter. This enables lockdep to verify
that the raw spinlock used for writer serialization is held when the
write side critical section is entered.
If lockdep is disabled this lock association is compiled out and has
neither storage size nor runtime overhead.
Signed-off-by: Ahmed S. Darwish <a.darwish@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200720155530.1173732-18-a.darwish@linutronix.de
|
|
The nohz tick code recalculates the timer wheel's next expiry on each idle
loop iteration.
On the other hand, the base next expiry is now always cached and updated
upon timer enqueue and execution. Only timer dequeue may leave
base->next_expiry out of date (but then its stale value won't ever go past
the actual next expiry to be recalculated).
Since recalculating the next_expiry isn't a free operation, especially when
the last wheel level is reached to find out that no timer has been enqueued
at all, reuse the next expiry cache when it is known to be reliable, which
it is most of the time.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20200723151641.12236-1-frederic@kernel.org
|
|
The "ticks" parameter was added in commit 0f004f5a696a ("sched: Cure more
NO_HZ load average woes") since calc_global_nohz() was called and needed
the "ticks" argument.
But in commit c308b56b5398 ("sched: Fix nohz load accounting -- again!")
it became unused as the function calc_global_nohz() dropped using "ticks".
Fixes: c308b56b5398 ("sched: Fix nohz load accounting -- again!")
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/1593628458-32290-1-git-send-email-paul.gortmaker@windriver.com
|
|
sched_clock uses seqcount_t latching to switch between two storage
places protected by the sequence counter. This allows it to have
interruptible, NMI-safe, seqcount_t write side critical sections.
Since 7fc26327b756 ("seqlock: Introduce raw_read_seqcount_latch()"),
raw_read_seqcount_latch() became the standardized way for seqcount_t
latch read paths. Due to the dependent load, it also has one read
memory barrier less than the currently used raw_read_seqcount() API.
Use raw_read_seqcount_latch() for the seqcount_t latch read path.
Signed-off-by: Ahmed S. Darwish <a.darwish@linutronix.de>
Signed-off-by: Leo Yan <leo.yan@linaro.org>
Link: https://lkml.kernel.org/r/20200625085745.GD117543@hirez.programming.kicks-ass.net
Link: https://lkml.kernel.org/r/20200715092345.GA231464@debian-buster-darwi.lab.linutronix.de
Link: https://lore.kernel.org/r/20200716051130.4359-3-leo.yan@linaro.org
References: 1809bfa44e10 ("timers, sched/clock: Avoid deadlock during read from NMI")
Signed-off-by: Will Deacon <will@kernel.org>
|
|
In order to support perf_event_mmap_page::cap_time features, an
architecture needs, aside from a userspace readable counter register,
to expose the exact clock data so that userspace can convert the
counter register into a correct timestamp.
Provide struct clock_read_data and two (seqcount) helpers so that
architectures (arm64 in specific) can expose the numbers to userspace.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Leo Yan <leo.yan@linaro.org>
Link: https://lore.kernel.org/r/20200716051130.4359-2-leo.yan@linaro.org
Signed-off-by: Will Deacon <will@kernel.org>
|
|
There is nothing that prevents from forwarding the base clock if it's one
jiffy off. The reason for this arbitrary limit of two jiffies is historical
and does not longer exist.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juri Lelli <juri.lelli@redhat.com>
Link: https://lkml.kernel.org/r/20200717140551.29076-13-frederic@kernel.org
|
|
There is no reason to keep this guard around. The code makes sure that
base->clk remains sane and won't be forwarded beyond jiffies nor set
backward.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juri Lelli <juri.lelli@redhat.com>
Link: https://lkml.kernel.org/r/20200717140551.29076-12-frederic@kernel.org
|
|
Now that the core timer infrastructure doesn't depend anymore on
periodic base->clk increments, even when the CPU is not in NO_HZ mode,
timer softirqs can be skipped until there are timers to expire.
Some spurious softirqs can still remain since base->next_expiry doesn't
keep track of canceled timers but this still reduces the number of softirqs
significantly: ~15 times less for HZ=1000 and ~5 times less for HZ=100.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juri Lelli <juri.lelli@redhat.com>
Link: https://lkml.kernel.org/r/20200717140551.29076-11-frederic@kernel.org
|
|
As for next_expiry, the base->clk catch up logic will be expanded beyond
NOHZ in order to avoid triggering useless softirqs.
If softirqs should only fire to expire pending timers, periodic base->clk
increments must be skippable for random amounts of time. Therefore prepare
to catch-up with missing updates whenever an up-to-date base clock is
needed.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juri Lelli <juri.lelli@redhat.com>
Link: https://lkml.kernel.org/r/20200717140551.29076-10-frederic@kernel.org
|
|
Now that the next expiry it tracked unconditionally when a timer is added,
this information can be reused on a tick firing after exiting nohz.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juri Lelli <juri.lelli@redhat.com>
Link: https://lkml.kernel.org/r/20200717140551.29076-9-frederic@kernel.org
|
|
So far next expiry was only tracked while the CPU was in nohz_idle mode
in order to cope with missing ticks that can't increment the base->clk
periodically anymore.
This logic is going to be expanded beyond nohz in order to spare timer
softirqs so do it unconditionally.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juri Lelli <juri.lelli@redhat.com>
Link: https://lkml.kernel.org/r/20200717140551.29076-8-frederic@kernel.org
|
|
If a level has a timer that expires before reaching the next level, there
is no need to iterate further.
The next level is reached when the 3 lower bits of the current level are
cleared. If the next event happens before/during that, the next levels
won't provide an earlier expiration.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juri Lelli <juri.lelli@redhat.com>
Link: https://lkml.kernel.org/r/20200717140551.29076-7-frederic@kernel.org
|
|
calc_index() adds 1 unit of the level granularity to the expiry passed
in parameter to ensure that the timer doesn't expire too early. Add a
comment to explain that and the resulting layout in the wheel.
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juri Lelli <juri.lelli@redhat.com>
Link: https://lkml.kernel.org/r/20200717140551.29076-6-frederic@kernel.org
|
|
Consolidate the code by calling trigger_dyntick_cpu() from
enqueue_timer() instead of calling it from all its callers.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juri Lelli <juri.lelli@redhat.com>
Link: https://lkml.kernel.org/r/20200717140551.29076-5-frederic@kernel.org
|
|
The bucket expiry time is the effective expriy time of timers and is
greater than or equal to the requested timer expiry time. This is due
to the guarantee that timers never expire early and the reduced expiry
granularity in the secondary wheel levels.
When a timer is enqueued, trigger_dyntick_cpu() checks whether the
timer is the new first timer. This check compares next_expiry with
the requested timer expiry value and not with the effective expiry
value of the bucket into which the timer was queued.
Storing the requested timer expiry value in base->next_expiry can lead
to base->clk going backwards if the requested timer expiry value is
smaller than base->clk. Commit 30c66fc30ee7 ("timer: Prevent base->clk
from moving backward") worked around this by preventing the store when
timer->expiry is before base->clk, but did not fix the underlying
problem.
Use the expiry value of the bucket into which the timer is queued to
do the new first timer check. This fixes the base->clk going backward
problem.
The workaround of commit 30c66fc30ee7 ("timer: Prevent base->clk from
moving backward") in trigger_dyntick_cpu() is not longer necessary as the
timers bucket expiry is guaranteed to be greater than or equal base->clk.
Signed-off-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20200717140551.29076-4-frederic@kernel.org
|
|
The higher bits of the timer expiration are cropped while calling
calc_index() due to the implicit cast from unsigned long to unsigned int.
This loss shouldn't have consequences on the current code since all the
computation to calculate the index is done on the lower 32 bits.
However to prepare for returning the actual bucket expiration from
calc_index() in order to properly fix base->next_expiry updates, the higher
bits need to be preserved.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20200717140551.29076-3-frederic@kernel.org
|
|
When an expiration delta falls into the last level of the wheel, that delta
has be compared against the maximum possible delay and reduced to fit in if
necessary.
However instead of comparing the delta against the maximum, the code
compares the actual expiry against the maximum. Then instead of fixing the
delta to fit in, it sets the maximum delta as the expiry value.
This can result in various undesired outcomes, the worst possible one
being a timer expiring 15 days ahead to fire immediately.
Fixes: 500462a9de65 ("timers: Switch to a non-cascading wheel")
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20200717140551.29076-2-frederic@kernel.org
|
|
When a timer is enqueued with a negative delta (ie: expiry is below
base->clk), it gets added to the wheel as expiring now (base->clk).
Yet the value that gets stored in base->next_expiry, while calling
trigger_dyntick_cpu(), is the initial timer->expires value. The
resulting state becomes:
base->next_expiry < base->clk
On the next timer enqueue, forward_timer_base() may accidentally
rewind base->clk. As a possible outcome, timers may expire way too
early, the worst case being that the highest wheel levels get spuriously
processed again.
To prevent from that, make sure that base->next_expiry doesn't get below
base->clk.
Fixes: a683f390b93f ("timers: Forward the wheel clock whenever possible")
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Tested-by: Juri Lelli <juri.lelli@redhat.com>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20200703010657.2302-1-frederic@kernel.org
|
|
So far setns() was missing time namespace support. This was partially due
to it simply not being implemented but also because vdso_join_timens()
could still fail which made switching to multiple namespaces atomically
problematic. This is now fixed so support CLONE_NEWTIME with setns()
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
Reviewed-by: Andrei Vagin <avagin@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Serge Hallyn <serge@hallyn.com>
Cc: Dmitry Safonov <dima@arista.com>
Link: https://lore.kernel.org/r/20200706154912.3248030-4-christian.brauner@ubuntu.com
|
|
Wrap the calls to timens_set_vvar_page() and vdso_join_timens() in
timens_on_fork() and timens_install() in a new timens_commit() helper.
We'll use this helper in a follow-up patch in nsproxy too.
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
Reviewed-by: Andrei Vagin <avagin@gmail.com>
Cc: Will Deacon <will@kernel.org>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Dmitry Safonov <dima@arista.com>
Cc: linux-arm-kernel@lists.infradead.org
Link: https://lore.kernel.org/r/20200706154912.3248030-3-christian.brauner@ubuntu.com
|
|
As discussed on-list (cf. [1]), in order to make setns() support time
namespaces when attaching to multiple namespaces at once properly we
need to tweak vdso_join_timens() to always succeed. So switch
vdso_join_timens() to using a read lock and replacing
mmap_write_lock_killable() to mmap_read_lock() as we discussed.
Last cycle setns() was changed to support attaching to multiple namespaces
atomically. This requires all namespaces to have a point of no return where
they can't fail anymore. Specifically, <namespace-type>_install() is
allowed to perform permission checks and install the namespace into the new
struct nsset that it has been given but it is not allowed to make visible
changes to the affected task. Once <namespace-type>_install() returns
anything that the given namespace type requires to be setup in addition
needs to ideally be done in a function that can't fail or if it fails the
failure is not fatal. For time namespaces the relevant functions that fall
into this category are timens_set_vvar_page() and vdso_join_timens().
Currently the latter can fail but doesn't need to. With this we can go on
to implement a timens_commit() helper in a follow up patch to be used by
setns().
[1]: https://lore.kernel.org/lkml/20200611110221.pgd3r5qkjrjmfqa2@wittgenstein
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
Reviewed-by: Andrei Vagin <avagin@gmail.com>
Cc: Will Deacon <will@kernel.org>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Dmitry Safonov <dima@arista.com>
Cc: linux-arm-kernel@lists.infradead.org
Link: https://lore.kernel.org/r/20200706154912.3248030-2-christian.brauner@ubuntu.com
|
|
Setting a tick dependency on any task, including the case where a task
sets that dependency on itself, triggers an IPI to all CPUs. That is
of course suboptimal but it had previously not been an issue because it
was only used by POSIX CPU timers on nohz_full, which apparently never
occurs in latency-sensitive workloads in production. (Or users of such
systems are suffering in silence on the one hand or venting their ire
on the wrong people on the other.)
But RCU now sets a task tick dependency on the current task in order
to fix stall issues that can occur during RCU callback processing.
Thus, RCU callback processing triggers frequent system-wide IPIs from
nohz_full CPUs. This is quite counter-productive, after all, avoiding
IPIs is what nohz_full is supposed to be all about.
This commit therefore optimizes tasks' self-setting of a task tick
dependency by using tick_nohz_full_kick() to avoid the system-wide IPI.
Instead, only the execution of the one task is disturbed, which is
acceptable given that this disturbance is well down into the noise
compared to the degree to which the RCU callback processing itself
disturbs execution.
Fixes: 6a949b7af82d (rcu: Force on tick when invoking lots of callbacks)
Reported-by: Matt Fleming <matt@codeblueprint.co.uk>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Cc: stable@kernel.org
Cc: Paul E. McKenney <paulmck@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 entry updates from Thomas Gleixner:
"The x86 entry, exception and interrupt code rework
This all started about 6 month ago with the attempt to move the Posix
CPU timer heavy lifting out of the timer interrupt code and just have
lockless quick checks in that code path. Trivial 5 patches.
This unearthed an inconsistency in the KVM handling of task work and
the review requested to move all of this into generic code so other
architectures can share.
Valid request and solved with another 25 patches but those unearthed
inconsistencies vs. RCU and instrumentation.
Digging into this made it obvious that there are quite some
inconsistencies vs. instrumentation in general. The int3 text poke
handling in particular was completely unprotected and with the batched
update of trace events even more likely to expose to endless int3
recursion.
In parallel the RCU implications of instrumenting fragile entry code
came up in several discussions.
The conclusion of the x86 maintainer team was to go all the way and
make the protection against any form of instrumentation of fragile and
dangerous code pathes enforcable and verifiable by tooling.
A first batch of preparatory work hit mainline with commit
d5f744f9a2ac ("Pull x86 entry code updates from Thomas Gleixner")
That (almost) full solution introduced a new code section
'.noinstr.text' into which all code which needs to be protected from
instrumentation of all sorts goes into. Any call into instrumentable
code out of this section has to be annotated. objtool has support to
validate this.
Kprobes now excludes this section fully which also prevents BPF from
fiddling with it and all 'noinstr' annotated functions also keep
ftrace off. The section, kprobes and objtool changes are already
merged.
The major changes coming with this are:
- Preparatory cleanups
- Annotating of relevant functions to move them into the
noinstr.text section or enforcing inlining by marking them
__always_inline so the compiler cannot misplace or instrument
them.
- Splitting and simplifying the idtentry macro maze so that it is
now clearly separated into simple exception entries and the more
interesting ones which use interrupt stacks and have the paranoid
handling vs. CR3 and GS.
- Move quite some of the low level ASM functionality into C code:
- enter_from and exit to user space handling. The ASM code now
calls into C after doing the really necessary ASM handling and
the return path goes back out without bells and whistels in
ASM.
- exception entry/exit got the equivivalent treatment
- move all IRQ tracepoints from ASM to C so they can be placed as
appropriate which is especially important for the int3
recursion issue.
- Consolidate the declaration and definition of entry points between
32 and 64 bit. They share a common header and macros now.
- Remove the extra device interrupt entry maze and just use the
regular exception entry code.
- All ASM entry points except NMI are now generated from the shared
header file and the corresponding macros in the 32 and 64 bit
entry ASM.
- The C code entry points are consolidated as well with the help of
DEFINE_IDTENTRY*() macros. This allows to ensure at one central
point that all corresponding entry points share the same
semantics. The actual function body for most entry points is in an
instrumentable and sane state.
There are special macros for the more sensitive entry points, e.g.
INT3 and of course the nasty paranoid #NMI, #MCE, #DB and #DF.
They allow to put the whole entry instrumentation and RCU handling
into safe places instead of the previous pray that it is correct
approach.
- The INT3 text poke handling is now completely isolated and the
recursion issue banned. Aside of the entry rework this required
other isolation work, e.g. the ability to force inline bsearch.
- Prevent #DB on fragile entry code, entry relevant memory and
disable it on NMI, #MC entry, which allowed to get rid of the
nested #DB IST stack shifting hackery.
- A few other cleanups and enhancements which have been made
possible through this and already merged changes, e.g.
consolidating and further restricting the IDT code so the IDT
table becomes RO after init which removes yet another popular
attack vector
- About 680 lines of ASM maze are gone.
There are a few open issues:
- An escape out of the noinstr section in the MCE handler which needs
some more thought but under the aspect that MCE is a complete
trainwreck by design and the propability to survive it is low, this
was not high on the priority list.
- Paravirtualization
When PV is enabled then objtool complains about a bunch of indirect
calls out of the noinstr section. There are a few straight forward
ways to fix this, but the other issues vs. general correctness were
more pressing than parawitz.
- KVM
KVM is inconsistent as well. Patches have been posted, but they
have not yet been commented on or picked up by the KVM folks.
- IDLE
Pretty much the same problems can be found in the low level idle
code especially the parts where RCU stopped watching. This was
beyond the scope of the more obvious and exposable problems and is
on the todo list.
The lesson learned from this brain melting exercise to morph the
evolved code base into something which can be validated and understood
is that once again the violation of the most important engineering
principle "correctness first" has caused quite a few people to spend
valuable time on problems which could have been avoided in the first
place. The "features first" tinkering mindset really has to stop.
With that I want to say thanks to everyone involved in contributing to
this effort. Special thanks go to the following people (alphabetical
order): Alexandre Chartre, Andy Lutomirski, Borislav Petkov, Brian
Gerst, Frederic Weisbecker, Josh Poimboeuf, Juergen Gross, Lai
Jiangshan, Macro Elver, Paolo Bonzin,i Paul McKenney, Peter Zijlstra,
Vitaly Kuznetsov, and Will Deacon"
* tag 'x86-entry-2020-06-12' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (142 commits)
x86/entry: Force rcu_irq_enter() when in idle task
x86/entry: Make NMI use IDTENTRY_RAW
x86/entry: Treat BUG/WARN as NMI-like entries
x86/entry: Unbreak __irqentry_text_start/end magic
x86/entry: __always_inline CR2 for noinstr
lockdep: __always_inline more for noinstr
x86/entry: Re-order #DB handler to avoid *SAN instrumentation
x86/entry: __always_inline arch_atomic_* for noinstr
x86/entry: __always_inline irqflags for noinstr
x86/entry: __always_inline debugreg for noinstr
x86/idt: Consolidate idt functionality
x86/idt: Cleanup trap_init()
x86/idt: Use proper constants for table size
x86/idt: Add comments about early #PF handling
x86/idt: Mark init only functions __init
x86/entry: Rename trace_hardirqs_off_prepare()
x86/entry: Clarify irq_{enter,exit}_rcu()
x86/entry: Remove DBn stacks
x86/entry: Remove debug IDT frobbing
x86/entry: Optimize local_db_save() for virt
...
|