summaryrefslogtreecommitdiff
path: root/kernel/bpf
AgeCommit message (Collapse)Author
2020-05-13bpf: Add comments to interpret bpf_prog return valuesYonghong Song
Add a short comment in bpf_iter_run_prog() function to explain how bpf_prog return value is converted to seq_ops->show() return value: bpf_prog return seq_ops()->show() return 0 0 1 -EAGAIN When show() return value is -EAGAIN, the current bpf_seq_read() will end. If the current seq_file buffer is empty, -EAGAIN will return to user space. Otherwise, the buffer will be copied to user space. In both cases, the next bpf_seq_read() call will try to show the same object which returned -EAGAIN previously. Signed-off-by: Yonghong Song <yhs@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Andrii Nakryiko <andriin@fb.com> Link: https://lore.kernel.org/bpf/20200513180218.2949517-1-yhs@fb.com
2020-05-11bpf, libbpf: Replace zero-length array with flexible-arrayGustavo A. R. Silva
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] sizeof(flexible-array-member) triggers a warning because flexible array members have incomplete type[1]. There are some instances of code in which the sizeof operator is being incorrectly/erroneously applied to zero-length arrays and the result is zero. Such instances may be hiding some bugs. So, this work (flexible-array member conversions) will also help to get completely rid of those sorts of issues. This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavoars@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Yonghong Song <yhs@fb.com> Link: https://lore.kernel.org/bpf/20200507185057.GA13981@embeddedor
2020-05-09bpf: Support variable length array in tracing programsYonghong Song
In /proc/net/ipv6_route, we have struct fib6_info { struct fib6_table *fib6_table; ... struct fib6_nh fib6_nh[0]; } struct fib6_nh { struct fib_nh_common nh_common; struct rt6_info **rt6i_pcpu; struct rt6_exception_bucket *rt6i_exception_bucket; }; struct fib_nh_common { ... u8 nhc_gw_family; ... } The access: struct fib6_nh *fib6_nh = &rt->fib6_nh; ... fib6_nh->nh_common.nhc_gw_family ... This patch ensures such an access is handled properly. Signed-off-by: Yonghong Song <yhs@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Andrii Nakryiko <andriin@fb.com> Link: https://lore.kernel.org/bpf/20200509175916.2476853-1-yhs@fb.com
2020-05-09bpf: Handle spilled PTR_TO_BTF_ID properly when checking stack_boundaryYonghong Song
This specifically to handle the case like below: // ptr below is a socket ptr identified by PTR_TO_BTF_ID u64 param[2] = { ptr, val }; bpf_seq_printf(seq, fmt, sizeof(fmt), param, sizeof(param)); In this case, the 16 bytes stack for "param" contains: 8 bytes for ptr with spilled PTR_TO_BTF_ID 8 bytes for val as STACK_MISC The current verifier will complain the ptr should not be visible to the helper. ... 16: (7b) *(u64 *)(r10 -64) = r2 18: (7b) *(u64 *)(r10 -56) = r1 19: (bf) r4 = r10 ; 20: (07) r4 += -64 ; BPF_SEQ_PRINTF(seq, fmt1, (long)s, s->sk_protocol); 21: (bf) r1 = r6 22: (18) r2 = 0xffffa8d00018605a 24: (b4) w3 = 10 25: (b4) w5 = 16 26: (85) call bpf_seq_printf#125 R0=inv(id=0) R1_w=ptr_seq_file(id=0,off=0,imm=0) R2_w=map_value(id=0,off=90,ks=4,vs=144,imm=0) R3_w=inv10 R4_w=fp-64 R5_w=inv16 R6=ptr_seq_file(id=0,off=0,imm=0) R7=ptr_netlink_sock(id=0,off=0,imm=0) R10=fp0 fp-56_w=mmmmmmmm fp-64_w=ptr_ last_idx 26 first_idx 13 regs=8 stack=0 before 25: (b4) w5 = 16 regs=8 stack=0 before 24: (b4) w3 = 10 invalid indirect read from stack off -64+0 size 16 Signed-off-by: Yonghong Song <yhs@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Andrii Nakryiko <andriin@fb.com> Link: https://lore.kernel.org/bpf/20200509175915.2476783-1-yhs@fb.com
2020-05-09bpf: Add PTR_TO_BTF_ID_OR_NULL supportYonghong Song
Add bpf_reg_type PTR_TO_BTF_ID_OR_NULL support. For tracing/iter program, the bpf program context definition, e.g., for previous bpf_map target, looks like struct bpf_iter__bpf_map { struct bpf_iter_meta *meta; struct bpf_map *map; }; The kernel guarantees that meta is not NULL, but map pointer maybe NULL. The NULL map indicates that all objects have been traversed, so bpf program can take proper action, e.g., do final aggregation and/or send final report to user space. Add btf_id_or_null_non0_off to prog->aux structure, to indicate that if the context access offset is not 0, set to PTR_TO_BTF_ID_OR_NULL instead of PTR_TO_BTF_ID. This bit is set for tracing/iter program. Signed-off-by: Yonghong Song <yhs@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Andrii Nakryiko <andriin@fb.com> Link: https://lore.kernel.org/bpf/20200509175912.2476576-1-yhs@fb.com
2020-05-09bpf: Add task and task/file iterator targetsYonghong Song
Only the tasks belonging to "current" pid namespace are enumerated. For task/file target, the bpf program will have access to struct task_struct *task u32 fd struct file *file where fd/file is an open file for the task. Signed-off-by: Yonghong Song <yhs@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Andrii Nakryiko <andriin@fb.com> Link: https://lore.kernel.org/bpf/20200509175911.2476407-1-yhs@fb.com
2020-05-09bpf: Add bpf_map iteratorYonghong Song
Implement seq_file operations to traverse all bpf_maps. Signed-off-by: Yonghong Song <yhs@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Andrii Nakryiko <andriin@fb.com> Link: https://lore.kernel.org/bpf/20200509175909.2476096-1-yhs@fb.com
2020-05-09bpf: Implement common macros/helpers for target iteratorsYonghong Song
Macro DEFINE_BPF_ITER_FUNC is implemented so target can define an init function to capture the BTF type which represents the target. The bpf_iter_meta is a structure holding meta data, common to all targets in the bpf program. Additional marker functions are called before or after bpf_seq_read() show()/next()/stop() callback functions to help calculate precise seq_num and whether call bpf_prog inside stop(). Two functions, bpf_iter_get_info() and bpf_iter_run_prog(), are implemented so target can get needed information from bpf_iter infrastructure and can run the program. Signed-off-by: Yonghong Song <yhs@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Andrii Nakryiko <andriin@fb.com> Link: https://lore.kernel.org/bpf/20200509175907.2475956-1-yhs@fb.com
2020-05-09bpf: Create file bpf iteratorYonghong Song
To produce a file bpf iterator, the fd must be corresponding to a link_fd assocciated with a trace/iter program. When the pinned file is opened, a seq_file will be generated. Signed-off-by: Yonghong Song <yhs@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Andrii Nakryiko <andriin@fb.com> Link: https://lore.kernel.org/bpf/20200509175906.2475893-1-yhs@fb.com
2020-05-09bpf: Create anonymous bpf iteratorYonghong Song
A new bpf command BPF_ITER_CREATE is added. The anonymous bpf iterator is seq_file based. The seq_file private data are referenced by targets. The bpf_iter infrastructure allocated additional space at seq_file->private before the space used by targets to store some meta data, e.g., prog: prog to run session_id: an unique id for each opened seq_file seq_num: how many times bpf programs are queried in this session done_stop: an internal state to decide whether bpf program should be called in seq_ops->stop() or not The seq_num will start from 0 for valid objects. The bpf program may see the same seq_num more than once if - seq_file buffer overflow happens and the same object is retried by bpf_seq_read(), or - the bpf program explicitly requests a retry of the same object Since module is not supported for bpf_iter, all target registeration happens at __init time, so there is no need to change bpf_iter_unreg_target() as it is used mostly in error path of the init function at which time no bpf iterators have been created yet. Signed-off-by: Yonghong Song <yhs@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Andrii Nakryiko <andriin@fb.com> Link: https://lore.kernel.org/bpf/20200509175905.2475770-1-yhs@fb.com
2020-05-09bpf: Implement bpf_seq_read() for bpf iteratorYonghong Song
bpf iterator uses seq_file to provide a lossless way to transfer data to user space. But we want to call bpf program after all objects have been traversed, and bpf program may write additional data to the seq_file buffer. The current seq_read() does not work for this use case. Besides allowing stop() function to write to the buffer, the bpf_seq_read() also fixed the buffer size to one page. If any single call of show() or stop() will emit data more than one page to cause overflow, -E2BIG error code will be returned to user space. Signed-off-by: Yonghong Song <yhs@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Andrii Nakryiko <andriin@fb.com> Link: https://lore.kernel.org/bpf/20200509175904.2475468-1-yhs@fb.com
2020-05-09bpf: Support bpf tracing/iter programs for BPF_LINK_UPDATEYonghong Song
Added BPF_LINK_UPDATE support for tracing/iter programs. This way, a file based bpf iterator, which holds a reference to the link, can have its bpf program updated without creating new files. Signed-off-by: Yonghong Song <yhs@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Andrii Nakryiko <andriin@fb.com> Link: https://lore.kernel.org/bpf/20200509175902.2475262-1-yhs@fb.com
2020-05-09bpf: Support bpf tracing/iter programs for BPF_LINK_CREATEYonghong Song
Given a bpf program, the step to create an anonymous bpf iterator is: - create a bpf_iter_link, which combines bpf program and the target. In the future, there could be more information recorded in the link. A link_fd will be returned to the user space. - create an anonymous bpf iterator with the given link_fd. The bpf_iter_link can be pinned to bpffs mount file system to create a file based bpf iterator as well. The benefit to use of bpf_iter_link: - using bpf link simplifies design and implementation as bpf link is used for other tracing bpf programs. - for file based bpf iterator, bpf_iter_link provides a standard way to replace underlying bpf programs. - for both anonymous and free based iterators, bpf link query capability can be leveraged. The patch added support of tracing/iter programs for BPF_LINK_CREATE. A new link type BPF_LINK_TYPE_ITER is added to facilitate link querying. Currently, only prog_id is needed, so there is no additional in-kernel show_fdinfo() and fill_link_info() hook is needed for BPF_LINK_TYPE_ITER link. Signed-off-by: Yonghong Song <yhs@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Andrii Nakryiko <andriin@fb.com> Link: https://lore.kernel.org/bpf/20200509175901.2475084-1-yhs@fb.com
2020-05-09bpf: Allow loading of a bpf_iter programYonghong Song
A bpf_iter program is a tracing program with attach type BPF_TRACE_ITER. The load attribute attach_btf_id is used by the verifier against a particular kernel function, which represents a target, e.g., __bpf_iter__bpf_map for target bpf_map which is implemented later. The program return value must be 0 or 1 for now. 0 : successful, except potential seq_file buffer overflow which is handled by seq_file reader. 1 : request to restart the same object In the future, other return values may be used for filtering or teminating the iterator. Signed-off-by: Yonghong Song <yhs@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Andrii Nakryiko <andriin@fb.com> Link: https://lore.kernel.org/bpf/20200509175900.2474947-1-yhs@fb.com
2020-05-09bpf: Implement an interface to register bpf_iter targetsYonghong Song
The target can call bpf_iter_reg_target() to register itself. The needed information: target: target name seq_ops: the seq_file operations for the target init_seq_private target callback to initialize seq_priv during file open fini_seq_private target callback to clean up seq_priv during file release seq_priv_size: the private_data size needed by the seq_file operations The target name represents a target which provides a seq_ops for iterating objects. The target can provide two callback functions, init_seq_private and fini_seq_private, called during file open/release time. For example, /proc/net/{tcp6, ipv6_route, netlink, ...}, net name space needs to be setup properly during file open and released properly during file release. Function bpf_iter_unreg_target() is also implemented to unregister a particular target. Signed-off-by: Yonghong Song <yhs@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Andrii Nakryiko <andriin@fb.com> Link: https://lore.kernel.org/bpf/20200509175859.2474669-1-yhs@fb.com
2020-05-08crypto: lib/sha1 - rename "sha" to "sha1"Eric Biggers
The library implementation of the SHA-1 compression function is confusingly called just "sha_transform()". Alongside it are some "SHA_" constants and "sha_init()". Presumably these are left over from a time when SHA just meant SHA-1. But now there are also SHA-2 and SHA-3, and moreover SHA-1 is now considered insecure and thus shouldn't be used. Therefore, rename these functions and constants to make it very clear that they are for SHA-1. Also add a comment to make it clear that these shouldn't be used. For the extra-misleadingly named "SHA_MESSAGE_BYTES", rename it to SHA1_BLOCK_SIZE and define it to just '64' rather than '(512/8)' so that it matches the same definition in <crypto/sha.h>. This prepares for merging <linux/cryptohash.h> into <crypto/sha.h>. Signed-off-by: Eric Biggers <ebiggers@google.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2020-05-01bpf: Fix use-after-free of bpf_link when priming half-failsAndrii Nakryiko
If bpf_link_prime() succeeds to allocate new anon file, but then fails to allocate ID for it, link priming is considered to be failed and user is supposed ot be able to directly kfree() bpf_link, because it was never exposed to user-space. But at that point file already keeps a pointer to bpf_link and will eventually call bpf_link_release(), so if bpf_link was kfree()'d by caller, that would lead to use-after-free. Fix this by first allocating ID and only then allocating file. Adding ID to link_idr is ok, because link at that point still doesn't have its ID set, so no user-space process can create a new FD for it. Fixes: a3b80e107894 ("bpf: Allocate ID for bpf_link") Reported-by: syzbot+39b64425f91b5aab714d@syzkaller.appspotmail.com Suggested-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Andrii Nakryiko <andriin@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Martin KaFai Lau <kafai@fb.com> Link: https://lore.kernel.org/bpf/20200501185622.3088964-1-andriin@fb.com
2020-05-01bpf: Sharing bpf runtime stats with BPF_ENABLE_STATSSong Liu
Currently, sysctl kernel.bpf_stats_enabled controls BPF runtime stats. Typical userspace tools use kernel.bpf_stats_enabled as follows: 1. Enable kernel.bpf_stats_enabled; 2. Check program run_time_ns; 3. Sleep for the monitoring period; 4. Check program run_time_ns again, calculate the difference; 5. Disable kernel.bpf_stats_enabled. The problem with this approach is that only one userspace tool can toggle this sysctl. If multiple tools toggle the sysctl at the same time, the measurement may be inaccurate. To fix this problem while keep backward compatibility, introduce a new bpf command BPF_ENABLE_STATS. On success, this command enables stats and returns a valid fd. BPF_ENABLE_STATS takes argument "type". Currently, only one type, BPF_STATS_RUN_TIME, is supported. We can extend the command to support other types of stats in the future. With BPF_ENABLE_STATS, user space tool would have the following flow: 1. Get a fd with BPF_ENABLE_STATS, and make sure it is valid; 2. Check program run_time_ns; 3. Sleep for the monitoring period; 4. Check program run_time_ns again, calculate the difference; 5. Close the fd. Signed-off-by: Song Liu <songliubraving@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20200430071506.1408910-2-songliubraving@fb.com
2020-04-30bpf: Fix error return code in map_lookup_and_delete_elem()Wei Yongjun
Fix to return negative error code -EFAULT from the copy_to_user() error handling case instead of 0, as done elsewhere in this function. Fixes: bd513cd08f10 ("bpf: add MAP_LOOKUP_AND_DELETE_ELEM syscall") Signed-off-by: Wei Yongjun <weiyongjun1@huawei.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Link: https://lore.kernel.org/bpf/20200430081851.166996-1-weiyongjun1@huawei.com
2020-04-30bpf: Fix unused variable warningArnd Bergmann
Hiding the only using of bpf_link_type_strs[] in an #ifdef causes an unused-variable warning: kernel/bpf/syscall.c:2280:20: error: 'bpf_link_type_strs' defined but not used [-Werror=unused-variable] 2280 | static const char *bpf_link_type_strs[] = { Move the definition into the same #ifdef. Fixes: f2e10bff16a0 ("bpf: Add support for BPF_OBJ_GET_INFO_BY_FD for bpf_link") Signed-off-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Andrii Nakryiko <andriin@fb.com> Link: https://lore.kernel.org/bpf/20200429132217.1294289-1-arnd@arndb.de
2020-04-29bpf: Allow bpf_map_lookup_elem for SOCKMAP and SOCKHASHJakub Sitnicki
White-list map lookup for SOCKMAP/SOCKHASH from BPF. Lookup returns a pointer to a full socket and acquires a reference if necessary. To support it we need to extend the verifier to know that: (1) register storing the lookup result holds a pointer to socket, if lookup was done on SOCKMAP/SOCKHASH, and that (2) map lookup on SOCKMAP/SOCKHASH is a reference acquiring operation, which needs a corresponding reference release with bpf_sk_release. On sock_map side, lookup handlers exposed via bpf_map_ops now bump sk_refcnt if socket is reference counted. In turn, bpf_sk_select_reuseport, the only in-kernel user of SOCKMAP/SOCKHASH ops->map_lookup_elem, was updated to release the reference. Sockets fetched from a map can be used in the same way as ones returned by BPF socket lookup helpers, such as bpf_sk_lookup_tcp. In particular, they can be used with bpf_sk_assign to direct packets toward a socket on TC ingress path. Suggested-by: Lorenz Bauer <lmb@cloudflare.com> Signed-off-by: Jakub Sitnicki <jakub@cloudflare.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: John Fastabend <john.fastabend@gmail.com> Link: https://lore.kernel.org/bpf/20200429181154.479310-2-jakub@cloudflare.com
2020-04-28bpf: Add support for BPF_OBJ_GET_INFO_BY_FD for bpf_linkAndrii Nakryiko
Add ability to fetch bpf_link details through BPF_OBJ_GET_INFO_BY_FD command. Also enhance show_fdinfo to potentially include bpf_link type-specific information (similarly to obj_info). Also introduce enum bpf_link_type stored in bpf_link itself and expose it in UAPI. bpf_link_tracing also now will store and return bpf_attach_type. Signed-off-by: Andrii Nakryiko <andriin@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20200429001614.1544-5-andriin@fb.com
2020-04-28bpf: Support GET_FD_BY_ID and GET_NEXT_ID for bpf_linkAndrii Nakryiko
Add support to look up bpf_link by ID and iterate over all existing bpf_links in the system. GET_FD_BY_ID code handles not-yet-ready bpf_link by checking that its ID hasn't been set to non-zero value yet. Setting bpf_link's ID is done as the very last step in finalizing bpf_link, together with installing FD. This approach allows users of bpf_link in kernel code to not worry about races between user-space and kernel code that hasn't finished attaching and initializing bpf_link. Signed-off-by: Andrii Nakryiko <andriin@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20200429001614.1544-4-andriin@fb.com
2020-04-28bpf: Allocate ID for bpf_linkAndrii Nakryiko
Generate ID for each bpf_link using IDR, similarly to bpf_map and bpf_prog. bpf_link creation, initialization, attachment, and exposing to user-space through FD and ID is a complicated multi-step process, abstract it away through bpf_link_primer and bpf_link_prime(), bpf_link_settle(), and bpf_link_cleanup() internal API. They guarantee that until bpf_link is properly attached, user-space won't be able to access partially-initialized bpf_link either from FD or ID. All this allows to simplify bpf_link attachment and error handling code. Signed-off-by: Andrii Nakryiko <andriin@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20200429001614.1544-3-andriin@fb.com
2020-04-28bpf: Refactor bpf_link update handlingAndrii Nakryiko
Make bpf_link update support more generic by making it into another bpf_link_ops methods. This allows generic syscall handling code to be agnostic to various conditionally compiled features (e.g., the case of CONFIG_CGROUP_BPF). This also allows to keep link type-specific code to remain static within respective code base. Refactor existing bpf_cgroup_link code and take advantage of this. Signed-off-by: Andrii Nakryiko <andriin@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20200429001614.1544-2-andriin@fb.com
2020-04-28Merge branch 'work.sysctl' of ↵Daniel Borkmann
ssh://gitolite.kernel.org/pub/scm/linux/kernel/git/viro/vfs Pull in Christoph Hellwig's series that changes the sysctl's ->proc_handler methods to take kernel pointers instead. It gets rid of the set_fs address space overrides used by BPF. As per discussion, pull in the feature branch into bpf-next as it relates to BPF sysctl progs. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Link: https://lore.kernel.org/bpf/20200427071508.GV23230@ZenIV.linux.org.uk/T/
2020-04-27bpf, cgroup: Remove unused exportsChristoph Hellwig
Except for a few of the networking hooks called from modular ipv4 or ipv6 code, all of hooks are just called from guaranteed to be built-in code. Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Andrey Ignatov <rdna@fb.com> Link: https://lore.kernel.org/bpf/20200424064338.538313-2-hch@lst.de
2020-04-27sysctl: pass kernel pointers to ->proc_handlerChristoph Hellwig
Instead of having all the sysctl handlers deal with user pointers, which is rather hairy in terms of the BPF interaction, copy the input to and from userspace in common code. This also means that the strings are always NUL-terminated by the common code, making the API a little bit safer. As most handler just pass through the data to one of the common handlers a lot of the changes are mechnical. Signed-off-by: Christoph Hellwig <hch@lst.de> Acked-by: Andrey Ignatov <rdna@fb.com> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2020-04-26bpf: Make verifier log more relevant by defaultAndrii Nakryiko
To make BPF verifier verbose log more releavant and easier to use to debug verification failures, "pop" parts of log that were successfully verified. This has effect of leaving only verifier logs that correspond to code branches that lead to verification failure, which in practice should result in much shorter and more relevant verifier log dumps. This behavior is made the default behavior and can be overriden to do exhaustive logging by specifying BPF_LOG_LEVEL2 log level. Using BPF_LOG_LEVEL2 to disable this behavior is not ideal, because in some cases it's good to have BPF_LOG_LEVEL2 per-instruction register dump verbosity, but still have only relevant verifier branches logged. But for this patch, I didn't want to add any new flags. It might be worth-while to just rethink how BPF verifier logging is performed and requested and streamline it a bit. But this trimming of successfully verified branches seems to be useful and a good default behavior. To test this, I modified runqslower slightly to introduce read of uninitialized stack variable. Log (**truncated in the middle** to save many lines out of this commit message) BEFORE this change: ; int handle__sched_switch(u64 *ctx) 0: (bf) r6 = r1 ; struct task_struct *prev = (struct task_struct *)ctx[1]; 1: (79) r1 = *(u64 *)(r6 +8) func 'sched_switch' arg1 has btf_id 151 type STRUCT 'task_struct' 2: (b7) r2 = 0 ; struct event event = {}; 3: (7b) *(u64 *)(r10 -24) = r2 last_idx 3 first_idx 0 regs=4 stack=0 before 2: (b7) r2 = 0 4: (7b) *(u64 *)(r10 -32) = r2 5: (7b) *(u64 *)(r10 -40) = r2 6: (7b) *(u64 *)(r10 -48) = r2 ; if (prev->state == TASK_RUNNING) [ ... instruction dump from insn #7 through #50 are cut out ... ] 51: (b7) r2 = 16 52: (85) call bpf_get_current_comm#16 last_idx 52 first_idx 42 regs=4 stack=0 before 51: (b7) r2 = 16 ; bpf_perf_event_output(ctx, &events, BPF_F_CURRENT_CPU, 53: (bf) r1 = r6 54: (18) r2 = 0xffff8881f3868800 56: (18) r3 = 0xffffffff 58: (bf) r4 = r7 59: (b7) r5 = 32 60: (85) call bpf_perf_event_output#25 last_idx 60 first_idx 53 regs=20 stack=0 before 59: (b7) r5 = 32 61: (bf) r2 = r10 ; event.pid = pid; 62: (07) r2 += -16 ; bpf_map_delete_elem(&start, &pid); 63: (18) r1 = 0xffff8881f3868000 65: (85) call bpf_map_delete_elem#3 ; } 66: (b7) r0 = 0 67: (95) exit from 44 to 66: safe from 34 to 66: safe from 11 to 28: R1_w=inv0 R2_w=inv0 R6_w=ctx(id=0,off=0,imm=0) R10=fp0 fp-8=mmmm???? fp-24_w=00000000 fp-32_w=00000000 fp-40_w=00000000 fp-48_w=00000000 ; bpf_map_update_elem(&start, &pid, &ts, 0); 28: (bf) r2 = r10 ; 29: (07) r2 += -16 ; tsp = bpf_map_lookup_elem(&start, &pid); 30: (18) r1 = 0xffff8881f3868000 32: (85) call bpf_map_lookup_elem#1 invalid indirect read from stack off -16+0 size 4 processed 65 insns (limit 1000000) max_states_per_insn 1 total_states 5 peak_states 5 mark_read 4 Notice how there is a successful code path from instruction 0 through 67, few successfully verified jumps (44->66, 34->66), and only after that 11->28 jump plus error on instruction #32. AFTER this change (full verifier log, **no truncation**): ; int handle__sched_switch(u64 *ctx) 0: (bf) r6 = r1 ; struct task_struct *prev = (struct task_struct *)ctx[1]; 1: (79) r1 = *(u64 *)(r6 +8) func 'sched_switch' arg1 has btf_id 151 type STRUCT 'task_struct' 2: (b7) r2 = 0 ; struct event event = {}; 3: (7b) *(u64 *)(r10 -24) = r2 last_idx 3 first_idx 0 regs=4 stack=0 before 2: (b7) r2 = 0 4: (7b) *(u64 *)(r10 -32) = r2 5: (7b) *(u64 *)(r10 -40) = r2 6: (7b) *(u64 *)(r10 -48) = r2 ; if (prev->state == TASK_RUNNING) 7: (79) r2 = *(u64 *)(r1 +16) ; if (prev->state == TASK_RUNNING) 8: (55) if r2 != 0x0 goto pc+19 R1_w=ptr_task_struct(id=0,off=0,imm=0) R2_w=inv0 R6_w=ctx(id=0,off=0,imm=0) R10=fp0 fp-24_w=00000000 fp-32_w=00000000 fp-40_w=00000000 fp-48_w=00000000 ; trace_enqueue(prev->tgid, prev->pid); 9: (61) r1 = *(u32 *)(r1 +1184) 10: (63) *(u32 *)(r10 -4) = r1 ; if (!pid || (targ_pid && targ_pid != pid)) 11: (15) if r1 == 0x0 goto pc+16 from 11 to 28: R1_w=inv0 R2_w=inv0 R6_w=ctx(id=0,off=0,imm=0) R10=fp0 fp-8=mmmm???? fp-24_w=00000000 fp-32_w=00000000 fp-40_w=00000000 fp-48_w=00000000 ; bpf_map_update_elem(&start, &pid, &ts, 0); 28: (bf) r2 = r10 ; 29: (07) r2 += -16 ; tsp = bpf_map_lookup_elem(&start, &pid); 30: (18) r1 = 0xffff8881db3ce800 32: (85) call bpf_map_lookup_elem#1 invalid indirect read from stack off -16+0 size 4 processed 65 insns (limit 1000000) max_states_per_insn 1 total_states 5 peak_states 5 mark_read 4 Notice how in this case, there are 0-11 instructions + jump from 11 to 28 is recorded + 28-32 instructions with error on insn #32. test_verifier test runner was updated to specify BPF_LOG_LEVEL2 for VERBOSE_ACCEPT expected result due to potentially "incomplete" success verbose log at BPF_LOG_LEVEL1. On success, verbose log will only have a summary of number of processed instructions, etc, but no branch tracing log. Having just a last succesful branch tracing seemed weird and confusing. Having small and clean summary log in success case seems quite logical and nice, though. Signed-off-by: Andrii Nakryiko <andriin@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20200423195850.1259827-1-andriin@fb.com
2020-04-26bpf: add bpf_ktime_get_boot_ns()Maciej Żenczykowski
On a device like a cellphone which is constantly suspending and resuming CLOCK_MONOTONIC is not particularly useful for keeping track of or reacting to external network events. Instead you want to use CLOCK_BOOTTIME. Hence add bpf_ktime_get_boot_ns() as a mirror of bpf_ktime_get_ns() based around CLOCK_BOOTTIME instead of CLOCK_MONOTONIC. Signed-off-by: Maciej Żenczykowski <maze@google.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2020-04-26net: bpf: Make bpf_ktime_get_ns() available to non GPL programsMaciej Żenczykowski
The entire implementation is in kernel/bpf/helpers.c: BPF_CALL_0(bpf_ktime_get_ns) { /* NMI safe access to clock monotonic */ return ktime_get_mono_fast_ns(); } const struct bpf_func_proto bpf_ktime_get_ns_proto = { .func = bpf_ktime_get_ns, .gpl_only = false, .ret_type = RET_INTEGER, }; and this was presumably marked GPL due to kernel/time/timekeeping.c: EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns); and while that may make sense for kernel modules (although even that is doubtful), there is currently AFAICT no other source of time available to ebpf. Furthermore this is really just equivalent to clock_gettime(CLOCK_MONOTONIC) which is exposed to userspace (via vdso even to make it performant)... As such, I see no reason to keep the GPL restriction. (In the future I'd like to have access to time from Apache licensed ebpf code) Signed-off-by: Maciej Żenczykowski <maze@google.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2020-04-26bpf: Fix missing bpf_base_func_proto in cgroup_base_func_proto for CGROUP_NET=nStanislav Fomichev
linux-next build bot reported compile issue [1] with one of its configs. It looks like when we have CONFIG_NET=n and CONFIG_BPF{,_SYSCALL}=y, we are missing the bpf_base_func_proto definition (from net/core/filter.c) in cgroup_base_func_proto. I'm reshuffling the code a bit to make it work. The common helpers are moved into kernel/bpf/helpers.c and the bpf_base_func_proto is exported from there. Also, bpf_get_raw_cpu_id goes into kernel/bpf/core.c akin to existing bpf_user_rnd_u32. [1] https://lore.kernel.org/linux-next/CAKH8qBsBvKHswiX1nx40LgO+BGeTmb1NX8tiTttt_0uu6T3dCA@mail.gmail.com/T/#mff8b0c083314c68c2e2ef0211cb11bc20dc13c72 Fixes: 0456ea170cd6 ("bpf: Enable more helpers for BPF_PROG_TYPE_CGROUP_{DEVICE,SYSCTL,SOCKOPT}") Signed-off-by: Stanislav Fomichev <sdf@google.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Cc: Andrii Nakryiko <andriin@fb.com> Link: https://lore.kernel.org/bpf/20200424235941.58382-1-sdf@google.com
2020-04-26bpf: Enable more helpers for BPF_PROG_TYPE_CGROUP_{DEVICE,SYSCTL,SOCKOPT}Stanislav Fomichev
Currently the following prog types don't fall back to bpf_base_func_proto() (instead they have cgroup_base_func_proto which has a limited set of helpers from bpf_base_func_proto): * BPF_PROG_TYPE_CGROUP_DEVICE * BPF_PROG_TYPE_CGROUP_SYSCTL * BPF_PROG_TYPE_CGROUP_SOCKOPT I don't see any specific reason why we shouldn't use bpf_base_func_proto(), every other type of program (except bpf-lirc and, understandably, tracing) use it, so let's fall back to bpf_base_func_proto for those prog types as well. This basically boils down to adding access to the following helpers: * BPF_FUNC_get_prandom_u32 * BPF_FUNC_get_smp_processor_id * BPF_FUNC_get_numa_node_id * BPF_FUNC_tail_call * BPF_FUNC_ktime_get_ns * BPF_FUNC_spin_lock (CAP_SYS_ADMIN) * BPF_FUNC_spin_unlock (CAP_SYS_ADMIN) * BPF_FUNC_jiffies64 (CAP_SYS_ADMIN) I've also added bpf_perf_event_output() because it's really handy for logging and debugging. Signed-off-by: Stanislav Fomichev <sdf@google.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20200420174610.77494-1-sdf@google.com
2020-04-26bpf: Remove set but not used variable 'dst_known'Mao Wenan
Fixes gcc '-Wunused-but-set-variable' warning: kernel/bpf/verifier.c:5603:18: warning: variable ‘dst_known’ set but not used [-Wunused-but-set-variable], delete this variable. Signed-off-by: Mao Wenan <maowenan@huawei.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Song Liu <songliubraving@fb.com> Link: https://lore.kernel.org/bpf/20200418013735.67882-1-maowenan@huawei.com
2020-04-25Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/netDavid S. Miller
Simple overlapping changes to linux/vermagic.h Signed-off-by: David S. Miller <davem@davemloft.net>
2020-04-24bpf: Make bpf_link_fops staticZou Wei
Fix the following sparse warning: kernel/bpf/syscall.c:2289:30: warning: symbol 'bpf_link_fops' was not declared. Should it be static? Reported-by: Hulk Robot <hulkci@huawei.com> Signed-off-by: Zou Wei <zou_wei@huawei.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Andrii Nakryiko <andriin@fb.com> Link: https://lore.kernel.org/bpf/1587609160-117806-1-git-send-email-zou_wei@huawei.com
2020-04-24bpf: Propagate expected_attach_type when verifying freplace programsToke Høiland-Jørgensen
For some program types, the verifier relies on the expected_attach_type of the program being verified in the verification process. However, for freplace programs, the attach type was not propagated along with the verifier ops, so the expected_attach_type would always be zero for freplace programs. This in turn caused the verifier to sometimes make the wrong call for freplace programs. For all existing uses of expected_attach_type for this purpose, the result of this was only false negatives (i.e., freplace functions would be rejected by the verifier even though they were valid programs for the target they were replacing). However, should a false positive be introduced, this can lead to out-of-bounds accesses and/or crashes. The fix introduced in this patch is to propagate the expected_attach_type to the freplace program during verification, and reset it after that is done. Fixes: be8704ff07d2 ("bpf: Introduce dynamic program extensions") Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/158773526726.293902.13257293296560360508.stgit@toke.dk
2020-04-24bpf: Fix leak in LINK_UPDATE and enforce empty old_prog_fdAndrii Nakryiko
Fix bug of not putting bpf_link in LINK_UPDATE command. Also enforce zeroed old_prog_fd if no BPF_F_REPLACE flag is specified. Signed-off-by: Andrii Nakryiko <andriin@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20200424052045.4002963-1-andriin@fb.com
2020-04-22xdp: export the DEV_MAP_BULK_SIZE macroIoana Ciornei
Export the DEV_MAP_BULK_SIZE macro to the header file so that drivers can directly use it as the maximum number of xdp_frames received in the .ndo_xdp_xmit() callback. Signed-off-by: Ioana Ciornei <ioana.ciornei@nxp.com> Acked-by: Jesper Dangaard Brouer <brouer@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-04-20bpf: Fix handling of XADD on BTF memoryJann Horn
check_xadd() can cause check_ptr_to_btf_access() to be executed with atype==BPF_READ and value_regno==-1 (meaning "just check whether the access is okay, don't tell me what type it will result in"). Handle that case properly and skip writing type information, instead of indexing into the registers at index -1 and writing into out-of-bounds memory. Note that at least at the moment, you can't actually write through a BTF pointer, so check_xadd() will reject the program after calling check_ptr_to_btf_access with atype==BPF_WRITE; but that's after the verifier has already corrupted memory. This patch assumes that BTF pointers are not available in unprivileged programs. Fixes: 9e15db66136a ("bpf: Implement accurate raw_tp context access via BTF") Signed-off-by: Jann Horn <jannh@google.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20200417000007.10734-2-jannh@google.com
2020-04-20bpf: Forbid XADD on spilled pointers for unprivileged usersJann Horn
When check_xadd() verifies an XADD operation on a pointer to a stack slot containing a spilled pointer, check_stack_read() verifies that the read, which is part of XADD, is valid. However, since the placeholder value -1 is passed as `value_regno`, check_stack_read() can only return a binary decision and can't return the type of the value that was read. The intent here is to verify whether the value read from the stack slot may be used as a SCALAR_VALUE; but since check_stack_read() doesn't check the type, and the type information is lost when check_stack_read() returns, this is not enforced, and a malicious user can abuse XADD to leak spilled kernel pointers. Fix it by letting check_stack_read() verify that the value is usable as a SCALAR_VALUE if no type information is passed to the caller. To be able to use __is_pointer_value() in check_stack_read(), move it up. Fix up the expected unprivileged error message for a BPF selftest that, until now, assumed that unprivileged users can use XADD on stack-spilled pointers. This also gives us a test for the behavior introduced in this patch for free. In theory, this could also be fixed by forbidding XADD on stack spills entirely, since XADD is a locked operation (for operations on memory with concurrency) and there can't be any concurrency on the BPF stack; but Alexei has said that he wants to keep XADD on stack slots working to avoid changes to the test suite [1]. The following BPF program demonstrates how to leak a BPF map pointer as an unprivileged user using this bug: // r7 = map_pointer BPF_LD_MAP_FD(BPF_REG_7, small_map), // r8 = launder(map_pointer) BPF_STX_MEM(BPF_DW, BPF_REG_FP, BPF_REG_7, -8), BPF_MOV64_IMM(BPF_REG_1, 0), ((struct bpf_insn) { .code = BPF_STX | BPF_DW | BPF_XADD, .dst_reg = BPF_REG_FP, .src_reg = BPF_REG_1, .off = -8 }), BPF_LDX_MEM(BPF_DW, BPF_REG_8, BPF_REG_FP, -8), // store r8 into map BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_7), BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_FP), BPF_ALU64_IMM(BPF_ADD, BPF_REG_ARG2, -4), BPF_ST_MEM(BPF_W, BPF_REG_ARG2, 0, 0), BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, 1), BPF_EXIT_INSN(), BPF_STX_MEM(BPF_DW, BPF_REG_0, BPF_REG_8, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN() [1] https://lore.kernel.org/bpf/20200416211116.qxqcza5vo2ddnkdq@ast-mbp.dhcp.thefacebook.com/ Fixes: 17a5267067f3 ("bpf: verifier (add verifier core)") Signed-off-by: Jann Horn <jannh@google.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20200417000007.10734-1-jannh@google.com
2020-04-20cpumap: Avoid warning when CONFIG_DEBUG_PER_CPU_MAPS is enabledToke Høiland-Jørgensen
When the kernel is built with CONFIG_DEBUG_PER_CPU_MAPS, the cpumap code can trigger a spurious warning if CONFIG_CPUMASK_OFFSTACK is also set. This happens because in this configuration, NR_CPUS can be larger than nr_cpumask_bits, so the initial check in cpu_map_alloc() is not sufficient to guard against hitting the warning in cpumask_check(). Fix this by explicitly checking the supplied key against the nr_cpumask_bits variable before calling cpu_possible(). Fixes: 6710e1126934 ("bpf: introduce new bpf cpu map type BPF_MAP_TYPE_CPUMAP") Reported-by: Xiumei Mu <xmu@redhat.com> Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Tested-by: Xiumei Mu <xmu@redhat.com> Acked-by: Jesper Dangaard Brouer <brouer@redhat.com> Acked-by: Song Liu <songliubraving@fb.com> Link: https://lore.kernel.org/bpf/20200416083120.453718-1-toke@redhat.com
2020-04-14bpf: remove unneeded conversion to bool in __mark_reg_unknownZou Wei
This issue was detected by using the Coccinelle software: kernel/bpf/verifier.c:1259:16-21: WARNING: conversion to bool not needed here The conversion to bool is unneeded, remove it. Reported-by: Hulk Robot <hulkci@huawei.com> Signed-off-by: Zou Wei <zou_wei@huawei.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Song Liu <songliubraving@fb.com> Link: https://lore.kernel.org/bpf/1586779076-101346-1-git-send-email-zou_wei@huawei.com
2020-04-14bpf: Prevent re-mmap()'ing BPF map as writable for initially r/o mappingAndrii Nakryiko
VM_MAYWRITE flag during initial memory mapping determines if already mmap()'ed pages can be later remapped as writable ones through mprotect() call. To prevent user application to rewrite contents of memory-mapped as read-only and subsequently frozen BPF map, remove VM_MAYWRITE flag completely on initially read-only mapping. Alternatively, we could treat any memory-mapping on unfrozen map as writable and bump writecnt instead. But there is little legitimate reason to map BPF map as read-only and then re-mmap() it as writable through mprotect(), instead of just mmap()'ing it as read/write from the very beginning. Also, at the suggestion of Jann Horn, drop unnecessary refcounting in mmap operations. We can just rely on VMA holding reference to BPF map's file properly. Fixes: fc9702273e2e ("bpf: Add mmap() support for BPF_MAP_TYPE_ARRAY") Reported-by: Jann Horn <jannh@google.com> Signed-off-by: Andrii Nakryiko <andriin@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Reviewed-by: Jann Horn <jannh@google.com> Link: https://lore.kernel.org/bpf/20200410202613.3679837-1-andriin@fb.com
2020-04-06bpf: Fix a typo "inacitve" -> "inactive"Qiujun Huang
There is a typo in struct bpf_lru_list's next_inactive_rotation description, thus fix s/inacitve/inactive/. Signed-off-by: Qiujun Huang <hqjagain@gmail.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Link: https://lore.kernel.org/bpf/1585901254-30377-1-git-send-email-hqjagain@gmail.com
2020-03-30Merge git://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-nextDavid S. Miller
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-03-30bpf: Implement bpf_prog replacement for an active bpf_cgroup_linkAndrii Nakryiko
Add new operation (LINK_UPDATE), which allows to replace active bpf_prog from under given bpf_link. Currently this is only supported for bpf_cgroup_link, but will be extended to other kinds of bpf_links in follow-up patches. For bpf_cgroup_link, implemented functionality matches existing semantics for direct bpf_prog attachment (including BPF_F_REPLACE flag). User can either unconditionally set new bpf_prog regardless of which bpf_prog is currently active under given bpf_link, or, optionally, can specify expected active bpf_prog. If active bpf_prog doesn't match expected one, no changes are performed, old bpf_link stays intact and attached, operation returns a failure. cgroup_bpf_replace() operation is resolving race between auto-detachment and bpf_prog update in the same fashion as it's done for bpf_link detachment, except in this case update has no way of succeeding because of target cgroup marked as dying. So in this case error is returned. Signed-off-by: Andrii Nakryiko <andriin@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20200330030001.2312810-3-andriin@fb.com
2020-03-30bpf: Implement bpf_link-based cgroup BPF program attachmentAndrii Nakryiko
Implement new sub-command to attach cgroup BPF programs and return FD-based bpf_link back on success. bpf_link, once attached to cgroup, cannot be replaced, except by owner having its FD. Cgroup bpf_link supports only BPF_F_ALLOW_MULTI semantics. Both link-based and prog-based BPF_F_ALLOW_MULTI attachments can be freely intermixed. To prevent bpf_cgroup_link from keeping cgroup alive past the point when no BPF program can be executed, implement auto-detachment of link. When cgroup_bpf_release() is called, all attached bpf_links are forced to release cgroup refcounts, but they leave bpf_link otherwise active and allocated, as well as still owning underlying bpf_prog. This is because user-space might still have FDs open and active, so bpf_link as a user-referenced object can't be freed yet. Once last active FD is closed, bpf_link will be freed and underlying bpf_prog refcount will be dropped. But cgroup refcount won't be touched, because cgroup is released already. The inherent race between bpf_cgroup_link release (from closing last FD) and cgroup_bpf_release() is resolved by both operations taking cgroup_mutex. So the only additional check required is when bpf_cgroup_link attempts to detach itself from cgroup. At that time we need to check whether there is still cgroup associated with that link. And if not, exit with success, because bpf_cgroup_link was already successfully detached. Signed-off-by: Andrii Nakryiko <andriin@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Roman Gushchin <guro@fb.com> Link: https://lore.kernel.org/bpf/20200330030001.2312810-2-andriin@fb.com
2020-03-30bpf: Verifier, refine 32bit bound in do_refine_retval_rangeJohn Fastabend
Further refine return values range in do_refine_retval_range by noting these are int return types (We will assume here that int is a 32-bit type). Two reasons to pull this out of original patch. First it makes the original fix impossible to backport. And second I've not seen this as being problematic in practice unlike the other case. Fixes: 849fa50662fbc ("bpf/verifier: refine retval R0 state for bpf_get_stack helper") Signed-off-by: John Fastabend <john.fastabend@gmail.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/158560421952.10843.12496354931526965046.stgit@john-Precision-5820-Tower
2020-03-30bpf: Verifier, do explicit ALU32 bounds trackingJohn Fastabend
It is not possible for the current verifier to track ALU32 and JMP ops correctly. This can result in the verifier aborting with errors even though the program should be verifiable. BPF codes that hit this can work around it by changin int variables to 64-bit types, marking variables volatile, etc. But this is all very ugly so it would be better to avoid these tricks. But, the main reason to address this now is do_refine_retval_range() was assuming return values could not be negative. Once we fixed this code that was previously working will no longer work. See do_refine_retval_range() patch for details. And we don't want to suddenly cause programs that used to work to fail. The simplest example code snippet that illustrates the problem is likely this, 53: w8 = w0 // r8 <- [0, S32_MAX], // w8 <- [-S32_MIN, X] 54: w8 <s 0 // r8 <- [0, U32_MAX] // w8 <- [0, X] The expected 64-bit and 32-bit bounds after each line are shown on the right. The current issue is without the w* bounds we are forced to use the worst case bound of [0, U32_MAX]. To resolve this type of case, jmp32 creating divergent 32-bit bounds from 64-bit bounds, we add explicit 32-bit register bounds s32_{min|max}_value and u32_{min|max}_value. Then from branch_taken logic creating new bounds we can track 32-bit bounds explicitly. The next case we observed is ALU ops after the jmp32, 53: w8 = w0 // r8 <- [0, S32_MAX], // w8 <- [-S32_MIN, X] 54: w8 <s 0 // r8 <- [0, U32_MAX] // w8 <- [0, X] 55: w8 += 1 // r8 <- [0, U32_MAX+1] // w8 <- [0, X+1] In order to keep the bounds accurate at this point we also need to track ALU32 ops. To do this we add explicit ALU32 logic for each of the ALU ops, mov, add, sub, etc. Finally there is a question of how and when to merge bounds. The cases enumerate here, 1. MOV ALU32 - zext 32-bit -> 64-bit 2. MOV ALU64 - copy 64-bit -> 32-bit 3. op ALU32 - zext 32-bit -> 64-bit 4. op ALU64 - n/a 5. jmp ALU32 - 64-bit: var32_off | upper_32_bits(var64_off) 6. jmp ALU64 - 32-bit: (>> (<< var64_off)) Details for each case, For "MOV ALU32" BPF arch zero extends so we simply copy the bounds from 32-bit into 64-bit ensuring we truncate var_off and 64-bit bounds correctly. See zext_32_to_64. For "MOV ALU64" copy all bounds including 32-bit into new register. If the src register had 32-bit bounds the dst register will as well. For "op ALU32" zero extend 32-bit into 64-bit the same as move, see zext_32_to_64. For "op ALU64" calculate both 32-bit and 64-bit bounds no merging is done here. Except we have a special case. When RSH or ARSH is done we can't simply ignore shifting bits from 64-bit reg into the 32-bit subreg. So currently just push bounds from 64-bit into 32-bit. This will be correct in the sense that they will represent a valid state of the register. However we could lose some accuracy if an ARSH is following a jmp32 operation. We can handle this special case in a follow up series. For "jmp ALU32" mark 64-bit reg unknown and recalculate 64-bit bounds from tnum by setting var_off to ((<<(>>var_off)) | var32_off). We special case if 64-bit bounds has zero'd upper 32bits at which point we can simply copy 32-bit bounds into 64-bit register. This catches a common compiler trick where upper 32-bits are zeroed and then 32-bit ops are used followed by a 64-bit compare or 64-bit op on a pointer. See __reg_combine_64_into_32(). For "jmp ALU64" cast the bounds of the 64bit to their 32-bit counterpart. For example s32_min_value = (s32)reg->smin_value. For tnum use only the lower 32bits via, (>>(<<var_off)). See __reg_combine_64_into_32(). Signed-off-by: John Fastabend <john.fastabend@gmail.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/158560419880.10843.11448220440809118343.stgit@john-Precision-5820-Tower