Age | Commit message (Collapse) | Author |
|
This work adds program tracking to prog array maps. This is needed such
that upon prog array updates/deletions we can fix up all programs which
make use of this tail call map. We add ops->map_poke_{un,}track()
helpers to maps to maintain the list of programs and ops->map_poke_run()
for triggering the actual update.
bpf_array_aux is extended to contain the list head and poke_mutex in
order to serialize program patching during updates/deletions.
bpf_free_used_maps() will untrack the program shortly before dropping
the reference to the map. For clearing out the prog array once all urefs
are dropped we need to use schedule_work() to have a sleepable context.
The prog_array_map_poke_run() is triggered during updates/deletions and
walks the maintained prog list. It checks in their poke_tabs whether the
map and key is matching and runs the actual bpf_arch_text_poke() for
patching in the nop or new jmp location. Depending on the type of update,
we use one of BPF_MOD_{NOP_TO_JUMP,JUMP_TO_NOP,JUMP_TO_JUMP}.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/1fb364bb3c565b3e415d5ea348f036ff379e779d.1574452833.git.daniel@iogearbox.net
|
|
We're going to extend this with further information which is only
relevant for prog array at this point. Given this info is not used
in critical path, move it into its own structure such that the main
array map structure can be kept on diet.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/b9ddccdb0f6f7026489ee955f16c96381e1e7238.1574452833.git.daniel@iogearbox.net
|
|
We later on are going to need a sleepable context as opposed to plain
RCU callback in order to untrack programs we need to poke at runtime
and tracking as well as image update is performed under mutex.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/09823b1d5262876e9b83a8e75df04cf0467357a4.1574452833.git.daniel@iogearbox.net
|
|
This commit reverts commit 91e6015b082b ("bpf: Emit audit messages
upon successful prog load and unload") and its follow up commit
7599a896f2e4 ("audit: Move audit_log_task declaration under
CONFIG_AUDITSYSCALL") as requested by Paul Moore. The change needs
close review on linux-audit, tests etc.
Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
|
|
Given we recently extended the original bpf_map_area_alloc() helper in
commit fc9702273e2e ("bpf: Add mmap() support for BPF_MAP_TYPE_ARRAY"),
we need to apply the same logic as in ff1c08e1f74b ("bpf: Change size
to u64 for bpf_map_{area_alloc, charge_init}()"). To avoid conflicts,
extend it for bpf-next.
Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
|
|
Allow for audit messages to be emitted upon BPF program load and
unload for having a timeline of events. The load itself is in
syscall context, so additional info about the process initiating
the BPF prog creation can be logged and later directly correlated
to the unload event.
The only info really needed from BPF side is the globally unique
prog ID where then audit user space tooling can query / dump all
info needed about the specific BPF program right upon load event
and enrich the record, thus these changes needed here can be kept
small and non-intrusive to the core.
Raw example output:
# auditctl -D
# auditctl -a always,exit -F arch=x86_64 -S bpf
# ausearch --start recent -m 1334
[...]
----
time->Wed Nov 20 12:45:51 2019
type=PROCTITLE msg=audit(1574271951.590:8974): proctitle="./test_verifier"
type=SYSCALL msg=audit(1574271951.590:8974): arch=c000003e syscall=321 success=yes exit=14 a0=5 a1=7ffe2d923e80 a2=78 a3=0 items=0 ppid=742 pid=949 auid=0 uid=0 gid=0 euid=0 suid=0 fsuid=0 egid=0 sgid=0 fsgid=0 tty=pts0 ses=2 comm="test_verifier" exe="/root/bpf-next/tools/testing/selftests/bpf/test_verifier" subj=unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023 key=(null)
type=UNKNOWN[1334] msg=audit(1574271951.590:8974): auid=0 uid=0 gid=0 ses=2 subj=unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023 pid=949 comm="test_verifier" exe="/root/bpf-next/tools/testing/selftests/bpf/test_verifier" prog-id=3260 event=LOAD
----
time->Wed Nov 20 12:45:51 2019
type=UNKNOWN[1334] msg=audit(1574271951.590:8975): prog-id=3260 event=UNLOAD
----
[...]
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20191120213816.8186-1-jolsa@kernel.org
|
|
Add ability to memory-map contents of BPF array map. This is extremely useful
for working with BPF global data from userspace programs. It allows to avoid
typical bpf_map_{lookup,update}_elem operations, improving both performance
and usability.
There had to be special considerations for map freezing, to avoid having
writable memory view into a frozen map. To solve this issue, map freezing and
mmap-ing is happening under mutex now:
- if map is already frozen, no writable mapping is allowed;
- if map has writable memory mappings active (accounted in map->writecnt),
map freezing will keep failing with -EBUSY;
- once number of writable memory mappings drops to zero, map freezing can be
performed again.
Only non-per-CPU plain arrays are supported right now. Maps with spinlocks
can't be memory mapped either.
For BPF_F_MMAPABLE array, memory allocation has to be done through vmalloc()
to be mmap()'able. We also need to make sure that array data memory is
page-sized and page-aligned, so we over-allocate memory in such a way that
struct bpf_array is at the end of a single page of memory with array->value
being aligned with the start of the second page. On deallocation we need to
accomodate this memory arrangement to free vmalloc()'ed memory correctly.
One important consideration regarding how memory-mapping subsystem functions.
Memory-mapping subsystem provides few optional callbacks, among them open()
and close(). close() is called for each memory region that is unmapped, so
that users can decrease their reference counters and free up resources, if
necessary. open() is *almost* symmetrical: it's called for each memory region
that is being mapped, **except** the very first one. So bpf_map_mmap does
initial refcnt bump, while open() will do any extra ones after that. Thus
number of close() calls is equal to number of open() calls plus one more.
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Song Liu <songliubraving@fb.com>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Link: https://lore.kernel.org/bpf/20191117172806.2195367-4-andriin@fb.com
|
|
Similarly to bpf_map's refcnt/usercnt, convert bpf_prog's refcnt to atomic64
and remove artificial 32k limit. This allows to make bpf_prog's refcounting
non-failing, simplifying logic of users of bpf_prog_add/bpf_prog_inc.
Validated compilation by running allyesconfig kernel build.
Suggested-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20191117172806.2195367-3-andriin@fb.com
|
|
92117d8443bc ("bpf: fix refcnt overflow") turned refcounting of bpf_map into
potentially failing operation, when refcount reaches BPF_MAX_REFCNT limit
(32k). Due to using 32-bit counter, it's possible in practice to overflow
refcounter and make it wrap around to 0, causing erroneous map free, while
there are still references to it, causing use-after-free problems.
But having a failing refcounting operations are problematic in some cases. One
example is mmap() interface. After establishing initial memory-mapping, user
is allowed to arbitrarily map/remap/unmap parts of mapped memory, arbitrarily
splitting it into multiple non-contiguous regions. All this happening without
any control from the users of mmap subsystem. Rather mmap subsystem sends
notifications to original creator of memory mapping through open/close
callbacks, which are optionally specified during initial memory mapping
creation. These callbacks are used to maintain accurate refcount for bpf_map
(see next patch in this series). The problem is that open() callback is not
supposed to fail, because memory-mapped resource is set up and properly
referenced. This is posing a problem for using memory-mapping with BPF maps.
One solution to this is to maintain separate refcount for just memory-mappings
and do single bpf_map_inc/bpf_map_put when it goes from/to zero, respectively.
There are similar use cases in current work on tcp-bpf, necessitating extra
counter as well. This seems like a rather unfortunate and ugly solution that
doesn't scale well to various new use cases.
Another approach to solve this is to use non-failing refcount_t type, which
uses 32-bit counter internally, but, once reaching overflow state at UINT_MAX,
stays there. This utlimately causes memory leak, but prevents use after free.
But given refcounting is not the most performance-critical operation with BPF
maps (it's not used from running BPF program code), we can also just switch to
64-bit counter that can't overflow in practice, potentially disadvantaging
32-bit platforms a tiny bit. This simplifies semantics and allows above
described scenarios to not worry about failing refcount increment operation.
In terms of struct bpf_map size, we are still good and use the same amount of
space:
BEFORE (3 cache lines, 8 bytes of padding at the end):
struct bpf_map {
const struct bpf_map_ops * ops __attribute__((__aligned__(64))); /* 0 8 */
struct bpf_map * inner_map_meta; /* 8 8 */
void * security; /* 16 8 */
enum bpf_map_type map_type; /* 24 4 */
u32 key_size; /* 28 4 */
u32 value_size; /* 32 4 */
u32 max_entries; /* 36 4 */
u32 map_flags; /* 40 4 */
int spin_lock_off; /* 44 4 */
u32 id; /* 48 4 */
int numa_node; /* 52 4 */
u32 btf_key_type_id; /* 56 4 */
u32 btf_value_type_id; /* 60 4 */
/* --- cacheline 1 boundary (64 bytes) --- */
struct btf * btf; /* 64 8 */
struct bpf_map_memory memory; /* 72 16 */
bool unpriv_array; /* 88 1 */
bool frozen; /* 89 1 */
/* XXX 38 bytes hole, try to pack */
/* --- cacheline 2 boundary (128 bytes) --- */
atomic_t refcnt __attribute__((__aligned__(64))); /* 128 4 */
atomic_t usercnt; /* 132 4 */
struct work_struct work; /* 136 32 */
char name[16]; /* 168 16 */
/* size: 192, cachelines: 3, members: 21 */
/* sum members: 146, holes: 1, sum holes: 38 */
/* padding: 8 */
/* forced alignments: 2, forced holes: 1, sum forced holes: 38 */
} __attribute__((__aligned__(64)));
AFTER (same 3 cache lines, no extra padding now):
struct bpf_map {
const struct bpf_map_ops * ops __attribute__((__aligned__(64))); /* 0 8 */
struct bpf_map * inner_map_meta; /* 8 8 */
void * security; /* 16 8 */
enum bpf_map_type map_type; /* 24 4 */
u32 key_size; /* 28 4 */
u32 value_size; /* 32 4 */
u32 max_entries; /* 36 4 */
u32 map_flags; /* 40 4 */
int spin_lock_off; /* 44 4 */
u32 id; /* 48 4 */
int numa_node; /* 52 4 */
u32 btf_key_type_id; /* 56 4 */
u32 btf_value_type_id; /* 60 4 */
/* --- cacheline 1 boundary (64 bytes) --- */
struct btf * btf; /* 64 8 */
struct bpf_map_memory memory; /* 72 16 */
bool unpriv_array; /* 88 1 */
bool frozen; /* 89 1 */
/* XXX 38 bytes hole, try to pack */
/* --- cacheline 2 boundary (128 bytes) --- */
atomic64_t refcnt __attribute__((__aligned__(64))); /* 128 8 */
atomic64_t usercnt; /* 136 8 */
struct work_struct work; /* 144 32 */
char name[16]; /* 176 16 */
/* size: 192, cachelines: 3, members: 21 */
/* sum members: 154, holes: 1, sum holes: 38 */
/* forced alignments: 2, forced holes: 1, sum forced holes: 38 */
} __attribute__((__aligned__(64)));
This patch, while modifying all users of bpf_map_inc, also cleans up its
interface to match bpf_map_put with separate operations for bpf_map_inc and
bpf_map_inc_with_uref (to match bpf_map_put and bpf_map_put_with_uref,
respectively). Also, given there are no users of bpf_map_inc_not_zero
specifying uref=true, remove uref flag and default to uref=false internally.
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Song Liu <songliubraving@fb.com>
Link: https://lore.kernel.org/bpf/20191117172806.2195367-2-andriin@fb.com
|
|
Allow FENTRY/FEXIT BPF programs to attach to other BPF programs of any type
including their subprograms. This feature allows snooping on input and output
packets in XDP, TC programs including their return values. In order to do that
the verifier needs to track types not only of vmlinux, but types of other BPF
programs as well. The verifier also needs to translate uapi/linux/bpf.h types
used by networking programs into kernel internal BTF types used by FENTRY/FEXIT
BPF programs. In some cases LLVM optimizations can remove arguments from BPF
subprograms without adjusting BTF info that LLVM backend knows. When BTF info
disagrees with actual types that the verifiers sees the BPF trampoline has to
fallback to conservative and treat all arguments as u64. The FENTRY/FEXIT
program can still attach to such subprograms, but it won't be able to recognize
pointer types like 'struct sk_buff *' and it won't be able to pass them to
bpf_skb_output() for dumping packets to user space. The FENTRY/FEXIT program
would need to use bpf_probe_read_kernel() instead.
The BPF_PROG_LOAD command is extended with attach_prog_fd field. When it's set
to zero the attach_btf_id is one vmlinux BTF type ids. When attach_prog_fd
points to previously loaded BPF program the attach_btf_id is BTF type id of
main function or one of its subprograms.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Song Liu <songliubraving@fb.com>
Link: https://lore.kernel.org/bpf/20191114185720.1641606-18-ast@kernel.org
|
|
Make the verifier check that BTF types of function arguments match actual types
passed into top-level BPF program and into BPF-to-BPF calls. If types match
such BPF programs and sub-programs will have full support of BPF trampoline. If
types mismatch the trampoline has to be conservative. It has to save/restore
five program arguments and assume 64-bit scalars.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Song Liu <songliubraving@fb.com>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/20191114185720.1641606-17-ast@kernel.org
|
|
Annotate BPF program context types with program-side type and kernel-side type.
This type information is used by the verifier. btf_get_prog_ctx_type() is
used in the later patches to verify that BTF type of ctx in BPF program matches to
kernel expected ctx type. For example, the XDP program type is:
BPF_PROG_TYPE(BPF_PROG_TYPE_XDP, xdp, struct xdp_md, struct xdp_buff)
That means that XDP program should be written as:
int xdp_prog(struct xdp_md *ctx) { ... }
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Song Liu <songliubraving@fb.com>
Link: https://lore.kernel.org/bpf/20191114185720.1641606-16-ast@kernel.org
|
|
Introduce BPF trampoline concept to allow kernel code to call into BPF programs
with practically zero overhead. The trampoline generation logic is
architecture dependent. It's converting native calling convention into BPF
calling convention. BPF ISA is 64-bit (even on 32-bit architectures). The
registers R1 to R5 are used to pass arguments into BPF functions. The main BPF
program accepts only single argument "ctx" in R1. Whereas CPU native calling
convention is different. x86-64 is passing first 6 arguments in registers
and the rest on the stack. x86-32 is passing first 3 arguments in registers.
sparc64 is passing first 6 in registers. And so on.
The trampolines between BPF and kernel already exist. BPF_CALL_x macros in
include/linux/filter.h statically compile trampolines from BPF into kernel
helpers. They convert up to five u64 arguments into kernel C pointers and
integers. On 64-bit architectures this BPF_to_kernel trampolines are nops. On
32-bit architecture they're meaningful.
The opposite job kernel_to_BPF trampolines is done by CAST_TO_U64 macros and
__bpf_trace_##call() shim functions in include/trace/bpf_probe.h. They convert
kernel function arguments into array of u64s that BPF program consumes via
R1=ctx pointer.
This patch set is doing the same job as __bpf_trace_##call() static
trampolines, but dynamically for any kernel function. There are ~22k global
kernel functions that are attachable via nop at function entry. The function
arguments and types are described in BTF. The job of btf_distill_func_proto()
function is to extract useful information from BTF into "function model" that
architecture dependent trampoline generators will use to generate assembly code
to cast kernel function arguments into array of u64s. For example the kernel
function eth_type_trans has two pointers. They will be casted to u64 and stored
into stack of generated trampoline. The pointer to that stack space will be
passed into BPF program in R1. On x86-64 such generated trampoline will consume
16 bytes of stack and two stores of %rdi and %rsi into stack. The verifier will
make sure that only two u64 are accessed read-only by BPF program. The verifier
will also recognize the precise type of the pointers being accessed and will
not allow typecasting of the pointer to a different type within BPF program.
The tracing use case in the datacenter demonstrated that certain key kernel
functions have (like tcp_retransmit_skb) have 2 or more kprobes that are always
active. Other functions have both kprobe and kretprobe. So it is essential to
keep both kernel code and BPF programs executing at maximum speed. Hence
generated BPF trampoline is re-generated every time new program is attached or
detached to maintain maximum performance.
To avoid the high cost of retpoline the attached BPF programs are called
directly. __bpf_prog_enter/exit() are used to support per-program execution
stats. In the future this logic will be optimized further by adding support
for bpf_stats_enabled_key inside generated assembly code. Introduction of
preemptible and sleepable BPF programs will completely remove the need to call
to __bpf_prog_enter/exit().
Detach of a BPF program from the trampoline should not fail. To avoid memory
allocation in detach path the half of the page is used as a reserve and flipped
after each attach/detach. 2k bytes is enough to call 40+ BPF programs directly
which is enough for BPF tracing use cases. This limit can be increased in the
future.
BPF_TRACE_FENTRY programs have access to raw kernel function arguments while
BPF_TRACE_FEXIT programs have access to kernel return value as well. Often
kprobe BPF program remembers function arguments in a map while kretprobe
fetches arguments from a map and analyzes them together with return value.
BPF_TRACE_FEXIT accelerates this typical use case.
Recursion prevention for kprobe BPF programs is done via per-cpu
bpf_prog_active counter. In practice that turned out to be a mistake. It
caused programs to randomly skip execution. The tracing tools missed results
they were looking for. Hence BPF trampoline doesn't provide builtin recursion
prevention. It's a job of BPF program itself and will be addressed in the
follow up patches.
BPF trampoline is intended to be used beyond tracing and fentry/fexit use cases
in the future. For example to remove retpoline cost from XDP programs.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Acked-by: Song Liu <songliubraving@fb.com>
Link: https://lore.kernel.org/bpf/20191114185720.1641606-5-ast@kernel.org
|
|
Alexei Starovoitov says:
====================
pull-request: bpf-next 2019-11-02
The following pull-request contains BPF updates for your *net-next* tree.
We've added 30 non-merge commits during the last 7 day(s) which contain
a total of 41 files changed, 1864 insertions(+), 474 deletions(-).
The main changes are:
1) Fix long standing user vs kernel access issue by introducing
bpf_probe_read_user() and bpf_probe_read_kernel() helpers, from Daniel.
2) Accelerated xskmap lookup, from Björn and Maciej.
3) Support for automatic map pinning in libbpf, from Toke.
4) Cleanup of BTF-enabled raw tracepoints, from Alexei.
5) Various fixes to libbpf and selftests.
====================
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
The only slightly tricky merge conflict was the netdevsim because the
mutex locking fix overlapped a lot of driver reload reorganization.
The rest were (relatively) trivial in nature.
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
The bpf program type raw_tp together with 'expected_attach_type'
was the most appropriate api to indicate BTF-enabled raw_tp programs.
But during development it became apparent that 'expected_attach_type'
cannot be used and new 'attach_btf_id' field had to be introduced.
Which means that the information is duplicated in two fields where
one of them is ignored.
Clean it up by introducing new program type where both
'expected_attach_type' and 'attach_btf_id' fields have
specific meaning.
In the future 'expected_attach_type' will be extended
with other attach points that have similar semantics to raw_tp.
This patch is replacing BTF-enabled BPF_PROG_TYPE_RAW_TRACEPOINT with
prog_type = BPF_RPOG_TYPE_TRACING
expected_attach_type = BPF_TRACE_RAW_TP
attach_btf_id = btf_id of raw tracepoint inside the kernel
Future patches will add
expected_attach_type = BPF_TRACE_FENTRY or BPF_TRACE_FEXIT
where programs have the same input context and the same helpers,
but different attach points.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/20191030223212.953010-2-ast@kernel.org
|
|
This patch makes a few changes to btf_ctx_access() to prepare
it for non raw_tp use case where the attach_btf_id is not
necessary a BTF_KIND_TYPEDEF.
It moves the "btf_trace_" prefix check and typedef-follow logic to a new
function "check_attach_btf_id()" which is called only once during
bpf_check(). btf_ctx_access() only operates on a BTF_KIND_FUNC_PROTO
type now. That should also be more efficient since it is done only
one instead of every-time check_ctx_access() is called.
"check_attach_btf_id()" needs to find the func_proto type from
the attach_btf_id. It needs to store the result into the
newly added prog->aux->attach_func_proto. func_proto
btf type has no name, so a proper name should be stored into
"attach_func_name" also.
v2:
- Move the "btf_trace_" check to an earlier verifier phase (Alexei)
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20191025001811.1718491-1-kafai@fb.com
|
|
There is one more problematic case I noticed while recently fixing BPF kallsyms
handling in cd7455f1013e ("bpf: Fix use after free in subprog's jited symbol
removal") and that is bpf_get_prog_name().
If BTF has been attached to the prog, then we may be able to fetch the function
signature type id in kallsyms through prog->aux->func_info[prog->aux->func_idx].type_id.
However, while the BTF object itself is torn down via RCU callback, the prog's
aux->func_info is immediately freed via kvfree(prog->aux->func_info) once the
prog's refcount either hit zero or when subprograms were already exposed via
kallsyms and we hit the error path added in 5482e9a93c83 ("bpf: Fix memleak in
aux->func_info and aux->btf").
This violates RCU as well since kallsyms could be walked in parallel where we
could access aux->func_info. Hence, defer kvfree() to after RCU grace period.
Looking at ba64e7d85252 ("bpf: btf: support proper non-jit func info") there
is no reason/dependency where we couldn't defer the kvfree(aux->func_info) into
the RCU callback.
Fixes: 5482e9a93c83 ("bpf: Fix memleak in aux->func_info and aux->btf")
Fixes: ba64e7d85252 ("bpf: btf: support proper non-jit func info")
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Cc: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/875f2906a7c1a0691f2d567b4d8e4ea2739b1e88.1571779205.git.daniel@iogearbox.net
|
|
syzkaller managed to trigger the following crash:
[...]
BUG: unable to handle page fault for address: ffffc90001923030
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD aa551067 P4D aa551067 PUD aa552067 PMD a572b067 PTE 80000000a1173163
Oops: 0000 [#1] PREEMPT SMP KASAN
CPU: 0 PID: 7982 Comm: syz-executor912 Not tainted 5.4.0-rc3+ #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
RIP: 0010:bpf_jit_binary_hdr include/linux/filter.h:787 [inline]
RIP: 0010:bpf_get_prog_addr_region kernel/bpf/core.c:531 [inline]
RIP: 0010:bpf_tree_comp kernel/bpf/core.c:600 [inline]
RIP: 0010:__lt_find include/linux/rbtree_latch.h:115 [inline]
RIP: 0010:latch_tree_find include/linux/rbtree_latch.h:208 [inline]
RIP: 0010:bpf_prog_kallsyms_find kernel/bpf/core.c:674 [inline]
RIP: 0010:is_bpf_text_address+0x184/0x3b0 kernel/bpf/core.c:709
[...]
Call Trace:
kernel_text_address kernel/extable.c:147 [inline]
__kernel_text_address+0x9a/0x110 kernel/extable.c:102
unwind_get_return_address+0x4c/0x90 arch/x86/kernel/unwind_frame.c:19
arch_stack_walk+0x98/0xe0 arch/x86/kernel/stacktrace.c:26
stack_trace_save+0xb6/0x150 kernel/stacktrace.c:123
save_stack mm/kasan/common.c:69 [inline]
set_track mm/kasan/common.c:77 [inline]
__kasan_kmalloc+0x11c/0x1b0 mm/kasan/common.c:510
kasan_slab_alloc+0xf/0x20 mm/kasan/common.c:518
slab_post_alloc_hook mm/slab.h:584 [inline]
slab_alloc mm/slab.c:3319 [inline]
kmem_cache_alloc+0x1f5/0x2e0 mm/slab.c:3483
getname_flags+0xba/0x640 fs/namei.c:138
getname+0x19/0x20 fs/namei.c:209
do_sys_open+0x261/0x560 fs/open.c:1091
__do_sys_open fs/open.c:1115 [inline]
__se_sys_open fs/open.c:1110 [inline]
__x64_sys_open+0x87/0x90 fs/open.c:1110
do_syscall_64+0xf7/0x1c0 arch/x86/entry/common.c:290
entry_SYSCALL_64_after_hwframe+0x49/0xbe
[...]
After further debugging it turns out that we walk kallsyms while in parallel
we tear down a BPF program which contains subprograms that have been JITed
though the program itself has not been fully exposed and is eventually bailing
out with error.
The bpf_prog_kallsyms_del_subprogs() in bpf_prog_load()'s error path removes
the symbols, however, bpf_prog_free() tears down the JIT memory too early via
scheduled work. Instead, it needs to properly respect RCU grace period as the
kallsyms walk for BPF is under RCU.
Fix it by refactoring __bpf_prog_put()'s tear down and reuse it in our error
path where we defer final destruction when we have subprogs in the program.
Fixes: 7d1982b4e335 ("bpf: fix panic in prog load calls cleanup")
Fixes: 1c2a088a6626 ("bpf: x64: add JIT support for multi-function programs")
Reported-by: syzbot+710043c5d1d5b5013bc7@syzkaller.appspotmail.com
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Tested-by: syzbot+710043c5d1d5b5013bc7@syzkaller.appspotmail.com
Link: https://lore.kernel.org/bpf/55f6367324c2d7e9583fa9ccf5385dcbba0d7a6e.1571752452.git.daniel@iogearbox.net
|
|
Only raw_tracepoint program type can have bpf_attr.attach_btf_id >= 0.
Make sure to reject other program types that accidentally set it to non-zero.
Fixes: ccfe29eb29c2 ("bpf: Add attach_btf_id attribute to program load")
Reported-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20191018060933.2950231-1-ast@kernel.org
|
|
BTF type id specified at program load time has all
necessary information to attach that program to raw tracepoint.
Use kernel type name to find raw tracepoint.
Add missing CHECK_ATTR() condition.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/20191016032505.2089704-8-ast@kernel.org
|
|
Add attach_btf_id attribute to prog_load command.
It's similar to existing expected_attach_type attribute which is
used in several cgroup based program types.
Unfortunately expected_attach_type is ignored for
tracing programs and cannot be reused for new purpose.
Hence introduce attach_btf_id to verify bpf programs against
given in-kernel BTF type id at load time.
It is strictly checked to be valid for raw_tp programs only.
In a later patches it will become:
btf_id == 0 semantics of existing raw_tp progs.
btd_id > 0 raw_tp with BTF and additional type safety.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/20191016032505.2089704-5-ast@kernel.org
|
|
Daniel Borkmann says:
====================
The following pull-request contains BPF updates for your *net-next* tree.
The main changes are:
1) Add the ability to use unaligned chunks in the AF_XDP umem. By
relaxing where the chunks can be placed, it allows to use an
arbitrary buffer size and place whenever there is a free
address in the umem. Helps more seamless DPDK AF_XDP driver
integration. Support for i40e, ixgbe and mlx5e, from Kevin and
Maxim.
2) Addition of a wakeup flag for AF_XDP tx and fill rings so the
application can wake up the kernel for rx/tx processing which
avoids busy-spinning of the latter, useful when app and driver
is located on the same core. Support for i40e, ixgbe and mlx5e,
from Magnus and Maxim.
3) bpftool fixes for printf()-like functions so compiler can actually
enforce checks, bpftool build system improvements for custom output
directories, and addition of 'bpftool map freeze' command, from Quentin.
4) Support attaching/detaching XDP programs from 'bpftool net' command,
from Daniel.
5) Automatic xskmap cleanup when AF_XDP socket is released, and several
barrier/{read,write}_once fixes in AF_XDP code, from Björn.
6) Relicense of bpf_helpers.h/bpf_endian.h for future libbpf
inclusion as well as libbpf versioning improvements, from Andrii.
7) Several new BPF kselftests for verifier precision tracking, from Alexei.
8) Several BPF kselftest fixes wrt endianess to run on s390x, from Ilya.
9) And more BPF kselftest improvements all over the place, from Stanislav.
10) Add simple BPF map op cache for nfp driver to batch dumps, from Jakub.
11) AF_XDP socket umem mapping improvements for 32bit archs, from Ivan.
12) Add BPF-to-BPF call and BTF line info support for s390x JIT, from Yauheni.
13) Small optimization in arm64 JIT to spare 1 insns for BPF_MOD, from Jerin.
14) Fix an error check in bpf_tcp_gen_syncookie() helper, from Petar.
15) Various minor fixes and cleanups, from Nathan, Masahiro, Masanari,
Peter, Wei, Yue.
====================
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Introduce BPF_F_TEST_STATE_FREQ flag to stress test parentage chain
and state pruning.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
|
|
syzkaller managed to trigger the warning in bpf_jit_free() which checks via
bpf_prog_kallsyms_verify_off() for potentially unlinked JITed BPF progs
in kallsyms, and subsequently trips over GPF when walking kallsyms entries:
[...]
8021q: adding VLAN 0 to HW filter on device batadv0
8021q: adding VLAN 0 to HW filter on device batadv0
WARNING: CPU: 0 PID: 9869 at kernel/bpf/core.c:810 bpf_jit_free+0x1e8/0x2a0
Kernel panic - not syncing: panic_on_warn set ...
CPU: 0 PID: 9869 Comm: kworker/0:7 Not tainted 5.0.0-rc8+ #1
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
Workqueue: events bpf_prog_free_deferred
Call Trace:
__dump_stack lib/dump_stack.c:77 [inline]
dump_stack+0x113/0x167 lib/dump_stack.c:113
panic+0x212/0x40b kernel/panic.c:214
__warn.cold.8+0x1b/0x38 kernel/panic.c:571
report_bug+0x1a4/0x200 lib/bug.c:186
fixup_bug arch/x86/kernel/traps.c:178 [inline]
do_error_trap+0x11b/0x200 arch/x86/kernel/traps.c:271
do_invalid_op+0x36/0x40 arch/x86/kernel/traps.c:290
invalid_op+0x14/0x20 arch/x86/entry/entry_64.S:973
RIP: 0010:bpf_jit_free+0x1e8/0x2a0
Code: 02 4c 89 e2 83 e2 07 38 d0 7f 08 84 c0 0f 85 86 00 00 00 48 ba 00 02 00 00 00 00 ad de 0f b6 43 02 49 39 d6 0f 84 5f fe ff ff <0f> 0b e9 58 fe ff ff 48 b8 00 00 00 00 00 fc ff df 4c 89 e2 48 c1
RSP: 0018:ffff888092f67cd8 EFLAGS: 00010202
RAX: 0000000000000007 RBX: ffffc90001947000 RCX: ffffffff816e9d88
RDX: dead000000000200 RSI: 0000000000000008 RDI: ffff88808769f7f0
RBP: ffff888092f67d00 R08: fffffbfff1394059 R09: fffffbfff1394058
R10: fffffbfff1394058 R11: ffffffff89ca02c7 R12: ffffc90001947002
R13: ffffc90001947020 R14: ffffffff881eca80 R15: ffff88808769f7e8
BUG: unable to handle kernel paging request at fffffbfff400d000
#PF error: [normal kernel read fault]
PGD 21ffee067 P4D 21ffee067 PUD 21ffed067 PMD 9f942067 PTE 0
Oops: 0000 [#1] PREEMPT SMP KASAN
CPU: 0 PID: 9869 Comm: kworker/0:7 Not tainted 5.0.0-rc8+ #1
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
Workqueue: events bpf_prog_free_deferred
RIP: 0010:bpf_get_prog_addr_region kernel/bpf/core.c:495 [inline]
RIP: 0010:bpf_tree_comp kernel/bpf/core.c:558 [inline]
RIP: 0010:__lt_find include/linux/rbtree_latch.h:115 [inline]
RIP: 0010:latch_tree_find include/linux/rbtree_latch.h:208 [inline]
RIP: 0010:bpf_prog_kallsyms_find+0x107/0x2e0 kernel/bpf/core.c:632
Code: 00 f0 ff ff 44 38 c8 7f 08 84 c0 0f 85 fa 00 00 00 41 f6 45 02 01 75 02 0f 0b 48 39 da 0f 82 92 00 00 00 48 89 d8 48 c1 e8 03 <42> 0f b6 04 30 84 c0 74 08 3c 03 0f 8e 45 01 00 00 8b 03 48 c1 e0
[...]
Upon further debugging, it turns out that whenever we trigger this
issue, the kallsyms removal in bpf_prog_ksym_node_del() was /skipped/
but yet bpf_jit_free() reported that the entry is /in use/.
Problem is that symbol exposure via bpf_prog_kallsyms_add() but also
perf_event_bpf_event() were done /after/ bpf_prog_new_fd(). Once the
fd is exposed to the public, a parallel close request came in right
before we attempted to do the bpf_prog_kallsyms_add().
Given at this time the prog reference count is one, we start to rip
everything underneath us via bpf_prog_release() -> bpf_prog_put().
The memory is eventually released via deferred free, so we're seeing
that bpf_jit_free() has a kallsym entry because we added it from
bpf_prog_load() but /after/ bpf_prog_put() from the remote CPU.
Therefore, move both notifications /before/ we install the fd. The
issue was never seen between bpf_prog_alloc_id() and bpf_prog_new_fd()
because upon bpf_prog_get_fd_by_id() we'll take another reference to
the BPF prog, so we're still holding the original reference from the
bpf_prog_load().
Fixes: 6ee52e2a3fe4 ("perf, bpf: Introduce PERF_RECORD_BPF_EVENT")
Fixes: 74451e66d516 ("bpf: make jited programs visible in traces")
Reported-by: syzbot+bd3bba6ff3fcea7a6ec6@syzkaller.appspotmail.com
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Cc: Song Liu <songliubraving@fb.com>
|
|
Add a new command for the bpf() system call: BPF_BTF_GET_NEXT_ID is used
to cycle through all BTF objects loaded on the system.
The motivation is to be able to inspect (list) all BTF objects presents
on the system.
Signed-off-by: Quentin Monnet <quentin.monnet@netronome.com>
Reviewed-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
Rename existing bpf_map_inc_not_zero to __bpf_map_inc_not_zero to
indicate that it's caller's responsibility to do proper locking.
Create and export bpf_map_inc_not_zero wrapper that properly
locks map_idr_lock. Will be used in the next commit to
hold a map while cloning a socket.
Cc: Martin KaFai Lau <kafai@fb.com>
Cc: Yonghong Song <yhs@fb.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Acked-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Stanislav Fomichev <sdf@google.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
|
|
Pull networking updates from David Miller:
"Some highlights from this development cycle:
1) Big refactoring of ipv6 route and neigh handling to support
nexthop objects configurable as units from userspace. From David
Ahern.
2) Convert explored_states in BPF verifier into a hash table,
significantly decreased state held for programs with bpf2bpf
calls, from Alexei Starovoitov.
3) Implement bpf_send_signal() helper, from Yonghong Song.
4) Various classifier enhancements to mvpp2 driver, from Maxime
Chevallier.
5) Add aRFS support to hns3 driver, from Jian Shen.
6) Fix use after free in inet frags by allocating fqdirs dynamically
and reworking how rhashtable dismantle occurs, from Eric Dumazet.
7) Add act_ctinfo packet classifier action, from Kevin
Darbyshire-Bryant.
8) Add TFO key backup infrastructure, from Jason Baron.
9) Remove several old and unused ISDN drivers, from Arnd Bergmann.
10) Add devlink notifications for flash update status to mlxsw driver,
from Jiri Pirko.
11) Lots of kTLS offload infrastructure fixes, from Jakub Kicinski.
12) Add support for mv88e6250 DSA chips, from Rasmus Villemoes.
13) Various enhancements to ipv6 flow label handling, from Eric
Dumazet and Willem de Bruijn.
14) Support TLS offload in nfp driver, from Jakub Kicinski, Dirk van
der Merwe, and others.
15) Various improvements to axienet driver including converting it to
phylink, from Robert Hancock.
16) Add PTP support to sja1105 DSA driver, from Vladimir Oltean.
17) Add mqprio qdisc offload support to dpaa2-eth, from Ioana
Radulescu.
18) Add devlink health reporting to mlx5, from Moshe Shemesh.
19) Convert stmmac over to phylink, from Jose Abreu.
20) Add PTP PHC (Physical Hardware Clock) support to mlxsw, from
Shalom Toledo.
21) Add nftables SYNPROXY support, from Fernando Fernandez Mancera.
22) Convert tcp_fastopen over to use SipHash, from Ard Biesheuvel.
23) Track spill/fill of constants in BPF verifier, from Alexei
Starovoitov.
24) Support bounded loops in BPF, from Alexei Starovoitov.
25) Various page_pool API fixes and improvements, from Jesper Dangaard
Brouer.
26) Just like ipv4, support ref-countless ipv6 route handling. From
Wei Wang.
27) Support VLAN offloading in aquantia driver, from Igor Russkikh.
28) Add AF_XDP zero-copy support to mlx5, from Maxim Mikityanskiy.
29) Add flower GRE encap/decap support to nfp driver, from Pieter
Jansen van Vuuren.
30) Protect against stack overflow when using act_mirred, from John
Hurley.
31) Allow devmap map lookups from eBPF, from Toke Høiland-Jørgensen.
32) Use page_pool API in netsec driver, Ilias Apalodimas.
33) Add Google gve network driver, from Catherine Sullivan.
34) More indirect call avoidance, from Paolo Abeni.
35) Add kTLS TX HW offload support to mlx5, from Tariq Toukan.
36) Add XDP_REDIRECT support to bnxt_en, from Andy Gospodarek.
37) Add MPLS manipulation actions to TC, from John Hurley.
38) Add sending a packet to connection tracking from TC actions, and
then allow flower classifier matching on conntrack state. From
Paul Blakey.
39) Netfilter hw offload support, from Pablo Neira Ayuso"
* git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next: (2080 commits)
net/mlx5e: Return in default case statement in tx_post_resync_params
mlx5: Return -EINVAL when WARN_ON_ONCE triggers in mlx5e_tls_resync().
net: dsa: add support for BRIDGE_MROUTER attribute
pkt_sched: Include const.h
net: netsec: remove static declaration for netsec_set_tx_de()
net: netsec: remove superfluous if statement
netfilter: nf_tables: add hardware offload support
net: flow_offload: rename tc_cls_flower_offload to flow_cls_offload
net: flow_offload: add flow_block_cb_is_busy() and use it
net: sched: remove tcf block API
drivers: net: use flow block API
net: sched: use flow block API
net: flow_offload: add flow_block_cb_{priv, incref, decref}()
net: flow_offload: add list handling functions
net: flow_offload: add flow_block_cb_alloc() and flow_block_cb_free()
net: flow_offload: rename TCF_BLOCK_BINDER_TYPE_* to FLOW_BLOCK_BINDER_TYPE_*
net: flow_offload: rename TC_BLOCK_{UN}BIND to FLOW_BLOCK_{UN}BIND
net: flow_offload: add flow_block_cb_setup_simple()
net: hisilicon: Add an tx_desc to adapt HI13X1_GMAC
net: hisilicon: Add an rx_desc to adapt HI13X1_GMAC
...
|
|
so the hyper-v clocksource update can be applied.
|
|
Implement new BPF_PROG_TYPE_CGROUP_SOCKOPT program type and
BPF_CGROUP_{G,S}ETSOCKOPT cgroup hooks.
BPF_CGROUP_SETSOCKOPT can modify user setsockopt arguments before
passing them down to the kernel or bypass kernel completely.
BPF_CGROUP_GETSOCKOPT can can inspect/modify getsockopt arguments that
kernel returns.
Both hooks reuse existing PTR_TO_PACKET{,_END} infrastructure.
The buffer memory is pre-allocated (because I don't think there is
a precedent for working with __user memory from bpf). This might be
slow to do for each {s,g}etsockopt call, that's why I've added
__cgroup_bpf_prog_array_is_empty that exits early if there is nothing
attached to a cgroup. Note, however, that there is a race between
__cgroup_bpf_prog_array_is_empty and BPF_PROG_RUN_ARRAY where cgroup
program layout might have changed; this should not be a problem
because in general there is a race between multiple calls to
{s,g}etsocktop and user adding/removing bpf progs from a cgroup.
The return code of the BPF program is handled as follows:
* 0: EPERM
* 1: success, continue with next BPF program in the cgroup chain
v9:
* allow overwriting setsockopt arguments (Alexei Starovoitov):
* use set_fs (same as kernel_setsockopt)
* buffer is always kzalloc'd (no small on-stack buffer)
v8:
* use s32 for optlen (Andrii Nakryiko)
v7:
* return only 0 or 1 (Alexei Starovoitov)
* always run all progs (Alexei Starovoitov)
* use optval=0 as kernel bypass in setsockopt (Alexei Starovoitov)
(decided to use optval=-1 instead, optval=0 might be a valid input)
* call getsockopt hook after kernel handlers (Alexei Starovoitov)
v6:
* rework cgroup chaining; stop as soon as bpf program returns
0 or 2; see patch with the documentation for the details
* drop Andrii's and Martin's Acked-by (not sure they are comfortable
with the new state of things)
v5:
* skip copy_to_user() and put_user() when ret == 0 (Martin Lau)
v4:
* don't export bpf_sk_fullsock helper (Martin Lau)
* size != sizeof(__u64) for uapi pointers (Martin Lau)
* offsetof instead of bpf_ctx_range when checking ctx access (Martin Lau)
v3:
* typos in BPF_PROG_CGROUP_SOCKOPT_RUN_ARRAY comments (Andrii Nakryiko)
* reverse christmas tree in BPF_PROG_CGROUP_SOCKOPT_RUN_ARRAY (Andrii
Nakryiko)
* use __bpf_md_ptr instead of __u32 for optval{,_end} (Martin Lau)
* use BPF_FIELD_SIZEOF() for consistency (Martin Lau)
* new CG_SOCKOPT_ACCESS macro to wrap repeated parts
v2:
* moved bpf_sockopt_kern fields around to remove a hole (Martin Lau)
* aligned bpf_sockopt_kern->buf to 8 bytes (Martin Lau)
* bpf_prog_array_is_empty instead of bpf_prog_array_length (Martin Lau)
* added [0,2] return code check to verifier (Martin Lau)
* dropped unused buf[64] from the stack (Martin Lau)
* use PTR_TO_SOCKET for bpf_sockopt->sk (Martin Lau)
* dropped bpf_target_off from ctx rewrites (Martin Lau)
* use return code for kernel bypass (Martin Lau & Andrii Nakryiko)
Cc: Andrii Nakryiko <andriin@fb.com>
Cc: Martin Lau <kafai@fb.com>
Signed-off-by: Stanislav Fomichev <sdf@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
This makes boot uniformly boottime and tai uniformly clocktai, to
address the remaining oversights.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Arnd Bergmann <arnd@arndb.de>
Link: https://lkml.kernel.org/r/20190621203249.3909-2-Jason@zx2c4.com
|
|
Honestly all the conflicts were simple overlapping changes,
nothing really interesting to report.
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Pull networking fixes from David Miller:
"Lots of bug fixes here:
1) Out of bounds access in __bpf_skc_lookup, from Lorenz Bauer.
2) Fix rate reporting in cfg80211_calculate_bitrate_he(), from John
Crispin.
3) Use after free in psock backlog workqueue, from John Fastabend.
4) Fix source port matching in fdb peer flow rule of mlx5, from Raed
Salem.
5) Use atomic_inc_not_zero() in fl6_sock_lookup(), from Eric Dumazet.
6) Network header needs to be set for packet redirect in nfp, from
John Hurley.
7) Fix udp zerocopy refcnt, from Willem de Bruijn.
8) Don't assume linear buffers in vxlan and geneve error handlers,
from Stefano Brivio.
9) Fix TOS matching in mlxsw, from Jiri Pirko.
10) More SCTP cookie memory leak fixes, from Neil Horman.
11) Fix VLAN filtering in rtl8366, from Linus Walluij.
12) Various TCP SACK payload size and fragmentation memory limit fixes
from Eric Dumazet.
13) Use after free in pneigh_get_next(), also from Eric Dumazet.
14) LAPB control block leak fix from Jeremy Sowden"
* git://git.kernel.org/pub/scm/linux/kernel/git/davem/net: (145 commits)
lapb: fixed leak of control-blocks.
tipc: purge deferredq list for each grp member in tipc_group_delete
ax25: fix inconsistent lock state in ax25_destroy_timer
neigh: fix use-after-free read in pneigh_get_next
tcp: fix compile error if !CONFIG_SYSCTL
hv_sock: Suppress bogus "may be used uninitialized" warnings
be2net: Fix number of Rx queues used for flow hashing
net: handle 802.1P vlan 0 packets properly
tcp: enforce tcp_min_snd_mss in tcp_mtu_probing()
tcp: add tcp_min_snd_mss sysctl
tcp: tcp_fragment() should apply sane memory limits
tcp: limit payload size of sacked skbs
Revert "net: phylink: set the autoneg state in phylink_phy_change"
bpf: fix nested bpf tracepoints with per-cpu data
bpf: Fix out of bounds memory access in bpf_sk_storage
vsock/virtio: set SOCK_DONE on peer shutdown
net: dsa: rtl8366: Fix up VLAN filtering
net: phylink: set the autoneg state in phylink_phy_change
net: add high_order_alloc_disable sysctl/static key
tcp: add tcp_tx_skb_cache sysctl
...
|
|
Intention of cgroup bind/connect/sendmsg BPF hooks is to act transparently
to applications as also stated in original motivation in 7828f20e3779 ("Merge
branch 'bpf-cgroup-bind-connect'"). When recently integrating the latter
two hooks into Cilium to enable host based load-balancing with Kubernetes,
I ran into the issue that pods couldn't start up as DNS got broken. Kubernetes
typically sets up DNS as a service and is thus subject to load-balancing.
Upon further debugging, it turns out that the cgroupv2 sendmsg BPF hooks API
is currently insufficient and thus not usable as-is for standard applications
shipped with most distros. To break down the issue we ran into with a simple
example:
# cat /etc/resolv.conf
nameserver 147.75.207.207
nameserver 147.75.207.208
For the purpose of a simple test, we set up above IPs as service IPs and
transparently redirect traffic to a different DNS backend server for that
node:
# cilium service list
ID Frontend Backend
1 147.75.207.207:53 1 => 8.8.8.8:53
2 147.75.207.208:53 1 => 8.8.8.8:53
The attached BPF program is basically selecting one of the backends if the
service IP/port matches on the cgroup hook. DNS breaks here, because the
hooks are not transparent enough to applications which have built-in msg_name
address checks:
# nslookup 1.1.1.1
;; reply from unexpected source: 8.8.8.8#53, expected 147.75.207.207#53
;; reply from unexpected source: 8.8.8.8#53, expected 147.75.207.208#53
;; reply from unexpected source: 8.8.8.8#53, expected 147.75.207.207#53
[...]
;; connection timed out; no servers could be reached
# dig 1.1.1.1
;; reply from unexpected source: 8.8.8.8#53, expected 147.75.207.207#53
;; reply from unexpected source: 8.8.8.8#53, expected 147.75.207.208#53
;; reply from unexpected source: 8.8.8.8#53, expected 147.75.207.207#53
[...]
; <<>> DiG 9.11.3-1ubuntu1.7-Ubuntu <<>> 1.1.1.1
;; global options: +cmd
;; connection timed out; no servers could be reached
For comparison, if none of the service IPs is used, and we tell nslookup
to use 8.8.8.8 directly it works just fine, of course:
# nslookup 1.1.1.1 8.8.8.8
1.1.1.1.in-addr.arpa name = one.one.one.one.
In order to fix this and thus act more transparent to the application,
this needs reverse translation on recvmsg() side. A minimal fix for this
API is to add similar recvmsg() hooks behind the BPF cgroups static key
such that the program can track state and replace the current sockaddr_in{,6}
with the original service IP. From BPF side, this basically tracks the
service tuple plus socket cookie in an LRU map where the reverse NAT can
then be retrieved via map value as one example. Side-note: the BPF cgroups
static key should be converted to a per-hook static key in future.
Same example after this fix:
# cilium service list
ID Frontend Backend
1 147.75.207.207:53 1 => 8.8.8.8:53
2 147.75.207.208:53 1 => 8.8.8.8:53
Lookups work fine now:
# nslookup 1.1.1.1
1.1.1.1.in-addr.arpa name = one.one.one.one.
Authoritative answers can be found from:
# dig 1.1.1.1
; <<>> DiG 9.11.3-1ubuntu1.7-Ubuntu <<>> 1.1.1.1
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NXDOMAIN, id: 51550
;; flags: qr rd ra ad; QUERY: 1, ANSWER: 0, AUTHORITY: 1, ADDITIONAL: 1
;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 512
;; QUESTION SECTION:
;1.1.1.1. IN A
;; AUTHORITY SECTION:
. 23426 IN SOA a.root-servers.net. nstld.verisign-grs.com. 2019052001 1800 900 604800 86400
;; Query time: 17 msec
;; SERVER: 147.75.207.207#53(147.75.207.207)
;; WHEN: Tue May 21 12:59:38 UTC 2019
;; MSG SIZE rcvd: 111
And from an actual packet level it shows that we're using the back end
server when talking via 147.75.207.20{7,8} front end:
# tcpdump -i any udp
[...]
12:59:52.698732 IP foo.42011 > google-public-dns-a.google.com.domain: 18803+ PTR? 1.1.1.1.in-addr.arpa. (38)
12:59:52.698735 IP foo.42011 > google-public-dns-a.google.com.domain: 18803+ PTR? 1.1.1.1.in-addr.arpa. (38)
12:59:52.701208 IP google-public-dns-a.google.com.domain > foo.42011: 18803 1/0/0 PTR one.one.one.one. (67)
12:59:52.701208 IP google-public-dns-a.google.com.domain > foo.42011: 18803 1/0/0 PTR one.one.one.one. (67)
[...]
In order to be flexible and to have same semantics as in sendmsg BPF
programs, we only allow return codes in [1,1] range. In the sendmsg case
the program is called if msg->msg_name is present which can be the case
in both, connected and unconnected UDP.
The former only relies on the sockaddr_in{,6} passed via connect(2) if
passed msg->msg_name was NULL. Therefore, on recvmsg side, we act in similar
way to call into the BPF program whenever a non-NULL msg->msg_name was
passed independent of sk->sk_state being TCP_ESTABLISHED or not. Note
that for TCP case, the msg->msg_name is ignored in the regular recvmsg
path and therefore not relevant.
For the case of ip{,v6}_recv_error() paths, picked up via MSG_ERRQUEUE,
the hook is not called. This is intentional as it aligns with the same
semantics as in case of TCP cgroup BPF hooks right now. This might be
better addressed in future through a different bpf_attach_type such
that this case can be distinguished from the regular recvmsg paths,
for example.
Fixes: 1cedee13d25a ("bpf: Hooks for sys_sendmsg")
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrey Ignatov <rdna@fb.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Acked-by: Martynas Pumputis <m@lambda.lt>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
Based on 1 normalized pattern(s):
this program is free software you can redistribute it and or modify
it under the terms of version 2 of the gnu general public license as
published by the free software foundation this program is
distributed in the hope that it will be useful but without any
warranty without even the implied warranty of merchantability or
fitness for a particular purpose see the gnu general public license
for more details
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-only
has been chosen to replace the boilerplate/reference in 64 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexios Zavras <alexios.zavras@intel.com>
Reviewed-by: Allison Randal <allison@lohutok.net>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190529141901.894819585@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Most bpf map types doing similar checks and bytes to pages
conversion during memory allocation and charging.
Let's unify these checks by moving them into bpf_map_charge_init().
Signed-off-by: Roman Gushchin <guro@fb.com>
Acked-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
In order to unify the existing memlock charging code with the
memcg-based memory accounting, which will be added later, let's
rework the current scheme.
Currently the following design is used:
1) .alloc() callback optionally checks if the allocation will likely
succeed using bpf_map_precharge_memlock()
2) .alloc() performs actual allocations
3) .alloc() callback calculates map cost and sets map.memory.pages
4) map_create() calls bpf_map_init_memlock() which sets map.memory.user
and performs actual charging; in case of failure the map is
destroyed
<map is in use>
1) bpf_map_free_deferred() calls bpf_map_release_memlock(), which
performs uncharge and releases the user
2) .map_free() callback releases the memory
The scheme can be simplified and made more robust:
1) .alloc() calculates map cost and calls bpf_map_charge_init()
2) bpf_map_charge_init() sets map.memory.user and performs actual
charge
3) .alloc() performs actual allocations
<map is in use>
1) .map_free() callback releases the memory
2) bpf_map_charge_finish() performs uncharge and releases the user
The new scheme also allows to reuse bpf_map_charge_init()/finish()
functions for memcg-based accounting. Because charges are performed
before actual allocations and uncharges after freeing the memory,
no bogus memory pressure can be created.
In cases when the map structure is not available (e.g. it's not
created yet, or is already destroyed), on-stack bpf_map_memory
structure is used. The charge can be transferred with the
bpf_map_charge_move() function.
Signed-off-by: Roman Gushchin <guro@fb.com>
Acked-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
Group "user" and "pages" fields of bpf_map into the bpf_map_memory
structure. Later it can be extended with "memcg" and other related
information.
The main reason for a such change (beside cosmetics) is to pass
bpf_map_memory structure to charging functions before the actual
allocation of bpf_map.
Signed-off-by: Roman Gushchin <guro@fb.com>
Acked-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
Allows cgroup inet skb programs to return values in the range [0, 3].
The second bit is used to deterine if congestion occurred and higher
level protocol should decrease rate. E.g. TCP would call tcp_enter_cwr()
The bpf_prog must set expected_attach_type to BPF_CGROUP_INET_EGRESS
at load time if it uses the new return values (i.e. 2 or 3).
The expected_attach_type is currently not enforced for
BPF_PROG_TYPE_CGROUP_SKB. e.g Meaning the current bpf_prog with
expected_attach_type setting to BPF_CGROUP_INET_EGRESS can attach to
BPF_CGROUP_INET_INGRESS. Blindly enforcing expected_attach_type will
break backward compatibility.
This patch adds a enforce_expected_attach_type bit to only
enforce the expected_attach_type when it uses the new
return value.
Signed-off-by: Lawrence Brakmo <brakmo@fb.com>
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
x86_64 and AArch64 perhaps are two arches that running bpf testsuite
frequently, however the zero extension insertion pass is not enabled for
them because of their hardware support.
It is critical to guarantee the pass correction as it is supposed to be
enabled at default for a couple of other arches, for example PowerPC,
SPARC, arm, NFP etc. Therefore, it would be very useful if there is a way
to test this pass on for example x86_64.
The test methodology employed by this set is "poisoning" useless bits. High
32-bit of a definition is randomized if it is identified as not used by any
later insn. Such randomization is only enabled under testing mode which is
gated by the new bpf prog load flags "BPF_F_TEST_RND_HI32".
Suggested-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Jiong Wang <jiong.wang@netronome.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
Add a callback map_lookup_elem_sys_only() that map implementations
could use over map_lookup_elem() from system call side in case the
map implementation needs to handle the latter differently than from
the BPF data path. If map_lookup_elem_sys_only() is set, this will
be preferred pick for map lookups out of user space. This hook is
used in a follow-up fix for LRU map, but once development window
opens, we can convert other map types from map_lookup_elem() (here,
the one called upon BPF_MAP_LOOKUP_ELEM cmd is meant) over to use
the callback to simplify and clean up the latter.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
After allowing a bpf prog to
- directly read the skb->sk ptr
- get the fullsock bpf_sock by "bpf_sk_fullsock()"
- get the bpf_tcp_sock by "bpf_tcp_sock()"
- get the listener sock by "bpf_get_listener_sock()"
- avoid duplicating the fields of "(bpf_)sock" and "(bpf_)tcp_sock"
into different bpf running context.
this patch is another effort to make bpf's network programming
more intuitive to do (together with memory and performance benefit).
When bpf prog needs to store data for a sk, the current practice is to
define a map with the usual 4-tuples (src/dst ip/port) as the key.
If multiple bpf progs require to store different sk data, multiple maps
have to be defined. Hence, wasting memory to store the duplicated
keys (i.e. 4 tuples here) in each of the bpf map.
[ The smallest key could be the sk pointer itself which requires
some enhancement in the verifier and it is a separate topic. ]
Also, the bpf prog needs to clean up the elem when sk is freed.
Otherwise, the bpf map will become full and un-usable quickly.
The sk-free tracking currently could be done during sk state
transition (e.g. BPF_SOCK_OPS_STATE_CB).
The size of the map needs to be predefined which then usually ended-up
with an over-provisioned map in production. Even the map was re-sizable,
while the sk naturally come and go away already, this potential re-size
operation is arguably redundant if the data can be directly connected
to the sk itself instead of proxy-ing through a bpf map.
This patch introduces sk->sk_bpf_storage to provide local storage space
at sk for bpf prog to use. The space will be allocated when the first bpf
prog has created data for this particular sk.
The design optimizes the bpf prog's lookup (and then optionally followed by
an inline update). bpf_spin_lock should be used if the inline update needs
to be protected.
BPF_MAP_TYPE_SK_STORAGE:
-----------------------
To define a bpf "sk-local-storage", a BPF_MAP_TYPE_SK_STORAGE map (new in
this patch) needs to be created. Multiple BPF_MAP_TYPE_SK_STORAGE maps can
be created to fit different bpf progs' needs. The map enforces
BTF to allow printing the sk-local-storage during a system-wise
sk dump (e.g. "ss -ta") in the future.
The purpose of a BPF_MAP_TYPE_SK_STORAGE map is not for lookup/update/delete
a "sk-local-storage" data from a particular sk.
Think of the map as a meta-data (or "type") of a "sk-local-storage". This
particular "type" of "sk-local-storage" data can then be stored in any sk.
The main purposes of this map are mostly:
1. Define the size of a "sk-local-storage" type.
2. Provide a similar syscall userspace API as the map (e.g. lookup/update,
map-id, map-btf...etc.)
3. Keep track of all sk's storages of this "type" and clean them up
when the map is freed.
sk->sk_bpf_storage:
------------------
The main lookup/update/delete is done on sk->sk_bpf_storage (which
is a "struct bpf_sk_storage"). When doing a lookup,
the "map" pointer is now used as the "key" to search on the
sk_storage->list. The "map" pointer is actually serving
as the "type" of the "sk-local-storage" that is being
requested.
To allow very fast lookup, it should be as fast as looking up an
array at a stable-offset. At the same time, it is not ideal to
set a hard limit on the number of sk-local-storage "type" that the
system can have. Hence, this patch takes a cache approach.
The last search result from sk_storage->list is cached in
sk_storage->cache[] which is a stable sized array. Each
"sk-local-storage" type has a stable offset to the cache[] array.
In the future, a map's flag could be introduced to do cache
opt-out/enforcement if it became necessary.
The cache size is 16 (i.e. 16 types of "sk-local-storage").
Programs can share map. On the program side, having a few bpf_progs
running in the networking hotpath is already a lot. The bpf_prog
should have already consolidated the existing sock-key-ed map usage
to minimize the map lookup penalty. 16 has enough runway to grow.
All sk-local-storage data will be removed from sk->sk_bpf_storage
during sk destruction.
bpf_sk_storage_get() and bpf_sk_storage_delete():
------------------------------------------------
Instead of using bpf_map_(lookup|update|delete)_elem(),
the bpf prog needs to use the new helper bpf_sk_storage_get() and
bpf_sk_storage_delete(). The verifier can then enforce the
ARG_PTR_TO_SOCKET argument. The bpf_sk_storage_get() also allows to
"create" new elem if one does not exist in the sk. It is done by
the new BPF_SK_STORAGE_GET_F_CREATE flag. An optional value can also be
provided as the initial value during BPF_SK_STORAGE_GET_F_CREATE.
The BPF_MAP_TYPE_SK_STORAGE also supports bpf_spin_lock. Together,
it has eliminated the potential use cases for an equivalent
bpf_map_update_elem() API (for bpf_prog) in this patch.
Misc notes:
----------
1. map_get_next_key is not supported. From the userspace syscall
perspective, the map has the socket fd as the key while the map
can be shared by pinned-file or map-id.
Since btf is enforced, the existing "ss" could be enhanced to pretty
print the local-storage.
Supporting a kernel defined btf with 4 tuples as the return key could
be explored later also.
2. The sk->sk_lock cannot be acquired. Atomic operations is used instead.
e.g. cmpxchg is done on the sk->sk_bpf_storage ptr.
Please refer to the source code comments for the details in
synchronization cases and considerations.
3. The mem is charged to the sk->sk_omem_alloc as the sk filter does.
Benchmark:
---------
Here is the benchmark data collected by turning on
the "kernel.bpf_stats_enabled" sysctl.
Two bpf progs are tested:
One bpf prog with the usual bpf hashmap (max_entries = 8192) with the
sk ptr as the key. (verifier is modified to support sk ptr as the key
That should have shortened the key lookup time.)
Another bpf prog is with the new BPF_MAP_TYPE_SK_STORAGE.
Both are storing a "u32 cnt", do a lookup on "egress_skb/cgroup" for
each egress skb and then bump the cnt. netperf is used to drive
data with 4096 connected UDP sockets.
BPF_MAP_TYPE_HASH with a modifier verifier (152ns per bpf run)
27: cgroup_skb name egress_sk_map tag 74f56e832918070b run_time_ns 58280107540 run_cnt 381347633
loaded_at 2019-04-15T13:46:39-0700 uid 0
xlated 344B jited 258B memlock 4096B map_ids 16
btf_id 5
BPF_MAP_TYPE_SK_STORAGE in this patch (66ns per bpf run)
30: cgroup_skb name egress_sk_stora tag d4aa70984cc7bbf6 run_time_ns 25617093319 run_cnt 390989739
loaded_at 2019-04-15T13:47:54-0700 uid 0
xlated 168B jited 156B memlock 4096B map_ids 17
btf_id 6
Here is a high-level picture on how are the objects organized:
sk
┌──────┐
│ │
│ │
│ │
│*sk_bpf_storage─────▶ bpf_sk_storage
└──────┘ ┌───────┐
┌───────────┤ list │
│ │ │
│ │ │
│ │ │
│ └───────┘
│
│ elem
│ ┌────────┐
├─▶│ snode │
│ ├────────┤
│ │ data │ bpf_map
│ ├────────┤ ┌─────────┐
│ │map_node│◀─┬─────┤ list │
│ └────────┘ │ │ │
│ │ │ │
│ elem │ │ │
│ ┌────────┐ │ └─────────┘
└─▶│ snode │ │
├────────┤ │
bpf_map │ data │ │
┌─────────┐ ├────────┤ │
│ list ├───────▶│map_node│ │
│ │ └────────┘ │
│ │ │
│ │ elem │
└─────────┘ ┌────────┐ │
┌─▶│ snode │ │
│ ├────────┤ │
│ │ data │ │
│ ├────────┤ │
│ │map_node│◀─┘
│ └────────┘
│
│
│ ┌───────┐
sk └──────────│ list │
┌──────┐ │ │
│ │ │ │
│ │ │ │
│ │ └───────┘
│*sk_bpf_storage───────▶bpf_sk_storage
└──────┘
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
This is an opt-in interface that allows a tracepoint to provide a safe
buffer that can be written from a BPF_PROG_TYPE_RAW_TRACEPOINT program.
The size of the buffer must be a compile-time constant, and is checked
before allowing a BPF program to attach to a tracepoint that uses this
feature.
The pointer to this buffer will be the first argument of tracepoints
that opt in; the pointer is valid and can be bpf_probe_read() by both
BPF_PROG_TYPE_RAW_TRACEPOINT and BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE
programs that attach to such a tracepoint, but the buffer to which it
points may only be written by the latter.
Signed-off-by: Matt Mullins <mmullins@fb.com>
Acked-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
target_fd is target namespace. If there is a flow dissector BPF program
attached to that namespace, its (single) id is returned.
v5:
* drop net ref right after rcu unlock (Daniel Borkmann)
v4:
* add missing put_net (Jann Horn)
v3:
* add missing inline to skb_flow_dissector_prog_query static def
(kbuild test robot <lkp@intel.com>)
v2:
* don't sleep in rcu critical section (Jakub Kicinski)
* check input prog_cnt (exit early)
Cc: Jann Horn <jannh@google.com>
Signed-off-by: Stanislav Fomichev <sdf@google.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
|
|
Containerized applications may run as root and it may create problems
for whole host. Specifically such applications may change a sysctl and
affect applications in other containers.
Furthermore in existing infrastructure it may not be possible to just
completely disable writing to sysctl, instead such a process should be
gradual with ability to log what sysctl are being changed by a
container, investigate, limit the set of writable sysctl to currently
used ones (so that new ones can not be changed) and eventually reduce
this set to zero.
The patch introduces new program type BPF_PROG_TYPE_CGROUP_SYSCTL and
attach type BPF_CGROUP_SYSCTL to solve these problems on cgroup basis.
New program type has access to following minimal context:
struct bpf_sysctl {
__u32 write;
};
Where @write indicates whether sysctl is being read (= 0) or written (=
1).
Helpers to access sysctl name and value will be introduced separately.
BPF_CGROUP_SYSCTL attach point is added to sysctl code right before
passing control to ctl_table->proc_handler so that BPF program can
either allow or deny access to sysctl.
Suggested-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrey Ignatov <rdna@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
Add new set of arguments to bpf_attr for BPF_PROG_TEST_RUN:
* ctx_in/ctx_size_in - input context
* ctx_out/ctx_size_out - output context
The intended use case is to pass some meta data to the test runs that
operate on skb (this has being brought up on recent LPC).
For programs that use bpf_prog_test_run_skb, support __sk_buff input and
output. Initially, from input __sk_buff, copy _only_ cb and priority into
skb, all other non-zero fields are prohibited (with EINVAL).
If the user has set ctx_out/ctx_size_out, copy the potentially modified
__sk_buff back to the userspace.
We require all fields of input __sk_buff except the ones we explicitly
support to be set to zero. The expectation is that in the future we might
add support for more fields and we want to fail explicitly if the user
runs the program on the kernel where we don't yet support them.
The API is intentionally vague (i.e. we don't explicitly add __sk_buff
to bpf_attr, but ctx_in) to potentially let other test_run types use
this interface in the future (this can be xdp_md for xdp types for
example).
v4:
* don't copy more than allowed in bpf_ctx_init [Martin]
v3:
* handle case where ctx_in is NULL, but ctx_out is not [Martin]
* convert size==0 checks to ptr==NULL checks and add some extra ptr
checks [Martin]
v2:
* Addressed comments from Martin Lau
Signed-off-by: Stanislav Fomichev <sdf@google.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
|
|
Given we'll be reusing BPF array maps for global data/bss/rodata
sections, we need a way to associate BTF DataSec type as its map
value type. In usual cases we have this ugly BPF_ANNOTATE_KV_PAIR()
macro hack e.g. via 38d5d3b3d5db ("bpf: Introduce BPF_ANNOTATE_KV_PAIR")
to get initial map to type association going. While more use cases
for it are discouraged, this also won't work for global data since
the use of array map is a BPF loader detail and therefore unknown
at compilation time. For array maps with just a single entry we make
an exception in terms of BTF in that key type is declared optional
if value type is of DataSec type. The latter LLVM is guaranteed to
emit and it also aligns with how we regard global data maps as just
a plain buffer area reusing existing map facilities for allowing
things like introspection with existing tools.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
Trivial addition to allow '.' aside from '_' as "special" characters
in the object name. Used to allow for substrings in maps from loader
side such as ".bss", ".data", ".rodata", but could also be useful for
other purposes.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
This patch adds a new BPF_MAP_FREEZE command which allows to
"freeze" the map globally as read-only / immutable from syscall
side.
Map permission handling has been refactored into map_get_sys_perms()
and drops FMODE_CAN_WRITE in case of locked map. Main use case is
to allow for setting up .rodata sections from the BPF ELF which
are loaded into the kernel, meaning BPF loader first allocates
map, sets up map value by copying .rodata section into it and once
complete, it calls BPF_MAP_FREEZE on the map fd to prevent further
modifications.
Right now BPF_MAP_FREEZE only takes map fd as argument while remaining
bpf_attr members are required to be zero. I didn't add write-only
locking here as counterpart since I don't have a concrete use-case
for it on my side, and I think it makes probably more sense to wait
once there is actually one. In that case bpf_attr can be extended
as usual with a flag field and/or others where flag 0 means that
we lock the map read-only hence this doesn't prevent to add further
extensions to BPF_MAP_FREEZE upon need.
A map creation flag like BPF_F_WRONCE was not considered for couple
of reasons: i) in case of a generic implementation, a map can consist
of more than just one element, thus there could be multiple map
updates needed to set the map into a state where it can then be
made immutable, ii) WRONCE indicates exact one-time write before
it is then set immutable. A generic implementation would set a bit
atomically on map update entry (if unset), indicating that every
subsequent update from then onwards will need to bail out there.
However, map updates can fail, so upon failure that flag would need
to be unset again and the update attempt would need to be repeated
for it to be eventually made immutable. While this can be made
race-free, this approach feels less clean and in combination with
reason i), it's not generic enough. A dedicated BPF_MAP_FREEZE
command directly sets the flag and caller has the guarantee that
map is immutable from syscall side upon successful return for any
future syscall invocations that would alter the map state, which
is also more intuitive from an API point of view. A command name
such as BPF_MAP_LOCK has been avoided as it's too close with BPF
map spin locks (which already has BPF_F_LOCK flag). BPF_MAP_FREEZE
is so far only enabled for privileged users.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
This work adds two new map creation flags BPF_F_RDONLY_PROG
and BPF_F_WRONLY_PROG in order to allow for read-only or
write-only BPF maps from a BPF program side.
Today we have BPF_F_RDONLY and BPF_F_WRONLY, but this only
applies to system call side, meaning the BPF program has full
read/write access to the map as usual while bpf(2) calls with
map fd can either only read or write into the map depending
on the flags. BPF_F_RDONLY_PROG and BPF_F_WRONLY_PROG allows
for the exact opposite such that verifier is going to reject
program loads if write into a read-only map or a read into a
write-only map is detected. For read-only map case also some
helpers are forbidden for programs that would alter the map
state such as map deletion, update, etc. As opposed to the two
BPF_F_RDONLY / BPF_F_WRONLY flags, BPF_F_RDONLY_PROG as well
as BPF_F_WRONLY_PROG really do correspond to the map lifetime.
We've enabled this generic map extension to various non-special
maps holding normal user data: array, hash, lru, lpm, local
storage, queue and stack. Further generic map types could be
followed up in future depending on use-case. Main use case
here is to forbid writes into .rodata map values from verifier
side.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|