summaryrefslogtreecommitdiff
path: root/include/linux/tcp.h
AgeCommit message (Collapse)Author
2014-10-07Merge tag 'dmaengine-3.17' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/djbw/dmaengine Pull dmaengine updates from Dan Williams: "Even though this has fixes marked for -stable, given the size and the needed conflict resolutions this is 3.18-rc1/merge-window material. These patches have been languishing in my tree for a long while. The fact that I do not have the time to do proper/prompt maintenance of this tree is a primary factor in the decision to step down as dmaengine maintainer. That and the fact that the bulk of drivers/dma/ activity is going through Vinod these days. The net_dma removal has not been in -next. It has developed simple conflicts against mainline and net-next (for-3.18). Continuing thanks to Vinod for staying on top of drivers/dma/. Summary: 1/ Step down as dmaengine maintainer see commit 08223d80df38 "dmaengine maintainer update" 2/ Removal of net_dma, as it has been marked 'broken' since 3.13 (commit 77873803363c "net_dma: mark broken"), without reports of performance regression. 3/ Miscellaneous fixes" * tag 'dmaengine-3.17' of git://git.kernel.org/pub/scm/linux/kernel/git/djbw/dmaengine: net: make tcp_cleanup_rbuf private net_dma: revert 'copied_early' net_dma: simple removal dmaengine maintainer update dmatest: prevent memory leakage on error path in thread ioat: Use time_before_jiffies() dmaengine: fix xor sources continuation dma: mv_xor: Rename __mv_xor_slot_cleanup() to mv_xor_slot_cleanup() dma: mv_xor: Remove all callers of mv_xor_slot_cleanup() dma: mv_xor: Remove unneeded mv_xor_clean_completed_slots() call ioat: Use pci_enable_msix_exact() instead of pci_enable_msix() drivers: dma: Include appropriate header file in dca.c drivers: dma: Mark functions as static in dma_v3.c dma: mv_xor: Add DMA API error checks ioat/dca: Use dev_is_pci() to check whether it is pci device
2014-09-28net_dma: simple removalDan Williams
Per commit "77873803363c net_dma: mark broken" net_dma is no longer used and there is no plan to fix it. This is the mechanical removal of bits in CONFIG_NET_DMA ifdef guards. Reverting the remainder of the net_dma induced changes is deferred to subsequent patches. Marked for stable due to Roman's report of a memory leak in dma_pin_iovec_pages(): https://lkml.org/lkml/2014/9/3/177 Cc: Dave Jiang <dave.jiang@intel.com> Cc: Vinod Koul <vinod.koul@intel.com> Cc: David Whipple <whipple@securedatainnovations.ch> Cc: Alexander Duyck <alexander.h.duyck@intel.com> Cc: <stable@vger.kernel.org> Reported-by: Roman Gushchin <klamm@yandex-team.ru> Acked-by: David S. Miller <davem@davemloft.net> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2014-06-27tcp: add init_req method to tcp_request_sock_opsOctavian Purdila
Move the specific IPv4/IPv6 intializations to a new method in tcp_request_sock_ops in preparation for unifying tcp_v4_conn_request and tcp_v6_conn_request. Signed-off-by: Octavian Purdila <octavian.purdila@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-22tcp: make cwnd-limited checks measurement-based, and gentlerNeal Cardwell
Experience with the recent e114a710aa50 ("tcp: fix cwnd limited checking to improve congestion control") has shown that there are common cases where that commit can cause cwnd to be much larger than necessary. This leads to TSO autosizing cooking skbs that are too large, among other things. The main problems seemed to be: (1) That commit attempted to predict the future behavior of the connection by looking at the write queue (if TSO or TSQ limit sending). That prediction sometimes overestimated future outstanding packets. (2) That commit always allowed cwnd to grow to twice the number of outstanding packets (even in congestion avoidance, where this is not needed). This commit improves both of these, by: (1) Switching to a measurement-based approach where we explicitly track the largest number of packets in flight during the past window ("max_packets_out"), and remember whether we were cwnd-limited at the moment we finished sending that flight. (2) Only allowing cwnd to grow to twice the number of outstanding packets ("max_packets_out") in slow start. In congestion avoidance mode we now only allow cwnd to grow if it was fully utilized. Signed-off-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-13tcp: simplify fast open cookie processingYuchung Cheng
Consolidate various cookie checking and generation code to simplify the fast open processing. The main goal is to reduce code duplication in tcp_v4_conn_request() for IPv6 support. Removes two experimental sysctl flags TFO_SERVER_ALWAYS and TFO_SERVER_COOKIE_NOT_CHKD used primarily for developmental debugging purposes. Signed-off-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: Daniel Lee <longinus00@gmail.com> Signed-off-by: Jerry Chu <hkchu@google.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Acked-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-02tcp: fix cwnd limited checking to improve congestion controlEric Dumazet
Yuchung discovered tcp_is_cwnd_limited() was returning false in slow start phase even if the application filled the socket write queue. All congestion modules take into account tcp_is_cwnd_limited() before increasing cwnd, so this behavior limits slow start from probing the bandwidth at full speed. The problem is that even if write queue is full (aka we are _not_ application limited), cwnd can be under utilized if TSO should auto defer or TCP Small queues decided to hold packets. So the in_flight can be kept to smaller value, and we can get to the point tcp_is_cwnd_limited() returns false. With TCP Small Queues and FQ/pacing, this issue is more visible. We fix this by having tcp_cwnd_validate(), which is supposed to track such things, take into account unsent_segs, the number of segs that we are not sending at the moment due to TSO or TSQ, but intend to send real soon. Then when we are cwnd-limited, remember this fact while we are processing the window of ACKs that comes back. For example, suppose we have a brand new connection with cwnd=10; we are in slow start, and we send a flight of 9 packets. By the time we have received ACKs for all 9 packets we want our cwnd to be 18. We implement this by setting tp->lsnd_pending to 9, and considering ourselves to be cwnd-limited while cwnd is less than twice tp->lsnd_pending (2*9 -> 18). This makes tcp_is_cwnd_limited() more understandable, by removing the GSO/TSO kludge, that tried to work around the issue. Note the in_flight parameter can be removed in a followup cleanup patch. Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-02-26tcp: switch rtt estimations to usec resolutionEric Dumazet
Upcoming congestion controls for TCP require usec resolution for RTT estimations. Millisecond resolution is simply not enough these days. FQ/pacing in DC environments also require this change for finer control and removal of bimodal behavior due to the current hack in tcp_update_pacing_rate() for 'small rtt' TCP_CONG_RTT_STAMP is no longer needed. As Julian Anastasov pointed out, we need to keep user compatibility : tcp_metrics used to export RTT and RTTVAR in msec resolution, so we added RTT_US and RTTVAR_US. An iproute2 patch is needed to use the new attributes if provided by the kernel. In this example ss command displays a srtt of 32 usecs (10Gbit link) lpk51:~# ./ss -i dst lpk52 Netid State Recv-Q Send-Q Local Address:Port Peer Address:Port tcp ESTAB 0 1 10.246.11.51:42959 10.246.11.52:64614 cubic wscale:6,6 rto:201 rtt:0.032/0.001 ato:40 mss:1448 cwnd:10 send 3620.0Mbps pacing_rate 7240.0Mbps unacked:1 rcv_rtt:993 rcv_space:29559 Updated iproute2 ip command displays : lpk51:~# ./ip tcp_metrics | grep 10.246.11.52 10.246.11.52 age 561.914sec cwnd 10 rtt 274us rttvar 213us source 10.246.11.51 Old binary displays : lpk51:~# ip tcp_metrics | grep 10.246.11.52 10.246.11.52 age 561.914sec cwnd 10 rtt 250us rttvar 125us source 10.246.11.51 With help from Julian Anastasov, Stephen Hemminger and Yuchung Cheng Signed-off-by: Eric Dumazet <edumazet@google.com> Acked-by: Neal Cardwell <ncardwell@google.com> Cc: Stephen Hemminger <stephen@networkplumber.org> Cc: Yuchung Cheng <ycheng@google.com> Cc: Larry Brakmo <brakmo@google.com> Cc: Julian Anastasov <ja@ssi.bg> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-01-06tcp: out_of_order_queue do not use its lockEric Dumazet
TCP out_of_order_queue lock is not used, as queue manipulation happens with socket lock held and we therefore use the lockless skb queue routines (as __skb_queue_head()) We can use __skb_queue_head_init() instead of skb_queue_head_init() to make this more consistent. Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-07-31tcp: Remove unused tcpct declarations and commentsDmitry Popov
Remove declaration, 4 defines and confusing comment that are no longer used since 1a2c6181c4 ("tcp: Remove TCPCT"). Signed-off-by: Dmitry Popov <dp@highloadlab.com> Acked-by: Christoph Paasch <christoph.paasch@uclouvain.be> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-07-24tcp: TCP_NOTSENT_LOWAT socket optionEric Dumazet
Idea of this patch is to add optional limitation of number of unsent bytes in TCP sockets, to reduce usage of kernel memory. TCP receiver might announce a big window, and TCP sender autotuning might allow a large amount of bytes in write queue, but this has little performance impact if a large part of this buffering is wasted : Write queue needs to be large only to deal with large BDP, not necessarily to cope with scheduling delays (incoming ACKS make room for the application to queue more bytes) For most workloads, using a value of 128 KB or less is OK to give applications enough time to react to POLLOUT events in time (or being awaken in a blocking sendmsg()) This patch adds two ways to set the limit : 1) Per socket option TCP_NOTSENT_LOWAT 2) A sysctl (/proc/sys/net/ipv4/tcp_notsent_lowat) for sockets not using TCP_NOTSENT_LOWAT socket option (or setting a zero value) Default value being UINT_MAX (0xFFFFFFFF), meaning this has no effect. This changes poll()/select()/epoll() to report POLLOUT only if number of unsent bytes is below tp->nosent_lowat Note this might increase number of sendmsg()/sendfile() calls when using non blocking sockets, and increase number of context switches for blocking sockets. Note this is not related to SO_SNDLOWAT (as SO_SNDLOWAT is defined as : Specify the minimum number of bytes in the buffer until the socket layer will pass the data to the protocol) Tested: netperf sessions, and watching /proc/net/protocols "memory" column for TCP With 200 concurrent netperf -t TCP_STREAM sessions, amount of kernel memory used by TCP buffers shrinks by ~55 % (20567 pages instead of 45458) lpq83:~# echo -1 >/proc/sys/net/ipv4/tcp_notsent_lowat lpq83:~# (super_netperf 200 -t TCP_STREAM -H remote -l 90 &); sleep 60 ; grep TCP /proc/net/protocols TCPv6 1880 2 45458 no 208 yes ipv6 y y y y y y y y y y y y y n y y y y y TCP 1696 508 45458 no 208 yes kernel y y y y y y y y y y y y y n y y y y y lpq83:~# echo 131072 >/proc/sys/net/ipv4/tcp_notsent_lowat lpq83:~# (super_netperf 200 -t TCP_STREAM -H remote -l 90 &); sleep 60 ; grep TCP /proc/net/protocols TCPv6 1880 2 20567 no 208 yes ipv6 y y y y y y y y y y y y y n y y y y y TCP 1696 508 20567 no 208 yes kernel y y y y y y y y y y y y y n y y y y y Using 128KB has no bad effect on the throughput or cpu usage of a single flow, although there is an increase of context switches. A bonus is that we hold socket lock for a shorter amount of time and should improve latencies of ACK processing. lpq83:~# echo -1 >/proc/sys/net/ipv4/tcp_notsent_lowat lpq83:~# perf stat -e context-switches ./netperf -H 7.7.7.84 -t omni -l 20 -c -i10,3 OMNI Send TEST from 0.0.0.0 (0.0.0.0) port 0 AF_INET to 7.7.7.84 () port 0 AF_INET : +/-2.500% @ 99% conf. Local Remote Local Elapsed Throughput Throughput Local Local Remote Remote Local Remote Service Send Socket Recv Socket Send Time Units CPU CPU CPU CPU Service Service Demand Size Size Size (sec) Util Util Util Util Demand Demand Units Final Final % Method % Method 1651584 6291456 16384 20.00 17447.90 10^6bits/s 3.13 S -1.00 U 0.353 -1.000 usec/KB Performance counter stats for './netperf -H 7.7.7.84 -t omni -l 20 -c -i10,3': 412,514 context-switches 200.034645535 seconds time elapsed lpq83:~# echo 131072 >/proc/sys/net/ipv4/tcp_notsent_lowat lpq83:~# perf stat -e context-switches ./netperf -H 7.7.7.84 -t omni -l 20 -c -i10,3 OMNI Send TEST from 0.0.0.0 (0.0.0.0) port 0 AF_INET to 7.7.7.84 () port 0 AF_INET : +/-2.500% @ 99% conf. Local Remote Local Elapsed Throughput Throughput Local Local Remote Remote Local Remote Service Send Socket Recv Socket Send Time Units CPU CPU CPU CPU Service Service Demand Size Size Size (sec) Util Util Util Util Demand Demand Units Final Final % Method % Method 1593240 6291456 16384 20.00 17321.16 10^6bits/s 3.35 S -1.00 U 0.381 -1.000 usec/KB Performance counter stats for './netperf -H 7.7.7.84 -t omni -l 20 -c -i10,3': 2,675,818 context-switches 200.029651391 seconds time elapsed Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Neal Cardwell <ncardwell@google.com> Cc: Yuchung Cheng <ycheng@google.com> Acked-By: Yuchung Cheng <ycheng@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-05-19tcp: remove bad timeout logic in fast recoveryYuchung Cheng
tcp_timeout_skb() was intended to trigger fast recovery on timeout, unfortunately in reality it often causes spurious retransmission storms during fast recovery. The particular sign is a fast retransmit over the highest sacked sequence (SND.FACK). Currently the RTO timer re-arming (as in RFC6298) offers a nice cushion to avoid spurious timeout: when SND.UNA advances the sender re-arms RTO and extends the timeout by icsk_rto. The sender does not offset the time elapsed since the packet at SND.UNA was sent. But if the next (DUP)ACK arrives later than ~RTTVAR and triggers tcp_fastretrans_alert(), then tcp_timeout_skb() will mark any packet sent before the icsk_rto interval lost, including one that's above the highest sacked sequence. Most likely a large part of scorebard will be marked. If most packets are not lost then the subsequent DUPACKs with new SACK blocks will cause the sender to continue to retransmit packets beyond SND.FACK spuriously. Even if only one packet is lost the sender may falsely retransmit almost the entire window. The situation becomes common in the world of bufferbloat: the RTT continues to grow as the queue builds up but RTTVAR remains small and close to the minimum 200ms. If a data packet is lost and the DUPACK triggered by the next data packet is slightly delayed, then a spurious retransmission storm forms. As the original comment on tcp_timeout_skb() suggests: the usefulness of this feature is questionable. It also wastes cycles walking the sack scoreboard and is actually harmful because of false recovery. It's time to remove this. Signed-off-by: Yuchung Cheng <ycheng@google.com> Acked-by: Eric Dumazet <edumazet@google.com> Acked-by: Neal Cardwell <ncardwell@google.com> Acked-by: Nandita Dukkipati <nanditad@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-03-21tcp: implement RFC5682 F-RTOYuchung Cheng
This patch implements F-RTO (foward RTO recovery): When the first retransmission after timeout is acknowledged, F-RTO sends new data instead of old data. If the next ACK acknowledges some never-retransmitted data, then the timeout was spurious and the congestion state is reverted. Otherwise if the next ACK selectively acknowledges the new data, then the timeout was genuine and the loss recovery continues. This idea applies to recurring timeouts as well. While F-RTO sends different data during timeout recovery, it does not (and should not) change the congestion control. The implementaion follows the three steps of SACK enhanced algorithm (section 3) in RFC5682. Step 1 is in tcp_enter_loss(). Step 2 and 3 are in tcp_process_loss(). The basic version is not supported because SACK enhanced version also works for non-SACK connections. The new implementation is functionally in parity with the old F-RTO implementation except the one case where it increases undo events: In addition to the RFC algorithm, a spurious timeout may be detected without sending data in step 2, as long as the SACK confirms not all the original data are dropped. When this happens, the sender will undo the cwnd and perhaps enter fast recovery instead. This additional check increases the F-RTO undo events by 5x compared to the prior implementation on Google Web servers, since the sender often does not have new data to send for HTTP. Note F-RTO may detect spurious timeout before Eifel with timestamps does so. Signed-off-by: Yuchung Cheng <ycheng@google.com> Acked-by: Eric Dumazet <edumazet@google.com> Acked-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-03-21tcp: refactor F-RTOYuchung Cheng
The patch series refactor the F-RTO feature (RFC4138/5682). This is to simplify the loss recovery processing. Existing F-RTO was developed during the experimental stage (RFC4138) and has many experimental features. It takes a separate code path from the traditional timeout processing by overloading CA_Disorder instead of using CA_Loss state. This complicates CA_Disorder state handling because it's also used for handling dubious ACKs and undos. While the algorithm in the RFC does not change the congestion control, the implementation intercepts congestion control in various places (e.g., frto_cwnd in tcp_ack()). The new code implements newer F-RTO RFC5682 using CA_Loss processing path. F-RTO becomes a small extension in the timeout processing and interfaces with congestion control and Eifel undo modules. It lets congestion control (module) determines how many to send independently. F-RTO only chooses what to send in order to detect spurious retranmission. If timeout is found spurious it invokes existing Eifel undo algorithms like DSACK or TCP timestamp based detection. The first patch removes all F-RTO code except the sysctl_tcp_frto is left for the new implementation. Since CA_EVENT_FRTO is removed, TCP westwood now computes ssthresh on regular timeout CA_EVENT_LOSS event. Signed-off-by: Yuchung Cheng <ycheng@google.com> Acked-by: Neal Cardwell <ncardwell@google.com> Acked-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-03-17tcp: Remove TCPCTChristoph Paasch
TCPCT uses option-number 253, reserved for experimental use and should not be used in production environments. Further, TCPCT does not fully implement RFC 6013. As a nice side-effect, removing TCPCT increases TCP's performance for very short flows: Doing an apache-benchmark with -c 100 -n 100000, sending HTTP-requests for files of 1KB size. before this patch: average (among 7 runs) of 20845.5 Requests/Second after: average (among 7 runs) of 21403.6 Requests/Second Signed-off-by: Christoph Paasch <christoph.paasch@uclouvain.be> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-03-12tcp: TLP loss detection.Nandita Dukkipati
This is the second of the TLP patch series; it augments the basic TLP algorithm with a loss detection scheme. This patch implements a mechanism for loss detection when a Tail loss probe retransmission plugs a hole thereby masking packet loss from the sender. The loss detection algorithm relies on counting TLP dupacks as outlined in Sec. 3 of: http://tools.ietf.org/html/draft-dukkipati-tcpm-tcp-loss-probe-01 The basic idea is: Sender keeps track of TLP "episode" upon retransmission of a TLP packet. An episode ends when the sender receives an ACK above the SND.NXT (tracked by tlp_high_seq) at the time of the episode. We want to make sure that before the episode ends the sender receives a "TLP dupack", indicating that the TLP retransmission was unnecessary, so there was no loss/hole that needed plugging. If the sender gets no TLP dupack before the end of the episode, then it reduces ssthresh and the congestion window, because the TLP packet arriving at the receiver probably plugged a hole. Signed-off-by: Nandita Dukkipati <nanditad@google.com> Acked-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-03-12tcp: Tail loss probe (TLP)Nandita Dukkipati
This patch series implement the Tail loss probe (TLP) algorithm described in http://tools.ietf.org/html/draft-dukkipati-tcpm-tcp-loss-probe-01. The first patch implements the basic algorithm. TLP's goal is to reduce tail latency of short transactions. It achieves this by converting retransmission timeouts (RTOs) occuring due to tail losses (losses at end of transactions) into fast recovery. TLP transmits one packet in two round-trips when a connection is in Open state and isn't receiving any ACKs. The transmitted packet, aka loss probe, can be either new or a retransmission. When there is tail loss, the ACK from a loss probe triggers FACK/early-retransmit based fast recovery, thus avoiding a costly RTO. In the absence of loss, there is no change in the connection state. PTO stands for probe timeout. It is a timer event indicating that an ACK is overdue and triggers a loss probe packet. The PTO value is set to max(2*SRTT, 10ms) and is adjusted to account for delayed ACK timer when there is only one oustanding packet. TLP Algorithm On transmission of new data in Open state: -> packets_out > 1: schedule PTO in max(2*SRTT, 10ms). -> packets_out == 1: schedule PTO in max(2*RTT, 1.5*RTT + 200ms) -> PTO = min(PTO, RTO) Conditions for scheduling PTO: -> Connection is in Open state. -> Connection is either cwnd limited or no new data to send. -> Number of probes per tail loss episode is limited to one. -> Connection is SACK enabled. When PTO fires: new_segment_exists: -> transmit new segment. -> packets_out++. cwnd remains same. no_new_packet: -> retransmit the last segment. Its ACK triggers FACK or early retransmit based recovery. ACK path: -> rearm RTO at start of ACK processing. -> reschedule PTO if need be. In addition, the patch includes a small variation to the Early Retransmit (ER) algorithm, such that ER and TLP together can in principle recover any N-degree of tail loss through fast recovery. TLP is controlled by the same sysctl as ER, tcp_early_retrans sysctl. tcp_early_retrans==0; disables TLP and ER. ==1; enables RFC5827 ER. ==2; delayed ER. ==3; TLP and delayed ER. [DEFAULT] ==4; TLP only. The TLP patch series have been extensively tested on Google Web servers. It is most effective for short Web trasactions, where it reduced RTOs by 15% and improved HTTP response time (average by 6%, 99th percentile by 10%). The transmitted probes account for <0.5% of the overall transmissions. Signed-off-by: Nandita Dukkipati <nanditad@google.com> Acked-by: Neal Cardwell <ncardwell@google.com> Acked-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-03-10tcp: Remove unused tw_cookie_values from tcp_timewait_sockChristoph Paasch
tw_cookie_values is never used in the TCP-stack. It was added by 435cf559f (TCPCT part 1d: define TCP cookie option, extend existing struct's), but already at that time it was not used at all, nor mentioned in the commit-message. Signed-off-by: Christoph Paasch <christoph.paasch@uclouvain.be> Acked-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-02-13tcp: adding a per-socket timestamp offsetAndrey Vagin
This functionality is used for restoring tcp sockets. A tcp timestamp depends on how long a system has been running, so it's differ for each host. The solution is to set a per-socket offset. A per-socket offset for a TIME_WAIT socket is inherited from a proper tcp socket. tcp_request_sock doesn't have a timestamp offset, because the repair mode for them are not implemented. Cc: "David S. Miller" <davem@davemloft.net> Cc: Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> Cc: James Morris <jmorris@namei.org> Cc: Hideaki YOSHIFUJI <yoshfuji@linux-ipv6.org> Cc: Patrick McHardy <kaber@trash.net> Cc: Eric Dumazet <edumazet@google.com> Cc: Pavel Emelyanov <xemul@parallels.com> Signed-off-by: Andrey Vagin <avagin@openvz.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-02-05tcp: remove Appropriate Byte Count supportStephen Hemminger
TCP Appropriate Byte Count was added by me, but later disabled. There is no point in maintaining it since it is a potential source of bugs and Linux already implements other better window protection heuristics. Signed-off-by: Stephen Hemminger <stephen@networkplumber.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-12-09net: Add support for hardware-offloaded encapsulationJoseph Gasparakis
This patch adds support in the kernel for offloading in the NIC Tx and Rx checksumming for encapsulated packets (such as VXLAN and IP GRE). For Tx encapsulation offload, the driver will need to set the right bits in netdev->hw_enc_features. The protocol driver will have to set the skb->encapsulation bit and populate the inner headers, so the NIC driver will use those inner headers to calculate the csum in hardware. For Rx encapsulation offload, the driver will need to set again the skb->encapsulation flag and the skb->ip_csum to CHECKSUM_UNNECESSARY. In that case the protocol driver should push the decapsulated packet up to the stack, again with CHECKSUM_UNNECESSARY. In ether case, the protocol driver should set the skb->encapsulation flag back to zero. Finally the protocol driver should have NETIF_F_RXCSUM flag set in its features. Signed-off-by: Joseph Gasparakis <joseph.gasparakis@intel.com> Signed-off-by: Peter P Waskiewicz Jr <peter.p.waskiewicz.jr@intel.com> Signed-off-by: Alexander Duyck <alexander.h.duyck@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-10-22tcp: add SYN/data info to TCP_INFOYuchung Cheng
Add a bit TCPI_OPT_SYN_DATA (32) to the socket option TCP_INFO:tcpi_options. It's set if the data in SYN (sent or received) is acked by SYN-ACK. Server or client application can use this information to check Fast Open success rate. Signed-off-by: Yuchung Cheng <ycheng@google.com> Acked-by: Neal Cardwell <ncardwell@google.com> Acked-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-10-13UAPI: (Scripted) Disintegrate include/linuxDavid Howells
Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Arnd Bergmann <arnd@arndb.de> Acked-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Michael Kerrisk <mtk.manpages@gmail.com> Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Acked-by: Dave Jones <davej@redhat.com>
2012-09-20ipv4: Don't add TCP-code in inet_sock_destructChristoph Paasch
Signed-off-by: Christoph Paasch <christoph.paasch@uclouvain.be> Acked-by: H.K. Jerry Chu <hkchu@google.com> Acked-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-08-31tcp: TCP Fast Open Server - header & support functionsJerry Chu
This patch adds all the necessary data structure and support functions to implement TFO server side. It also documents a number of flags for the sysctl_tcp_fastopen knob, and adds a few Linux extension MIBs. In addition, it includes the following: 1. a new TCP_FASTOPEN socket option an application must call to supply a max backlog allowed in order to enable TFO on its listener. 2. A number of key data structures: "fastopen_rsk" in tcp_sock - for a big socket to access its request_sock for retransmission and ack processing purpose. It is non-NULL iff 3WHS not completed. "fastopenq" in request_sock_queue - points to a per Fast Open listener data structure "fastopen_queue" to keep track of qlen (# of outstanding Fast Open requests) and max_qlen, among other things. "listener" in tcp_request_sock - to point to the original listener for book-keeping purpose, i.e., to maintain qlen against max_qlen as part of defense against IP spoofing attack. 3. various data structure and functions, many in tcp_fastopen.c, to support server side Fast Open cookie operations, including /proc/sys/net/ipv4/tcp_fastopen_key to allow manual rekeying. Signed-off-by: H.K. Jerry Chu <hkchu@google.com> Cc: Yuchung Cheng <ycheng@google.com> Cc: Neal Cardwell <ncardwell@google.com> Cc: Eric Dumazet <edumazet@google.com> Cc: Tom Herbert <therbert@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-07-23tcp: dont drop MTU reduction indicationsEric Dumazet
ICMP messages generated in output path if frame length is bigger than mtu are actually lost because socket is owned by user (doing the xmit) One example is the ipgre_tunnel_xmit() calling icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED, htonl(mtu)); We had a similar case fixed in commit a34a101e1e6 (ipv6: disable GSO on sockets hitting dst_allfrag). Problem of such fix is that it relied on retransmit timers, so short tcp sessions paid a too big latency increase price. This patch uses the tcp_release_cb() infrastructure so that MTU reduction messages (ICMP messages) are not lost, and no extra delay is added in TCP transmits. Reported-by: Maciej Żenczykowski <maze@google.com> Diagnosed-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Nandita Dukkipati <nanditad@google.com> Cc: Tom Herbert <therbert@google.com> Cc: Tore Anderson <tore@fud.no> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-07-20tcp: improve latencies of timer triggered eventsEric Dumazet
Modern TCP stack highly depends on tcp_write_timer() having a small latency, but current implementation doesn't exactly meet the expectations. When a timer fires but finds the socket is owned by the user, it rearms itself for an additional delay hoping next run will be more successful. tcp_write_timer() for example uses a 50ms delay for next try, and it defeats many attempts to get predictable TCP behavior in term of latencies. Use the recently introduced tcp_release_cb(), so that the user owning the socket will call various handlers right before socket release. This will permit us to post a followup patch to address the tcp_tso_should_defer() syndrome (some deferred packets have to wait RTO timer to be transmitted, while cwnd should allow us to send them sooner) Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Tom Herbert <therbert@google.com> Cc: Yuchung Cheng <ycheng@google.com> Cc: Neal Cardwell <ncardwell@google.com> Cc: Nandita Dukkipati <nanditad@google.com> Cc: H.K. Jerry Chu <hkchu@google.com> Cc: John Heffner <johnwheffner@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-07-19net-tcp: Fast Open client - cookie-less modeYuchung Cheng
In trusted networks, e.g., intranet, data-center, the client does not need to use Fast Open cookie to mitigate DoS attacks. In cookie-less mode, sendmsg() with MSG_FASTOPEN flag will send SYN-data regardless of cookie availability. Signed-off-by: Yuchung Cheng <ycheng@google.com> Acked-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-07-19net-tcp: Fast Open client - sending SYN-dataYuchung Cheng
This patch implements sending SYN-data in tcp_connect(). The data is from tcp_sendmsg() with flag MSG_FASTOPEN (implemented in a later patch). The length of the cookie in tcp_fastopen_req, init'd to 0, controls the type of the SYN. If the cookie is not cached (len==0), the host sends data-less SYN with Fast Open cookie request option to solicit a cookie from the remote. If cookie is not available (len > 0), the host sends a SYN-data with Fast Open cookie option. If cookie length is negative, the SYN will not include any Fast Open option (for fall back operations). To deal with middleboxes that may drop SYN with data or experimental TCP option, the SYN-data is only sent once. SYN retransmits do not include data or Fast Open options. The connection will fall back to regular TCP handshake. Signed-off-by: Yuchung Cheng <ycheng@google.com> Acked-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-07-19net-tcp: Fast Open baseYuchung Cheng
This patch impelements the common code for both the client and server. 1. TCP Fast Open option processing. Since Fast Open does not have an option number assigned by IANA yet, it shares the experiment option code 254 by implementing draft-ietf-tcpm-experimental-options with a 16 bits magic number 0xF989. This enables global experiments without clashing the scarce(2) experimental options available for TCP. When the draft status becomes standard (maybe), the client should switch to the new option number assigned while the server supports both numbers for transistion. 2. The new sysctl tcp_fastopen 3. A place holder init function Signed-off-by: Yuchung Cheng <ycheng@google.com> Acked-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-07-11tcp: TCP Small QueuesEric Dumazet
This introduce TSQ (TCP Small Queues) TSQ goal is to reduce number of TCP packets in xmit queues (qdisc & device queues), to reduce RTT and cwnd bias, part of the bufferbloat problem. sk->sk_wmem_alloc not allowed to grow above a given limit, allowing no more than ~128KB [1] per tcp socket in qdisc/dev layers at a given time. TSO packets are sized/capped to half the limit, so that we have two TSO packets in flight, allowing better bandwidth use. As a side effect, setting the limit to 40000 automatically reduces the standard gso max limit (65536) to 40000/2 : It can help to reduce latencies of high prio packets, having smaller TSO packets. This means we divert sock_wfree() to a tcp_wfree() handler, to queue/send following frames when skb_orphan() [2] is called for the already queued skbs. Results on my dev machines (tg3/ixgbe nics) are really impressive, using standard pfifo_fast, and with or without TSO/GSO. Without reduction of nominal bandwidth, we have reduction of buffering per bulk sender : < 1ms on Gbit (instead of 50ms with TSO) < 8ms on 100Mbit (instead of 132 ms) I no longer have 4 MBytes backlogged in qdisc by a single netperf session, and both side socket autotuning no longer use 4 Mbytes. As skb destructor cannot restart xmit itself ( as qdisc lock might be taken at this point ), we delegate the work to a tasklet. We use one tasklest per cpu for performance reasons. If tasklet finds a socket owned by the user, it sets TSQ_OWNED flag. This flag is tested in a new protocol method called from release_sock(), to eventually send new segments. [1] New /proc/sys/net/ipv4/tcp_limit_output_bytes tunable [2] skb_orphan() is usually called at TX completion time, but some drivers call it in their start_xmit() handler. These drivers should at least use BQL, or else a single TCP session can still fill the whole NIC TX ring, since TSQ will have no effect. Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Dave Taht <dave.taht@bufferbloat.net> Cc: Tom Herbert <therbert@google.com> Cc: Matt Mathis <mattmathis@google.com> Cc: Yuchung Cheng <ycheng@google.com> Cc: Nandita Dukkipati <nanditad@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-07-10tcp: Remove tw->tw_peerDavid S. Miller
No longer used. Signed-off-by: David S. Miller <davem@davemloft.net>
2012-06-12Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/netDavid S. Miller
Conflicts: MAINTAINERS drivers/net/wireless/iwlwifi/pcie/trans.c The iwlwifi conflict was resolved by keeping the code added in 'net' that turns off the buggy chip feature. The MAINTAINERS conflict was merely overlapping changes, one change updated all the wireless web site URLs and the other changed some GIT trees to be Johannes's instead of John's. Signed-off-by: David S. Miller <davem@davemloft.net>
2012-06-09net: Make linux/tcp.h C++ friendly (trivial)Paul Pluzhnikov
I originally sent this patch to <trivial@kernel.org>, but Jiri Kosina did not feel that this is fully appropriate for the trivial tree. Using linux/tcp.h from C++ results in: cat t.cc #include <linux/tcp.h> int main() { } g++ -c t.cc In file included from t.cc:1: /usr/include/linux/tcp.h:72: error: '__u32 __fswab32(__u32)' cannot appear in a constant-expression /usr/include/linux/tcp.h:72: error: a function call cannot appear in a constant-expression ... Attached trivial patch fixes this problem. Tested: - the t.cc above compiles with g++ and - the following program generates the same output before/after the patch: #include <linux/tcp.h> #include <stdio.h> int main () { #define P(a) printf("%s: %08x\n", #a, (int)a) P(TCP_FLAG_CWR); P(TCP_FLAG_ECE); P(TCP_FLAG_URG); P(TCP_FLAG_ACK); P(TCP_FLAG_PSH); P(TCP_FLAG_RST); P(TCP_FLAG_SYN); P(TCP_FLAG_FIN); P(TCP_RESERVED_BITS); P(TCP_DATA_OFFSET); #undef P return 0; } Signed-off-by: Paul Pluzhnikov <ppluzhnikov@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-06-09[PATCH] tcp: Cache inetpeer in timewait socket, and only when necessary.David S. Miller
Since it's guarenteed that we will access the inetpeer if we're trying to do timewait recycling and TCP options were enabled on the connection, just cache the peer in the timewait socket. In the future, inetpeer lookups will be context dependent (per routing realm), and this helps facilitate that as well. Signed-off-by: David S. Miller <davem@davemloft.net>
2012-05-22Merge branch 'for-linus' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial Pull trivial updates from Jiri Kosina: "As usual, it's mostly typo fixes, redundant code elimination and some documentation updates." * 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial: (57 commits) edac, mips: don't change code that has been removed in edac/mips tree xtensa: Change mail addresses of Hannes Weiner and Oskar Schirmer lib: Change mail address of Oskar Schirmer net: Change mail address of Oskar Schirmer arm/m68k: Change mail address of Sebastian Hess i2c: Change mail address of Oskar Schirmer net: Fix tcp_build_and_update_options comment in struct tcp_sock atomic64_32.h: fix parameter naming mismatch Kconfig: replace "--- help ---" with "---help---" c2port: fix bogus Kconfig "default no" edac: Fix spelling errors. qla1280: Remove redundant NULL check before release_firmware() call remoteproc: remove redundant NULL check before release_firmware() qla2xxx: Remove redundant NULL check before release_firmware() call. aic94xx: Get rid of redundant NULL check before release_firmware() call tehuti: delete redundant NULL check before release_firmware() qlogic: get rid of a redundant test for NULL before call to release_firmware() bna: remove redundant NULL test before release_firmware() tg3: remove redundant NULL test before release_firmware() call typhoon: get rid of redundant conditional before all to release_firmware() ...
2012-05-09net: Fix tcp_build_and_update_options comment in struct tcp_sockKyle McMartin
Noticed this comment didn't get updated when tcp_build_and_update_options was refactored. Signed-off-by: Kyle McMartin <kyle@redhat.com> Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2012-05-02tcp: early retransmit: delayed fast retransmitYuchung Cheng
Implementing the advanced early retransmit (sysctl_tcp_early_retrans==2). Delays the fast retransmit by an interval of RTT/4. We borrow the RTO timer to implement the delay. If we receive another ACK or send a new packet, the timer is cancelled and restored to original RTO value offset by time elapsed. When the delayed-ER timer fires, we enter fast recovery and perform fast retransmit. Signed-off-by: Yuchung Cheng <ycheng@google.com> Acked-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-05-02tcp: early retransmitYuchung Cheng
This patch implements RFC 5827 early retransmit (ER) for TCP. It reduces DUPACK threshold (dupthresh) if outstanding packets are less than 4 to recover losses by fast recovery instead of timeout. While the algorithm is simple, small but frequent network reordering makes this feature dangerous: the connection repeatedly enter false recovery and degrade performance. Therefore we implement a mitigation suggested in the appendix of the RFC that delays entering fast recovery by a small interval, i.e., RTT/4. Currently ER is conservative and is disabled for the rest of the connection after the first reordering event. A large scale web server experiment on the performance impact of ER is summarized in section 6 of the paper "Proportional Rate Reduction for TCP”, IMC 2011. http://conferences.sigcomm.org/imc/2011/docs/p155.pdf Note that Linux has a similar feature called THIN_DUPACK. The differences are THIN_DUPACK do not mitigate reorderings and is only used after slow start. Currently ER is disabled if THIN_DUPACK is enabled. I would be happy to merge THIN_DUPACK feature with ER if people think it's a good idea. ER is enabled by sysctl_tcp_early_retrans: 0: Disables ER 1: Reduce dupthresh to packets_out - 1 when outstanding packets < 4. 2: (Default) reduce dupthresh like mode 1. In addition, delay entering fast recovery by RTT/4. Note: mode 2 is implemented in the third part of this patch series. Signed-off-by: Yuchung Cheng <ycheng@google.com> Acked-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-04-26tcp repair: Fix unaligned access when repairing options (v2)Pavel Emelyanov
Don't pick __u8/__u16 values directly from raw pointers, but instead use an array of structures of code:value pairs. This is OK, since the buffer we take options from is not an skb memory, but a user-to-kernel one. For those options which don't require any value now, require this to be zero (for potential future extension of this API). v2: Changed tcp_repair_opt to use two __u32-s as spotted by David Laight. Signed-off-by: Pavel Emelyanov <xemul@parallels.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-04-21tcp: Repair connection-time negotiated parametersPavel Emelyanov
There are options, which are set up on a socket while performing TCP handshake. Need to resurrect them on a socket while repairing. A new sockoption accepts a buffer and parses it. The buffer should be CODE:VALUE sequence of bytes, where CODE is standard option code and VALUE is the respective value. Only 4 options should be handled on repaired socket. To read 3 out of 4 of these options the TCP_INFO sockoption can be used. An ability to get the last one (the mss_clamp) was added by the previous patch. Now the restore. Three of these options -- timestamp_ok, mss_clamp and snd_wscale -- are just restored on a coket. The sack_ok flags has 2 issues. First, whether or not to do sacks at all. This flag is just read and set back. No other sack info is saved or restored, since according to the standart and the code dropping all sack-ed segments is OK, the sender will resubmit them again, so after the repair we will probably experience a pause in connection. Next, the fack bit. It's just set back on a socket if the respective sysctl is set. No collected stats about packets flow is preserved. As far as I see (plz, correct me if I'm wrong) the fack-based congestion algorithm survives dropping all of the stats and repairs itself eventually, probably losing the performance for that period. Signed-off-by: Pavel Emelyanov <xemul@openvz.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-04-21tcp: Initial repair modePavel Emelyanov
This includes (according the the previous description): * TCP_REPAIR sockoption This one just puts the socket in/out of the repair mode. Allowed for CAP_NET_ADMIN and for closed/establised sockets only. When repair mode is turned off and the socket happens to be in the established state the window probe is sent to the peer to 'unlock' the connection. * TCP_REPAIR_QUEUE sockoption This one sets the queue which we're about to repair. The 'no-queue' is set by default. * TCP_QUEUE_SEQ socoption Sets the write_seq/rcv_nxt of a selected repaired queue. Allowed for TCP_CLOSE-d sockets only. When the socket changes its state the other seq-s are changed by the kernel according to the protocol rules (most of the existing code is actually reused). * Ability to forcibly bind a socket to a port The sk->sk_reuse is set to SK_FORCE_REUSE. * Immediate connect modification The connect syscall initializes the connection, then directly jumps to the code which finalizes it. * Silent close modification The close just aborts the connection (similar to SO_LINGER with 0 time) but without sending any FIN/RST-s to peer. Signed-off-by: Pavel Emelyanov <xemul@parallels.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-03-01Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/netDavid S. Miller
Conflicts: drivers/net/ethernet/broadcom/tg3.c Conflicts in the statistics regression bug fix from 'net', but happily Matt Carlson originally posted the fix against 'net-next' so I used that to resolve this. Signed-off-by: David S. Miller <davem@davemloft.net>
2012-02-28tcp: fix comment for tp->highest_sackNeal Cardwell
There was an off-by-one error in the comments describing the highest_sack field in struct tcp_sock. The comments previously claimed that it was the "start sequence of the highest skb with SACKed bit". This commit fixes the comments to note that it is the "start sequence of the skb just *after* the highest skb with SACKed bit". Signed-off-by: Neal Cardwell <ncardwell@google.com> Acked-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-02-01tcp: md5: protects md5sig_info with RCUEric Dumazet
This patch makes sure we use appropriate memory barriers before publishing tp->md5sig_info, allowing tcp_md5_do_lookup() being used from tcp_v4_send_reset() without holding socket lock (upcoming patch from Shawn Lu) Note we also need to respect rcu grace period before its freeing, since we can free socket without this grace period thanks to SLAB_DESTROY_BY_RCU Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com> Cc: Shawn Lu <shawn.lu@ericsson.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-01-31tcp: md5: rcu conversionEric Dumazet
In order to be able to support proper RST messages for TCP MD5 flows, we need to allow access to MD5 keys without locking listener socket. This conversion is a nice cleanup, and shrinks size of timewait sockets by 80 bytes. IPv6 code reuses generic code found in IPv4 instead of duplicating it. Control path uses GFP_KERNEL allocations instead of GFP_ATOMIC. Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com> Cc: Shawn Lu <shawn.lu@ericsson.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-12-21tcp: Replace constants with #define macrosVijay Subramanian
to record the state of SACK/FACK and DSACK for better readability and maintenance. Signed-off-by: Vijay Subramanian <subramanian.vijay@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-10-03tcp: report ECN_SEEN in tcp_infoEric Dumazet
Allows ss command (iproute2) to display "ecnseen" if at least one packet with ECT(0) or ECT(1) or ECN was received by this socket. "ecn" means ECN was negotiated at session establishment (TCP level) "ecnseen" means we received at least one packet with ECT fields set (IP level) ss -i ... ESTAB 0 0 192.168.20.110:22 192.168.20.144:38016 ino:5950 sk:f178e400 mem:(r0,w0,f0,t0) ts sack ecn ecnseen bic wscale:7,8 rto:210 rtt:12.5/7.5 cwnd:10 send 9.3Mbps rcv_space:14480 Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-08-24Proportional Rate Reduction for TCP.Nandita Dukkipati
This patch implements Proportional Rate Reduction (PRR) for TCP. PRR is an algorithm that determines TCP's sending rate in fast recovery. PRR avoids excessive window reductions and aims for the actual congestion window size at the end of recovery to be as close as possible to the window determined by the congestion control algorithm. PRR also improves accuracy of the amount of data sent during loss recovery. The patch implements the recommended flavor of PRR called PRR-SSRB (Proportional rate reduction with slow start reduction bound) and replaces the existing rate halving algorithm. PRR improves upon the existing Linux fast recovery under a number of conditions including: 1) burst losses where the losses implicitly reduce the amount of outstanding data (pipe) below the ssthresh value selected by the congestion control algorithm and, 2) losses near the end of short flows where application runs out of data to send. As an example, with the existing rate halving implementation a single loss event can cause a connection carrying short Web transactions to go into the slow start mode after the recovery. This is because during recovery Linux pulls the congestion window down to packets_in_flight+1 on every ACK. A short Web response often runs out of new data to send and its pipe reduces to zero by the end of recovery when all its packets are drained from the network. Subsequent HTTP responses using the same connection will have to slow start to raise cwnd to ssthresh. PRR on the other hand aims for the cwnd to be as close as possible to ssthresh by the end of recovery. A description of PRR and a discussion of its performance can be found at the following links: - IETF Draft: http://tools.ietf.org/html/draft-mathis-tcpm-proportional-rate-reduction-01 - IETF Slides: http://www.ietf.org/proceedings/80/slides/tcpm-6.pdf http://tools.ietf.org/agenda/81/slides/tcpm-2.pdf - Paper to appear in Internet Measurements Conference (IMC) 2011: Improving TCP Loss Recovery Nandita Dukkipati, Matt Mathis, Yuchung Cheng Signed-off-by: Nandita Dukkipati <nanditad@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-06-08tcp: RFC2988bis + taking RTT sample from 3WHS for the passive open sideJerry Chu
This patch lowers the default initRTO from 3secs to 1sec per RFC2988bis. It falls back to 3secs if the SYN or SYN-ACK packet has been retransmitted, AND the TCP timestamp option is not on. It also adds support to take RTT sample during 3WHS on the passive open side, just like its active open counterpart, and uses it, if valid, to seed the initRTO for the data transmission phase. The patch also resets ssthresh to its initial default at the beginning of the data transmission phase, and reduces cwnd to 1 if there has been MORE THAN ONE retransmission during 3WHS per RFC5681. Signed-off-by: H.K. Jerry Chu <hkchu@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2010-08-30tcp: Add TCP_USER_TIMEOUT socket option.Jerry Chu
This patch provides a "user timeout" support as described in RFC793. The socket option is also needed for the the local half of RFC5482 "TCP User Timeout Option". TCP_USER_TIMEOUT is a TCP level socket option that takes an unsigned int, when > 0, to specify the maximum amount of time in ms that transmitted data may remain unacknowledged before TCP will forcefully close the corresponding connection and return ETIMEDOUT to the application. If 0 is given, TCP will continue to use the system default. Increasing the user timeouts allows a TCP connection to survive extended periods without end-to-end connectivity. Decreasing the user timeouts allows applications to "fail fast" if so desired. Otherwise it may take upto 20 minutes with the current system defaults in a normal WAN environment. The socket option can be made during any state of a TCP connection, but is only effective during the synchronized states of a connection (ESTABLISHED, FIN-WAIT-1, FIN-WAIT-2, CLOSE-WAIT, CLOSING, or LAST-ACK). Moreover, when used with the TCP keepalive (SO_KEEPALIVE) option, TCP_USER_TIMEOUT will overtake keepalive to determine when to close a connection due to keepalive failure. The option does not change in anyway when TCP retransmits a packet, nor when a keepalive probe will be sent. This option, like many others, will be inherited by an acceptor from its listener. Signed-off-by: H.K. Jerry Chu <hkchu@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>