summaryrefslogtreecommitdiff
path: root/include/linux/blk-mq.h
AgeCommit message (Collapse)Author
2013-10-28blk-mq: fix for flush deadlockChristoph Hellwig
The flush state machine takes in a struct request, which then is submitted multiple times to the underling driver. The old block code requeses the same request for each of those, so it does not have an issue with tapping into the request pool. The new one on the other hand allocates a new request for each of the actualy steps of the flush sequence. If have already allocated all of the tags for IO, we will fail allocating the flush request. Set aside a reserved request just for flushes. Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-25blk-mq: add blk_mq_stop_hw_queuesChristoph Hellwig
Add a helper to iterate over all hw queues and stop them. This is useful for driver that implement PM suspend functionality. Signed-off-by: Christoph Hellwig <hch@lst.de> Modified to just call blk_mq_stop_hw_queue() by Jens. Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-25blk-mq: new multi-queue block IO queueing mechanismJens Axboe
Linux currently has two models for block devices: - The classic request_fn based approach, where drivers use struct request units for IO. The block layer provides various helper functionalities to let drivers share code, things like tag management, timeout handling, queueing, etc. - The "stacked" approach, where a driver squeezes in between the block layer and IO submitter. Since this bypasses the IO stack, driver generally have to manage everything themselves. With drivers being written for new high IOPS devices, the classic request_fn based driver doesn't work well enough. The design dates back to when both SMP and high IOPS was rare. It has problems with scaling to bigger machines, and runs into scaling issues even on smaller machines when you have IOPS in the hundreds of thousands per device. The stacked approach is then most often selected as the model for the driver. But this means that everybody has to re-invent everything, and along with that we get all the problems again that the shared approach solved. This commit introduces blk-mq, block multi queue support. The design is centered around per-cpu queues for queueing IO, which then funnel down into x number of hardware submission queues. We might have a 1:1 mapping between the two, or it might be an N:M mapping. That all depends on what the hardware supports. blk-mq provides various helper functions, which include: - Scalable support for request tagging. Most devices need to be able to uniquely identify a request both in the driver and to the hardware. The tagging uses per-cpu caches for freed tags, to enable cache hot reuse. - Timeout handling without tracking request on a per-device basis. Basically the driver should be able to get a notification, if a request happens to fail. - Optional support for non 1:1 mappings between issue and submission queues. blk-mq can redirect IO completions to the desired location. - Support for per-request payloads. Drivers almost always need to associate a request structure with some driver private command structure. Drivers can tell blk-mq this at init time, and then any request handed to the driver will have the required size of memory associated with it. - Support for merging of IO, and plugging. The stacked model gets neither of these. Even for high IOPS devices, merging sequential IO reduces per-command overhead and thus increases bandwidth. For now, this is provided as a potential 3rd queueing model, with the hope being that, as it matures, it can replace both the classic and stacked model. That would get us back to having just 1 real model for block devices, leaving the stacked approach to dm/md devices (as it was originally intended). Contributions in this patch from the following people: Shaohua Li <shli@fusionio.com> Alexander Gordeev <agordeev@redhat.com> Christoph Hellwig <hch@infradead.org> Mike Christie <michaelc@cs.wisc.edu> Matias Bjorling <m@bjorling.me> Jeff Moyer <jmoyer@redhat.com> Acked-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>