summaryrefslogtreecommitdiff
path: root/include/kvm
AgeCommit message (Collapse)Author
2017-06-15KVM: arm64: vgic-v3: Add hook to handle guest GICv3 sysreg accesses at EL2Marc Zyngier
In order to start handling guest access to GICv3 system registers, let's add a hook that will get called when we trap a system register access. This is gated by a new static key (vgic_v3_cpuif_trap). Tested-by: Alexander Graf <agraf@suse.de> Acked-by: David Daney <david.daney@cavium.com> Reviewed-by: Eric Auger <eric.auger@redhat.com> Reviewed-by: Christoffer Dall <cdall@linaro.org> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Christoffer Dall <cdall@linaro.org>
2017-06-15Merge branch 'kvmarm-master/master' into HEADMarc Zyngier
2017-06-08KVM: arm/arm64: Don't assume initialized vgic when setting PMU IRQChristoffer Dall
The PMU IRQ number is set through the VCPU device's KVM_SET_DEVICE_ATTR ioctl handler for the KVM_ARM_VCPU_PMU_V3_IRQ attribute, but there is no enforced or stated requirement that this must happen after initializing the VGIC. As a result, calling vgic_valid_spi() which relies on the nr_spis being set during the VGIC init can incorrectly fail. Introduce irq_is_spi, which determines if an IRQ number is within the SPI range without verifying it against the actual VGIC properties. Signed-off-by: Christoffer Dall <cdall@linaro.org> Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
2017-06-08KVM: arm/arm64: Disallow userspace control of in-kernel IRQ linesChristoffer Dall
When injecting an IRQ to the VGIC, you now have to present an owner token for that IRQ line to show that you are the owner of that line. IRQ lines driven from userspace or via an irqfd do not have an owner and will simply pass a NULL pointer. Also get rid of the unused kvm_vgic_inject_mapped_irq prototype. Signed-off-by: Christoffer Dall <cdall@linaro.org> Acked-by: Marc Zyngier <marc.zyngier@arm.com>
2017-06-08KVM: arm/arm64: Introduce an allocator for in-kernel irq linesChristoffer Dall
Having multiple devices being able to signal the same interrupt line is very confusing and almost certainly guarantees a configuration error. Therefore, introduce a very simple allocator which allows a device to claim an interrupt line from the vgic for a given VM. Signed-off-by: Christoffer Dall <cdall@linaro.org> Acked-by: Marc Zyngier <marc.zyngier@arm.com>
2017-06-08KVM: arm/arm64: Allow setting the timer IRQ numbers from userspaceChristoffer Dall
First we define an ABI using the vcpu devices that lets userspace set the interrupt numbers for the various timers on both the 32-bit and 64-bit KVM/ARM implementations. Second, we add the definitions for the groups and attributes introduced by the above ABI. (We add the PMU define on the 32-bit side as well for symmetry and it may get used some day.) Third, we set up the arch-specific vcpu device operation handlers to call into the timer code for anything related to the KVM_ARM_VCPU_TIMER_CTRL group. Fourth, we implement support for getting and setting the timer interrupt numbers using the above defined ABI in the arch timer code. Fifth, we introduce error checking upon enabling the arch timer (which is called when first running a VCPU) to check that all VCPUs are configured to use the same PPI for the timer (as mandated by the architecture) and that the virtual and physical timers are not configured to use the same IRQ number. Signed-off-by: Christoffer Dall <cdall@linaro.org> Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
2017-06-08KVM: arm/arm64: Move timer IRQ default init to arch_timer.cChristoffer Dall
We currently initialize the arch timer IRQ numbers from the reset code, presumably because we once intended to model multiple CPU or SoC types from within the kernel and have hard-coded reset values in the reset code. As we are moving towards userspace being in charge of more fine-grained CPU emulation and stitching together the pieces needed to emulate a particular type of CPU, we should no longer have a tight coupling between resetting a VCPU and setting IRQ numbers. Therefore, move the logic to define and use the default IRQ numbers to the timer code and set the IRQ number immediately when creating the VCPU. Signed-off-by: Christoffer Dall <cdall@linaro.org> Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
2017-06-08KVM: arm/arm64: Move irq_is_ppi() to header fileChristoffer Dall
We are about to need this define in the arch timer code as well so move it to a common location. Signed-off-by: Christoffer Dall <cdall@linaro.org> Acked-by: Marc Zyngier <marc.zyngier@arm.com>
2017-06-08KVM: arm64: Allow creating the PMU without the in-kernel GICChristoffer Dall
Since we got support for devices in userspace which allows reporting the PMU overflow output status to userspace, we should actually allow creating the PMU on systems without an in-kernel irqchip, which in turn requires us to slightly clarify error codes for the ABI and move things around for the initialization phase. Signed-off-by: Christoffer Dall <cdall@linaro.org> Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
2017-05-18KVM: arm/arm64: Fix bug when registering redist iodevsChristoffer Dall
If userspace creates the VCPUs after initializing the VGIC, then we end up in a situation where we trigger a bug in kvm_vcpu_get_idx(), because it is called prior to adding the VCPU into the vcpus array on the VM. There is no tight coupling between the VCPU index and the area of the redistributor region used for the VCPU, so we can simply ensure that all creations of redistributors are serialized per VM, and increment an offset when we successfully add a redistributor. The vgic_register_redist_iodev() function can be called from two paths: vgic_redister_all_redist_iodev() which is called via the kvm_vgic_addr() device attribute handler. This patch already holds the kvm->lock mutex. The other path is via kvm_vgic_vcpu_init, which is called through a longer chain from kvm_vm_ioctl_create_vcpu(), which releases the kvm->lock mutex just before calling kvm_arch_vcpu_create(), so we can simply take this mutex again later for our purposes. Fixes: ab6f468c10 ("KVM: arm/arm64: Register iodevs when setting redist base and creating VCPUs") Signed-off-by: Christoffer Dall <cdall@linaro.org> Tested-by: Jean-Philippe Brucker <jean-philippe.brucker@arm.com> Reviewed-by: Eric Auger <eric.auger@redhat.com>
2017-05-09Merge tag 'kvm-arm-for-v4.12-round2' of ↵Paolo Bonzini
git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD Second round of KVM/ARM Changes for v4.12. Changes include: - A fix related to the 32-bit idmap stub - A fix to the bitmask used to deode the operands of an AArch32 CP instruction - We have moved the files shared between arch/arm/kvm and arch/arm64/kvm to virt/kvm/arm - We add support for saving/restoring the virtual ITS state to userspace
2017-05-09KVM: arm/arm64: Get rid of its->initialized fieldMarc Zyngier
The its->initialized doesn't bring much to the table, and creates unnecessary ordering between setting the address and initializing it (which amounts to exactly nothing). Let's kill it altogether, making KVM_DEV_ARM_VGIC_CTRL_INIT the no-op it deserves to be. Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Christoffer Dall <cdall@linaro.org> Reviewed-by: Eric Auger <eric.auger@redhat.com>
2017-05-09KVM: arm/arm64: Register iodevs when setting redist base and creating VCPUsChristoffer Dall
Instead of waiting with registering KVM iodevs until the first VCPU is run, we can actually create the iodevs when the redist base address is set. The only downside is that we must now also check if we need to do this for VCPUs which are created after creating the VGIC, because there is no enforced ordering between creating the VGIC (and setting its base addresses) and creating the VCPUs. Signed-off-by: Christoffer Dall <cdall@linaro.org> Reviewed-by: Eric Auger <eric.auger@redhat.com>
2017-05-08Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvmLinus Torvalds
Pull KVM updates from Paolo Bonzini: "ARM: - HYP mode stub supports kexec/kdump on 32-bit - improved PMU support - virtual interrupt controller performance improvements - support for userspace virtual interrupt controller (slower, but necessary for KVM on the weird Broadcom SoCs used by the Raspberry Pi 3) MIPS: - basic support for hardware virtualization (ImgTec P5600/P6600/I6400 and Cavium Octeon III) PPC: - in-kernel acceleration for VFIO s390: - support for guests without storage keys - adapter interruption suppression x86: - usual range of nVMX improvements, notably nested EPT support for accessed and dirty bits - emulation of CPL3 CPUID faulting generic: - first part of VCPU thread request API - kvm_stat improvements" * tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (227 commits) kvm: nVMX: Don't validate disabled secondary controls KVM: put back #ifndef CONFIG_S390 around kvm_vcpu_kick Revert "KVM: Support vCPU-based gfn->hva cache" tools/kvm: fix top level makefile KVM: x86: don't hold kvm->lock in KVM_SET_GSI_ROUTING KVM: Documentation: remove VM mmap documentation kvm: nVMX: Remove superfluous VMX instruction fault checks KVM: x86: fix emulation of RSM and IRET instructions KVM: mark requests that need synchronization KVM: return if kvm_vcpu_wake_up() did wake up the VCPU KVM: add explicit barrier to kvm_vcpu_kick KVM: perform a wake_up in kvm_make_all_cpus_request KVM: mark requests that do not need a wakeup KVM: remove #ifndef CONFIG_S390 around kvm_vcpu_wake_up KVM: x86: always use kvm_make_request instead of set_bit KVM: add kvm_{test,clear}_request to replace {test,clear}_bit s390: kvm: Cpu model support for msa6, msa7 and msa8 KVM: x86: remove irq disablement around KVM_SET_CLOCK/KVM_GET_CLOCK kvm: better MWAIT emulation for guests KVM: x86: virtualize cpuid faulting ...
2017-05-08KVM: arm64: vgic-its: Introduce migration ABI infrastructureEric Auger
We plan to support different migration ABIs, ie. characterizing the ITS table layout format in guest RAM. For example, a new ABI will be needed if vLPIs get supported for nested use case. So let's introduce an array of supported ABIs (at the moment a single ABI is supported though). The following characteristics are foreseen to vary with the ABI: size of table entries, save/restore operation, the way abi settings are applied. By default the MAX_ABI_REV is applied on its creation. In subsequent patches we will introduce a way for the userspace to change the ABI in use. The entry sizes now are set according to the ABI version and not hardcoded anymore. Signed-off-by: Eric Auger <eric.auger@redhat.com> Reviewed-by: Christoffer Dall <cdall@linaro.org>
2017-04-09KVM: arm/arm64: Report PMU overflow interrupts to userspace irqchipChristoffer Dall
When not using an in-kernel VGIC, but instead emulating an interrupt controller in userspace, we should report the PMU overflow status to that userspace interrupt controller using the KVM_CAP_ARM_USER_IRQ feature. Reviewed-by: Alexander Graf <agraf@suse.de> Reviewed-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
2017-04-09KVM: arm/arm64: Support arch timers with a userspace gicAlexander Graf
If you're running with a userspace gic or other interrupt controller (that is no vgic in the kernel), then you have so far not been able to use the architected timers, because the output of the architected timers, which are driven inside the kernel, was a kernel-only construct between the arch timer code and the vgic. This patch implements the new KVM_CAP_ARM_USER_IRQ feature, where we use a side channel on the kvm_run structure, run->s.regs.device_irq_level, to always notify userspace of the timer output levels when using a userspace irqchip. This works by ensuring that before we enter the guest, if the timer output level has changed compared to what we last told userspace, we don't enter the guest, but instead return to userspace to notify it of the new level. If we are exiting, because of an MMIO for example, and the level changed at the same time, the value is also updated and userspace can sample the line as it needs. This is nicely achieved simply always updating the timer_irq_level field after the main run loop. Note that the kvm_timer_update_irq trace event is changed to show the host IRQ number for the timer instead of the guest IRQ number, because the kernel no longer know which IRQ userspace wires up the timer signal to. Also note that this patch implements all required functionality but does not yet advertise the capability. Reviewed-by: Alexander Graf <agraf@suse.de> Reviewed-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Alexander Graf <agraf@suse.de> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
2017-04-09KVM: arm/arm64: vgic: Get rid of MISR and EISR fieldsChristoffer Dall
We don't use these fields anymore so let's nuke them completely. Acked-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
2017-04-09KVM: arm/arm64: vgic: Get rid of live_lrsChristoffer Dall
There is no need to calculate and maintain live_lrs when we always populate the lowest numbered LRs first on every entry and clear all LRs on every exit. Acked-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
2017-04-09KVM: arm/arm64: vgic: Defer touching GICH_VMCR to vcpu_load/putChristoffer Dall
We don't have to save/restore the VMCR on every entry to/from the guest, since on GICv2 we can access the control interface from EL1 and on VHE systems with GICv3 we can access the control interface from KVM running in EL2. GICv3 systems without VHE becomes the rare case, which has to save/restore the register on each round trip. Note that userspace accesses may see out-of-date values if the VCPU is running while accessing the VGIC state via the KVM device API, but this is already the case and it is up to userspace to quiesce the CPUs before reading the CPU registers from the GIC for an up-to-date view. Reviewed-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Christoffer Dall <cdall@cs.columbia.edu> Signed-off-by: Christoffer Dall <cdall@linaro.org>
2017-04-04KVM: arm64: Ensure LRs are clear when they should beChristoffer Dall
We currently have some code to clear the list registers on GICv3, but we never call this code, because the caller got nuked when removing the old vgic. We also used to have a similar GICv2 part, but that got lost in the process too. Let's reintroduce the logic for GICv2 and call the logic when we initialize the use of hypervisors on the CPU, for example when first loading KVM or when exiting a low power state. Reviewed-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2017-02-08KVM: arm/arm64: Emulate the EL1 phys timer registersJintack Lim
Emulate read and write operations to CNTP_TVAL, CNTP_CVAL and CNTP_CTL. Now VMs are able to use the EL1 physical timer. Signed-off-by: Jintack Lim <jintack@cs.columbia.edu> Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2017-02-08KVM: arm/arm64: Initialize the emulated EL1 physical timerJintack Lim
Initialize the emulated EL1 physical timer with the default irq number. Signed-off-by: Jintack Lim <jintack@cs.columbia.edu> Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2017-02-08KVM: arm/arm64: Add the EL1 physical timer contextJintack Lim
Add the EL1 physical timer context. Signed-off-by: Jintack Lim <jintack@cs.columbia.edu> Acked-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2017-02-08KVM: arm/arm64: Decouple kvm timer functions from virtual timerJintack Lim
Now that we have a separate structure for timer context, make functions generic so that they can work with any timer context, not just the virtual timer context. This does not change the virtual timer functionality. Signed-off-by: Jintack Lim <jintack@cs.columbia.edu> Acked-by: Marc Zyngier <marc.zyngier@arm.com> Acked-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2017-02-08KVM: arm/arm64: Move cntvoff to each timer contextJintack Lim
Make cntvoff per each timer context. This is helpful to abstract kvm timer functions to work with timer context without considering timer types (e.g. physical timer or virtual timer). This also would pave the way for ever doing adjustments of the cntvoff on a per-CPU basis if that should ever make sense. Signed-off-by: Jintack Lim <jintack@cs.columbia.edu> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2017-02-08KVM: arm/arm64: Abstract virtual timer context into separate structureJintack Lim
Abstract virtual timer context into a separate structure and change all callers referring to timer registers, irq state and so on. No change in functionality. This is about to become very handy when adding the EL1 physical timer. Signed-off-by: Jintack Lim <jintack@cs.columbia.edu> Acked-by: Christoffer Dall <christoffer.dall@linaro.org> Acked-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2017-01-30KVM: arm/arm64: vgic: Implement VGICv3 CPU interface accessVijaya Kumar K
VGICv3 CPU interface registers are accessed using KVM_DEV_ARM_VGIC_CPU_SYSREGS ioctl. These registers are accessed as 64-bit. The cpu MPIDR value is passed along with register id. It is used to identify the cpu for registers access. The VM that supports SEIs expect it on destination machine to handle guest aborts and hence checked for ICC_CTLR_EL1.SEIS compatibility. Similarly, VM that supports Affinity Level 3 that is required for AArch64 mode, is required to be supported on destination machine. Hence checked for ICC_CTLR_EL1.A3V compatibility. The arch/arm64/kvm/vgic-sys-reg-v3.c handles read and write of VGIC CPU registers for AArch64. For AArch32 mode, arch/arm/kvm/vgic-v3-coproc.c file is created but APIs are not implemented. Updated arch/arm/include/uapi/asm/kvm.h with new definitions required to compile for AArch32. The version of VGIC v3 specification is defined here Documentation/virtual/kvm/devices/arm-vgic-v3.txt Acked-by: Christoffer Dall <christoffer.dall@linaro.org> Reviewed-by: Eric Auger <eric.auger@redhat.com> Signed-off-by: Pavel Fedin <p.fedin@samsung.com> Signed-off-by: Vijaya Kumar K <Vijaya.Kumar@cavium.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2017-01-25KVM: arm/arm64: vgic: Add debugfs vgic-state fileChristoffer Dall
Add a file to debugfs to read the in-kernel state of the vgic. We don't do any locking of the entire VGIC state while traversing all the IRQs, so if the VM is running the user/developer may not see a quiesced state, but should take care to pause the VM using facilities in user space for that purpose. We also don't support LPIs yet, but they can be added easily if needed. Reviewed-by: Eric Auger <eric.auger@redhat.com> Tested-by: Eric Auger <eric.auger@redhat.com> Tested-by: Andre Przywara <andre.przywara@arm.com> Acked-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
2017-01-25KVM: arm/arm64: Remove struct vgic_irq pending fieldChristoffer Dall
One of the goals behind the VGIC redesign was to get rid of cached or intermediate state in the data structures, but we decided to allow ourselves to precompute the pending value of an IRQ based on the line level and pending latch state. However, this has now become difficult to base proper GICv3 save/restore on, because there is a potential to modify the pending state without knowing if an interrupt is edge or level configured. See the following post and related message for more background: https://lists.cs.columbia.edu/pipermail/kvmarm/2017-January/023195.html This commit gets rid of the precomputed pending field in favor of a function that calculates the value when needed, irq_is_pending(). The soft_pending field is renamed to pending_latch to represent that this latch is the equivalent hardware latch which gets manipulated by the input signal for edge-triggered interrupts and when writing to the SPENDR/CPENDR registers. After this commit save/restore code should be able to simply restore the pending_latch state, line_level state, and config state in any order and get the desired result. Reviewed-by: Andre Przywara <andre.przywara@arm.com> Reviewed-by: Marc Zyngier <marc.zyngier@arm.com> Tested-by: Andre Przywara <andre.przywara@arm.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
2017-01-13KVM: arm64: Access CNTHCTL_EL2 bit fields correctly on VHE systemsJintack Lim
Current KVM world switch code is unintentionally setting wrong bits to CNTHCTL_EL2 when E2H == 1, which may allow guest OS to access physical timer. Bit positions of CNTHCTL_EL2 are changing depending on HCR_EL2.E2H bit. EL1PCEN and EL1PCTEN are 1st and 0th bits when E2H is not set, but they are 11th and 10th bits respectively when E2H is set. In fact, on VHE we only need to set those bits once, not for every world switch. This is because the host kernel runs in EL2 with HCR_EL2.TGE == 1, which makes those bits have no effect for the host kernel execution. So we just set those bits once for guests, and that's it. Signed-off-by: Jintack Lim <jintack@cs.columbia.edu> Reviewed-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2016-12-25clocksource: Use a plain u64 instead of cycle_tThomas Gleixner
There is no point in having an extra type for extra confusion. u64 is unambiguous. Conversion was done with the following coccinelle script: @rem@ @@ -typedef u64 cycle_t; @fix@ typedef cycle_t; @@ -cycle_t +u64 Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: John Stultz <john.stultz@linaro.org>
2016-09-22ARM: KVM: Support vgic-v3Vladimir Murzin
This patch allows to build and use vgic-v3 in 32-bit mode. Unfortunately, it can not be split in several steps without extra stubs to keep patches independent and bisectable. For instance, virt/kvm/arm/vgic/vgic-v3.c uses function from vgic-v3-sr.c, handling access to GICv3 cpu interface from the guest requires vgic_v3.vgic_sre to be already defined. It is how support has been done: * handle SGI requests from the guest * report configured SRE on access to GICv3 cpu interface from the guest * required vgic-v3 macros are provided via uapi.h * static keys are used to select GIC backend * to make vgic-v3 build KVM_ARM_VGIC_V3 guard is removed along with the static inlines Acked-by: Marc Zyngier <marc.zyngier@arm.com> Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Vladimir Murzin <vladimir.murzin@arm.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
2016-09-22arm64: KVM: Use static keys for selecting the GIC backendVladimir Murzin
Currently GIC backend is selected via alternative framework and this is fine. We are going to introduce vgic-v3 to 32-bit world and there we don't have patching framework in hand, so we can either check support for GICv3 every time we need to choose which backend to use or try to optimise it by using static keys. The later looks quite promising because we can share logic involved in selecting GIC backend between architectures if both uses static keys. This patch moves arm64 from alternative to static keys framework for selecting GIC backend. For that we embed static key into vgic_global and enable the key during vgic initialisation based on what has already been exposed by the host GIC driver. Acked-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Vladimir Murzin <vladimir.murzin@arm.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
2016-09-08arm64: KVM: vgic-v2: Add GICV access from HYPMarc Zyngier
Now that we have the necessary infrastructure to handle MMIO accesses in HYP, perform the GICV access on behalf of the guest. This requires checking that the access is strictly 32bit, properly aligned, and falls within the expected range. When all condition are satisfied, we perform the access and tell the rest of the HYP code that the instruction has been correctly emulated. Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
2016-09-08arm64: KVM: vgic-v2: Add the GICV emulation infrastructureMarc Zyngier
In order to efficiently perform the GICV access on behalf of the guest, we need to be able to avoid going back all the way to the host kernel. For this, we introduce a new hook in the world switch code, conveniently placed just after populating the fault info. At that point, we only have saved/restored the GP registers, and we can quickly perform all the required checks (data abort, translation fault, valid faulting syndrome, not an external abort, not a PTW). Coming back from the emulation code, we need to skip the emulated instruction. This involves an additional bit of save/restore in order to be able to access the guest's PC (and possibly CPSR if this is a 32bit guest). At this stage, no emulation code is provided. Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
2016-08-04Merge tag 'kvm-arm-for-4.8-take2' of ↵Paolo Bonzini
git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD KVM/ARM Changes for v4.8 - Take 2 Includes GSI routing support to go along with the new VGIC and a small fix that has been cooking in -next for a while.
2016-08-02Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvmLinus Torvalds
Pull KVM updates from Paolo Bonzini: - ARM: GICv3 ITS emulation and various fixes. Removal of the old VGIC implementation. - s390: support for trapping software breakpoints, nested virtualization (vSIE), the STHYI opcode, initial extensions for CPU model support. - MIPS: support for MIPS64 hosts (32-bit guests only) and lots of cleanups, preliminary to this and the upcoming support for hardware virtualization extensions. - x86: support for execute-only mappings in nested EPT; reduced vmexit latency for TSC deadline timer (by about 30%) on Intel hosts; support for more than 255 vCPUs. - PPC: bugfixes. * tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (302 commits) KVM: PPC: Introduce KVM_CAP_PPC_HTM MIPS: Select HAVE_KVM for MIPS64_R{2,6} MIPS: KVM: Reset CP0_PageMask during host TLB flush MIPS: KVM: Fix ptr->int cast via KVM_GUEST_KSEGX() MIPS: KVM: Sign extend MFC0/RDHWR results MIPS: KVM: Fix 64-bit big endian dynamic translation MIPS: KVM: Fail if ebase doesn't fit in CP0_EBase MIPS: KVM: Use 64-bit CP0_EBase when appropriate MIPS: KVM: Set CP0_Status.KX on MIPS64 MIPS: KVM: Make entry code MIPS64 friendly MIPS: KVM: Use kmap instead of CKSEG0ADDR() MIPS: KVM: Use virt_to_phys() to get commpage PFN MIPS: Fix definition of KSEGX() for 64-bit KVM: VMX: Add VMCS to CPU's loaded VMCSs before VMPTRLD kvm: x86: nVMX: maintain internal copy of current VMCS KVM: PPC: Book3S HV: Save/restore TM state in H_CEDE KVM: PPC: Book3S HV: Pull out TM state save/restore into separate procedures KVM: arm64: vgic-its: Simplify MAPI error handling KVM: arm64: vgic-its: Make vgic_its_cmd_handle_mapi similar to other handlers KVM: arm64: vgic-its: Turn device_id validation into generic ID validation ...
2016-07-22KVM: arm/arm64: Enable irqchip routingEric Auger
This patch adds compilation and link against irqchip. Main motivation behind using irqchip code is to enable MSI routing code. In the future irqchip routing may also be useful when targeting multiple irqchips. Routing standard callbacks now are implemented in vgic-irqfd: - kvm_set_routing_entry - kvm_set_irq - kvm_set_msi They only are supported with new_vgic code. Both HAVE_KVM_IRQCHIP and HAVE_KVM_IRQ_ROUTING are defined. KVM_CAP_IRQ_ROUTING is advertised and KVM_SET_GSI_ROUTING is allowed. So from now on IRQCHIP routing is enabled and a routing table entry must exist for irqfd injection to succeed for a given SPI. This patch builds a default flat irqchip routing table (gsi=irqchip.pin) covering all the VGIC SPI indexes. This routing table is overwritten by the first first user-space call to KVM_SET_GSI_ROUTING ioctl. MSI routing setup is not yet allowed. Signed-off-by: Eric Auger <eric.auger@redhat.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2016-07-18KVM: arm64: vgic-its: Add pointer to corresponding kvm_deviceMarc Zyngier
Going from the ITS structure to the corresponding KVM structure would be quite handy at times. The kvm_device pointer that is passed at create time is quite convenient for this, so let's keep a copy of it in the vgic_its structure. This will be put to a good use in subsequent patches. Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2016-07-18KVM: arm64: vgic-its: Enable ITS emulation as a virtual MSI controllerAndre Przywara
Now that all ITS emulation functionality is in place, we advertise MSI functionality to userland and also the ITS device to the guest - if userland has configured that. Signed-off-by: Andre Przywara <andre.przywara@arm.com> Reviewed-by: Marc Zyngier <marc.zyngier@arm.com> Tested-by: Eric Auger <eric.auger@redhat.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2016-07-18KVM: arm64: vgic-its: Connect LPIs to the VGIC emulationAndre Przywara
LPIs are dynamically created (mapped) at guest runtime and their actual number can be quite high, but is mostly assigned using a very sparse allocation scheme. So arrays are not an ideal data structure to hold the information. We use a spin-lock protected linked list to hold all mapped LPIs, represented by their struct vgic_irq. This lock is grouped between the ap_list_lock and the vgic_irq lock in our locking order. Also we store a pointer to that struct vgic_irq in our struct its_itte, so we can easily access it. Eventually we call our new vgic_get_lpi() from vgic_get_irq(), so the VGIC code gets transparently access to LPIs. Signed-off-by: Andre Przywara <andre.przywara@arm.com> Reviewed-by: Marc Zyngier <marc.zyngier@arm.com> Tested-by: Eric Auger <eric.auger@redhat.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2016-07-18KVM: arm64: vgic-its: Implement basic ITS register handlersAndre Przywara
Add emulation for some basic MMIO registers used in the ITS emulation. This includes: - GITS_{CTLR,TYPER,IIDR} - ID registers - GITS_{CBASER,CREADR,CWRITER} (which implement the ITS command buffer handling) - GITS_BASER<n> Most of the handlers are pretty straight forward, only the CWRITER handler is a bit more involved by taking the new its_cmd mutex and then iterating over the command buffer. The registers holding base addresses and attributes are sanitised before storing them. Signed-off-by: Andre Przywara <andre.przywara@arm.com> Reviewed-by: Marc Zyngier <marc.zyngier@arm.com> Tested-by: Eric Auger <eric.auger@redhat.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2016-07-18KVM: arm64: vgic-its: Introduce new KVM ITS deviceAndre Przywara
Introduce a new KVM device that represents an ARM Interrupt Translation Service (ITS) controller. Since there can be multiple of this per guest, we can't piggy back on the existing GICv3 distributor device, but create a new type of KVM device. On the KVM_CREATE_DEVICE ioctl we allocate and initialize the ITS data structure and store the pointer in the kvm_device data. Upon an explicit init ioctl from userland (after having setup the MMIO address) we register the handlers with the kvm_io_bus framework. Any reference to an ITS thus has to go via this interface. Signed-off-by: Andre Przywara <andre.przywara@arm.com> Reviewed-by: Marc Zyngier <marc.zyngier@arm.com> Tested-by: Eric Auger <eric.auger@redhat.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2016-07-18KVM: arm64: vgic-its: Introduce ITS emulation file with MMIO frameworkAndre Przywara
The ARM GICv3 ITS emulation code goes into a separate file, but needs to be connected to the GICv3 emulation, of which it is an option. The ITS MMIO handlers require the respective ITS pointer to be passed in, so we amend the existing VGIC MMIO framework to let it cope with that. Also we introduce the basic ITS data structure and initialize it, but don't return any success yet, as we are not yet ready for the show. Signed-off-by: Andre Przywara <andre.przywara@arm.com> Reviewed-by: Marc Zyngier <marc.zyngier@arm.com> Tested-by: Eric Auger <eric.auger@redhat.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2016-07-18KVM: arm64: vgic: Handle ITS related GICv3 redistributor registersAndre Przywara
In the GICv3 redistributor there are the PENDBASER and PROPBASER registers which we did not emulate so far, as they only make sense when having an ITS. In preparation for that emulate those MMIO accesses by storing the 64-bit data written into it into a variable which we later read in the ITS emulation. We also sanitise the registers, making sure RES0 regions are respected and checking for valid memory attributes. Signed-off-by: Andre Przywara <andre.przywara@arm.com> Reviewed-by: Marc Zyngier <marc.zyngier@arm.com> Tested-by: Eric Auger <eric.auger@redhat.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2016-07-18KVM: arm/arm64: vgic: Add refcounting for IRQsAndre Przywara
In the moment our struct vgic_irq's are statically allocated at guest creation time. So getting a pointer to an IRQ structure is trivial and safe. LPIs are more dynamic, they can be mapped and unmapped at any time during the guest's _runtime_. In preparation for supporting LPIs we introduce reference counting for those structures using the kernel's kref infrastructure. Since private IRQs and SPIs are statically allocated, we avoid actually refcounting them, since they would never be released anyway. But we take provisions to increase the refcount when an IRQ gets onto a VCPU list and decrease it when it gets removed. Also this introduces vgic_put_irq(), which wraps kref_put and hides the release function from the callers. Signed-off-by: Andre Przywara <andre.przywara@arm.com> Reviewed-by: Marc Zyngier <marc.zyngier@arm.com> Tested-by: Eric Auger <eric.auger@redhat.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2016-07-18KVM: arm/arm64: vgic: Move redistributor kvm_io_devicesAndre Przywara
Logically a GICv3 redistributor is assigned to a (v)CPU, so we should aim to keep redistributor related variables out of our struct vgic_dist. Let's start by replacing the redistributor related kvm_io_device array with two members in our existing struct vgic_cpu, which are naturally per-VCPU and thus don't require any allocation / freeing. So apart from the better fit with the redistributor design this saves some code as well. Signed-off-by: Andre Przywara <andre.przywara@arm.com> Reviewed-by: Eric Auger <eric.auger@redhat.com> Reviewed-by: Marc Zyngier <marc.zyngier@arm.com> Tested-by: Eric Auger <eric.auger@redhat.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2016-07-03KVM: arm/arm64: The GIC is dead, long live the GICMarc Zyngier
I don't think any single piece of the KVM/ARM code ever generated as much hatred as the GIC emulation. It was written by someone who had zero experience in modeling hardware (me), was riddled with design flaws, should have been scrapped and rewritten from scratch long before having a remote chance of reaching mainline, and yet we supported it for a good three years. No need to mention the names of those who suffered, the git log is singing their praises. Thankfully, we now have a much more maintainable implementation, and we can safely put the grumpy old GIC to rest. Fellow hackers, please raise your glass in memory of the GIC: The GIC is dead, long live the GIC! Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
2016-06-27arm64: KVM: fix build with CONFIG_ARM_PMU disabledSudeep Holla
When CONFIG_ARM_PMU is disabled, we get the following build error: arch/arm64/kvm/sys_regs.c: In function 'pmu_counter_idx_valid': arch/arm64/kvm/sys_regs.c:564:27: error: 'ARMV8_PMU_CYCLE_IDX' undeclared (first use in this function) if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX) ^ arch/arm64/kvm/sys_regs.c:564:27: note: each undeclared identifier is reported only once for each function it appears in arch/arm64/kvm/sys_regs.c: In function 'access_pmu_evcntr': arch/arm64/kvm/sys_regs.c:592:10: error: 'ARMV8_PMU_CYCLE_IDX' undeclared (first use in this function) idx = ARMV8_PMU_CYCLE_IDX; ^ arch/arm64/kvm/sys_regs.c: In function 'access_pmu_evtyper': arch/arm64/kvm/sys_regs.c:638:14: error: 'ARMV8_PMU_CYCLE_IDX' undeclared (first use in this function) if (idx == ARMV8_PMU_CYCLE_IDX) ^ arch/arm64/kvm/hyp/switch.c:86:15: error: 'ARMV8_PMU_USERENR_MASK' undeclared (first use in this function) write_sysreg(ARMV8_PMU_USERENR_MASK, pmuserenr_el0); This patch fixes the build with CONFIG_ARM_PMU disabled. Cc: Christoffer Dall <christoffer.dall@linaro.org> Cc: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Sudeep Holla <sudeep.holla@arm.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>