Age | Commit message (Collapse) | Author |
|
Add support to propagate and add filetype values into the on-disk
directs. This involves passing the filetype into the xfs_da_args
structure along with the name and namelength for direct operations,
and encoding it into the dirent at the same time we write the inode
number into the dirent.
With write support, add the feature flag to the
XFS_SB_FEAT_INCOMPAT_ALL mask so we can now mount filesystems with
this feature set.
Performance of directory recursion is now much improved. Parallel
walk of ~50 million directory entries across hundreds of directories
improves significantly. Unpatched, no CRCs:
Walking via ls -R
real 3m19.886s
user 6m36.960s
sys 28m19.087s
THis is doing roughly 500 getdents() calls per second, and 250,000
inode lookups per second to determine the inode type at roughly
17,000 read IOPS. CPU usage is 90% kernel space.
With dtype support patched in and the fileset recreated with CRCs
enabled:
Walking via ls -R
real 0m31.316s
user 6m32.975s
sys 0m21.111s
This is doing roughly 3500 getdents() calls per second at 16,000
IOPS. There are no inode lookups at all. CPU usages is almost 100%
userspace.
This is a big win for recursive directory walks that only need to
find file names and file types.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
Add support for the file type field in directory entries so that
readdir can return the type of the inode the dirent points to to
userspace without first having to read the inode off disk.
The encoding of the type field is a single byte that is added to the
end of the directory entry name length. For all intents and
purposes, it appends a "hidden" byte to the name field which
contains the type information. As the directory entry is already of
dynamic size, helpers are already required to access and decode the
direct entry structures.
Hence the relevent extraction and iteration helpers are updated to
understand the hidden byte. Helpers for reading and writing the
filetype field from the directory entries are also added. Only the
read helpers are used by this patch. It also adds all the code
necessary to read the type information out of the dirents on disk.
Further we add the superblock feature bit and helpers to indicate
that we understand the on-disk format change. This is not a
compatible change - existing kernels cannot read the new format
successfully - so an incompatible feature flag is added. We don't
yet allow filesystems to mount with this flag yet - that will be
added once write support is added.
Finally, the code to take the type from the VFS, convert it to an
XFS on-disk type and put it into the xfs_name structures passed
around is added, but the directory code does not use this field yet.
That will be in the next patch.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
Some of the code shared with userspace causes compilation warnings
from things turned off in the kernel code, such as differences in
variable signedness. Fix those issues.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
Many of the definitions within xfs_dir2_priv.h are needed in
userspace outside libxfs. Definitions within xfs_dir2_priv.h are
wholly contained within libxfs, so we need to shuffle some of the
definitions around to keep consistency across files shared between
user and kernel space.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
When the directory freespace index grows to a second block (2017
4k data blocks in the directory), the initialisation of the second
new block header goes wrong. The write verifier fires a corruption
error indicating that the block number in the header is zero. This
was being tripped by xfs/110.
The problem is that the initialisation of the new block is done just
fine in xfs_dir3_free_get_buf(), but the caller then users a dirv2
structure to zero on-disk header fields that xfs_dir3_free_get_buf()
has already zeroed. These lined up with the block number in the dir
v3 header format.
While looking at this, I noticed that the struct xfs_dir3_free_hdr()
had 4 bytes of padding in it that wasn't defined as padding or being
zeroed by the initialisation. Add a pad field declaration and fully
zero the on disk and in-core headers in xfs_dir3_free_get_buf() so
that this is never an issue in the future. Note that this doesn't
change the on-disk layout, just makes the 32 bits of padding in the
layout explicit.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
(cherry picked from commit 5ae6e6a401957698f2bd8c9f4a86d86d02199fea)
|
|
Running a CONFIG_XFS_DEBUG kernel in production environments is not
the best idea as it introduces significant overhead, can change
the behaviour of algorithms (such as allocation) to improve test
coverage, and (most importantly) panic the machine on non-fatal
errors.
There are many cases where all we want to do is run a
kernel with more bounds checking enabled, such as is provided by the
ASSERT() statements throughout the code, but without all the
potential overhead and drawbacks.
This patch converts all the ASSERT statements to evaluate as
WARN_ON(1) statements and hence if they fail dump a warning and a
stack trace to the log. This has minimal overhead and does not
change any algorithms, and will allow us to find strange "out of
bounds" problems more easily on production machines.
There are a few places where assert statements contain debug only
code. These are converted to be debug-or-warn only code so that we
still get all the assert checks in the code.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
The buffer type passed to log recvoery in the buffer log item
overruns the blf_flags field. I had assumed that flags field was a
32 bit value, and it turns out it is a unisgned short. Therefore
having 19 flags doesn't really work.
Convert the buffer type field to numeric value, and use the top 5
bits of the flags field for it. We currently have 17 types of
buffers, so using 5 bits gives us plenty of room for expansion in
future....
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
Add buffer types to the buffer log items so that log recovery can
validate the buffers and calculate CRCs correctly after the buffers
are recovered.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
This addition follows the same pattern as the dir2 block CRCs.
Seeing as both LEAF1 and LEAFN types need to changed at the same
time, this is a pretty large amount of change. leaf block headers
need to be abstracted away from the on-disk structures (struct
xfs_dir3_icleaf_hdr), as do the base leaf entry locations.
This header abstract allows the in-core header and leaf entry
location to be passed around instead of the leaf block itself. This
saves a lot of converting individual variables from on-disk format
to host format where they are used, so there's a good chance that
the compiler will be able to produce much more optimal code as it's
not having to byteswap variables all over the place.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
This addition follows the same pattern as the dir2 block CRCs.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
This addition follows the same pattern as the dir2 block CRCs, but
with a few differences. The main difference is that the free block
header is different between the v2 and v3 formats, so an "in-core"
free block header has been added and _todisk/_from_disk functions
used to abstract the differences in structure format from the code.
This is similar to the on-disk superblock versus the in-core
superblock setup. The in-core strucutre is populated when the buffer
is read from disk, all the in memory checks and modifications are
done on the in-core version of the structure which is written back
to the buffer before the buffer is logged.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
Now that directory buffers are made from a single struct xfs_buf, we
can add CRC calculation and checking callbacks. While there, add all
the fields to the on disk structures for future functionality such
as d_type support, uuids, block numbers, owner inode, etc.
To distinguish between the different on disk formats, change the
magic numbers for the new format directory blocks.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
To separate the verifiers from iodone functions and associate read
and write verifiers at the same time, introduce a buffer verifier
operations structure to the xfs_buf.
This avoids the need for assigning the write verifier, clearing the
iodone function and re-running ioend processing in the read
verifier, and gets rid of the nasty "b_pre_io" name for the write
verifier function pointer. If we ever need to, it will also be
easier to add further content specific callbacks to a buffer with an
ops structure in place.
We also avoid needing to export verifier functions, instead we
can simply export the ops structures for those that are needed
outside the function they are defined in.
This patch also fixes a directory block readahead verifier issue
it exposed.
This patch also adds ops callbacks to the inode/alloc btree blocks
initialised by growfs. These will need more work before they will
work with CRCs.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Phil White <pwhite@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
Metadata buffers that are read from disk have write verifiers
already attached to them, but newly allocated buffers do not. Add
appropriate write verifiers to all new metadata buffers.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
These verifiers are essentially the same code as the read verifiers,
but do not require ioend processing. Hence factor the read verifier
functions and add a new write verifier wrapper that is used as the
callback.
This is done as one large patch for all verifiers rather than one
patch per verifier as the change is largely mechanical. This
includes hooking up the write verifier via the read verifier
function.
Hooking up the write verifier for buffers obtained via
xfs_trans_get_buf() will be done in a separate patch as that touches
code in many different places rather than just the verifier
functions.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Phil White <pwhite@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
And add a verifier callback function while there.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Phil White <pwhite@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
Also factor out the updating of the free block when removing entries
from leaf blocks, and add a verifier callback for reads.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Phil White <pwhite@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Phil White <pwhite@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
The struct xfs_dabuf now only tracks a single xfs_buf and all the
information it holds can be gained directly from the xfs_buf. Hence
we can remove the struct dabuf and pass the xfs_buf around
everywhere.
Kill the struct dabuf and the associated infrastructure.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
Untangle the header file includes a bit by moving the definition of
xfs_agino_t to xfs_types.h. This removes the dependency that xfs_ag.h has on
xfs_inum.h, meaning we don't need to include xfs_inum.h everywhere we include
xfs_ag.h.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial: (43 commits)
fs: Merge split strings
treewide: fix potentially dangerous trailing ';' in #defined values/expressions
uwb: Fix misspelling of neighbourhood in comment
net, netfilter: Remove redundant goto in ebt_ulog_packet
trivial: don't touch files that are removed in the staging tree
lib/vsprintf: replace link to Draft by final RFC number
doc: Kconfig: `to be' -> `be'
doc: Kconfig: Typo: square -> squared
doc: Konfig: Documentation/power/{pm => apm-acpi}.txt
drivers/net: static should be at beginning of declaration
drivers/media: static should be at beginning of declaration
drivers/i2c: static should be at beginning of declaration
XTENSA: static should be at beginning of declaration
SH: static should be at beginning of declaration
MIPS: static should be at beginning of declaration
ARM: static should be at beginning of declaration
rcu: treewide: Do not use rcu_read_lock_held when calling rcu_dereference_check
Update my e-mail address
PCIe ASPM: forcedly -> forcibly
gma500: push through device driver tree
...
Fix up trivial conflicts:
- arch/arm/mach-ep93xx/dma-m2p.c (deleted)
- drivers/gpio/gpio-ep93xx.c (renamed and context nearby)
- drivers/net/r8169.c (just context changes)
|
|
No idea why these were split in the first place...
Signed-off-by: Jean Delvare <khali@linux-fr.org>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
|
|
Change the bests array to be a proper variable sized entry. This is done
easily as no one relies on the size of the structure. Also change
XFS_DIR2_MAX_FREE_BESTS to an inline function while we're at it.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Alex Elder <aelder@sgi.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
|
|
Replace the current mess of dir2 headers with just three that have a clear
purpose:
- xfs_dir2_format.h for all format definitions, including the inline helpers
to access our variable size structures
- xfs_dir2_priv.h for all prototypes that are internal to the dir2 code
and not needed by anything outside of the directory code. For this
purpose xfs_da_btree.c, and phase6.c in xfs_repair are considered part
of the directory code.
- xfs_dir2.h for the public interface to the directory code
In addition to the reshuffle I have also update the comments to not only
match the new file structure, but also to describe the directory format
better.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Alex Elder <aelder@sgi.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
|
|
Micro-optimize various comparisms by always byteswapping the constant
instead of the variable, which allows to do the swap at compile instead
of runtime.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Alex Elder <aelder@sgi.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
|
|
In most places we can simply pass around and use the struct xfs_dir2_data_hdr,
which is the first and most important member of struct xfs_dir2_data instead
of the full structure.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Alex Elder <aelder@sgi.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
|
|
Add a new xfs_dir2_leaf_find_entry helper to factor out some duplicate code
from xfs_dir2_leaf_addname xfs_dir2_leafn_add. Found by Eric Sandeen using
an automated code duplication checker.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Alex Elder <aelder@sgi.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
|
|
Once converted, kill the remainder of the cmn_err() interface.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Alex Elder <aelder@sgi.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
|
|
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <david@fromorbit.com>
|
|
Dmapi support was never merged upstream, but we still have a lot of hooks
bloating XFS for it, all over the fast pathes of the filesystem.
This patch drops over 700 lines of dmapi overhead. If we'll ever get HSM
support in mainline at least the namespace events can be done much saner
in the VFS instead of the individual filesystem, so it's not like this
is much help for future work.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
|
|
Just minor housekeeping, a lot more functions can be trivially made
static; others could if we reordered things a bit...
Signed-off-by: Eric Sandeen <sandeen@sandeen.net>
Signed-off-by: Alex Elder <aelder@sgi.com>
|
|
Convert the old xfs tracing support that could only be used with the
out of tree kdb and xfsidbg patches to use the generic event tracer.
To use it make sure CONFIG_EVENT_TRACING is enabled and then enable
all xfs trace channels by:
echo 1 > /sys/kernel/debug/tracing/events/xfs/enable
or alternatively enable single events by just doing the same in one
event subdirectory, e.g.
echo 1 > /sys/kernel/debug/tracing/events/xfs/xfs_ihold/enable
or set more complex filters, etc. In Documentation/trace/events.txt
all this is desctribed in more detail. To reads the events do a
cat /sys/kernel/debug/tracing/trace
Compared to the last posting this patch converts the tracing mostly to
the one tracepoint per callsite model that other users of the new
tracing facility also employ. This allows a very fine-grained control
of the tracing, a cleaner output of the traces and also enables the
perf tool to use each tracepoint as a virtual performance counter,
allowing us to e.g. count how often certain workloads git various
spots in XFS. Take a look at
http://lwn.net/Articles/346470/
for some examples.
Also the btree tracing isn't included at all yet, as it will require
additional core tracing features not in mainline yet, I plan to
deliver it later.
And the really nice thing about this patch is that it actually removes
many lines of code while adding this nice functionality:
fs/xfs/Makefile | 8
fs/xfs/linux-2.6/xfs_acl.c | 1
fs/xfs/linux-2.6/xfs_aops.c | 52 -
fs/xfs/linux-2.6/xfs_aops.h | 2
fs/xfs/linux-2.6/xfs_buf.c | 117 +--
fs/xfs/linux-2.6/xfs_buf.h | 33
fs/xfs/linux-2.6/xfs_fs_subr.c | 3
fs/xfs/linux-2.6/xfs_ioctl.c | 1
fs/xfs/linux-2.6/xfs_ioctl32.c | 1
fs/xfs/linux-2.6/xfs_iops.c | 1
fs/xfs/linux-2.6/xfs_linux.h | 1
fs/xfs/linux-2.6/xfs_lrw.c | 87 --
fs/xfs/linux-2.6/xfs_lrw.h | 45 -
fs/xfs/linux-2.6/xfs_super.c | 104 ---
fs/xfs/linux-2.6/xfs_super.h | 7
fs/xfs/linux-2.6/xfs_sync.c | 1
fs/xfs/linux-2.6/xfs_trace.c | 75 ++
fs/xfs/linux-2.6/xfs_trace.h | 1369 +++++++++++++++++++++++++++++++++++++++++
fs/xfs/linux-2.6/xfs_vnode.h | 4
fs/xfs/quota/xfs_dquot.c | 110 ---
fs/xfs/quota/xfs_dquot.h | 21
fs/xfs/quota/xfs_qm.c | 40 -
fs/xfs/quota/xfs_qm_syscalls.c | 4
fs/xfs/support/ktrace.c | 323 ---------
fs/xfs/support/ktrace.h | 85 --
fs/xfs/xfs.h | 16
fs/xfs/xfs_ag.h | 14
fs/xfs/xfs_alloc.c | 230 +-----
fs/xfs/xfs_alloc.h | 27
fs/xfs/xfs_alloc_btree.c | 1
fs/xfs/xfs_attr.c | 107 ---
fs/xfs/xfs_attr.h | 10
fs/xfs/xfs_attr_leaf.c | 14
fs/xfs/xfs_attr_sf.h | 40 -
fs/xfs/xfs_bmap.c | 507 +++------------
fs/xfs/xfs_bmap.h | 49 -
fs/xfs/xfs_bmap_btree.c | 6
fs/xfs/xfs_btree.c | 5
fs/xfs/xfs_btree_trace.h | 17
fs/xfs/xfs_buf_item.c | 87 --
fs/xfs/xfs_buf_item.h | 20
fs/xfs/xfs_da_btree.c | 3
fs/xfs/xfs_da_btree.h | 7
fs/xfs/xfs_dfrag.c | 2
fs/xfs/xfs_dir2.c | 8
fs/xfs/xfs_dir2_block.c | 20
fs/xfs/xfs_dir2_leaf.c | 21
fs/xfs/xfs_dir2_node.c | 27
fs/xfs/xfs_dir2_sf.c | 26
fs/xfs/xfs_dir2_trace.c | 216 ------
fs/xfs/xfs_dir2_trace.h | 72 --
fs/xfs/xfs_filestream.c | 8
fs/xfs/xfs_fsops.c | 2
fs/xfs/xfs_iget.c | 111 ---
fs/xfs/xfs_inode.c | 67 --
fs/xfs/xfs_inode.h | 76 --
fs/xfs/xfs_inode_item.c | 5
fs/xfs/xfs_iomap.c | 85 --
fs/xfs/xfs_iomap.h | 8
fs/xfs/xfs_log.c | 181 +----
fs/xfs/xfs_log_priv.h | 20
fs/xfs/xfs_log_recover.c | 1
fs/xfs/xfs_mount.c | 2
fs/xfs/xfs_quota.h | 8
fs/xfs/xfs_rename.c | 1
fs/xfs/xfs_rtalloc.c | 1
fs/xfs/xfs_rw.c | 3
fs/xfs/xfs_trans.h | 47 +
fs/xfs/xfs_trans_buf.c | 62 -
fs/xfs/xfs_vnodeops.c | 8
70 files changed, 2151 insertions(+), 2592 deletions(-)
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>
|
|
Signed-off-by: Malcolm Parsons <malcolm.parsons@gmail.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
|
|
xfs_dir2_node_lookup() calls xfs_da_node_lookup_int() which iterates
through leaf blocks containing the matching hash value for the name being
looked up. Inside xfs_da_node_lookup_int(), it calls the
xfs_dir2_leafn_lookup_for_entry() for each leaf block.
xfs_dir2_leafn_lookup_for_entry() iterates through each matching
hash/offset pair doing a name comparison to find the matching dirent.
For CI mode, the state->extrablk retains the details of the block that has
the CI match so xfs_dir2_node_lookup() can return the case-preserved name.
The original implementation didn't retain the xfs_da_buf_t properly, so
the lookup was returning a bogus name to be stored in the dentry.
In the case of unlink, the bad name was passed and in debug mode, ASSERTed
when it can't find the entry.
SGI-PV: 983284
SGI-Modid: xfs-linux-melb:xfs-kern:31337a
Signed-off-by: Barry Naujok <bnaujok@sgi.com>
Signed-off-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Lachlan McIlroy <lachlan@sgi.com>
|
|
This implements the code to store the actual filename found during a
lookup in the dentry cache and to avoid multiple entries in the dcache
pointing to the same inode.
To avoid polluting the dcache, we implement a new directory inode
operations for lookup. xfs_vn_ci_lookup() stores the correct case name in
the dcache.
The "actual name" is only allocated and returned for a case- insensitive
match and not an actual match.
Another unusual interaction with the dcache is not storing negative
dentries like other filesystems doing a d_add(dentry, NULL) when an ENOENT
is returned. During the VFS lookup, if a dentry returned has no inode,
dput is called and ENOENT is returned. By not doing a d_add, this actually
removes it completely from the dcache to be reused. create/rename have to
be modified to support unhashed dentries being passed in.
SGI-PV: 981521
SGI-Modid: xfs-linux-melb:xfs-kern:31208a
Signed-off-by: Barry Naujok <bnaujok@sgi.com>
Signed-off-by: Christoph Hellwig <hch@infradead.org>
|
|
The end of the xfs_da_args structure has 4 unsigned char fields for
true/false information on directory and attr operations using the
xfs_da_args structure.
The following converts these 4 into a op_flags field that uses the first 4
bits for these fields and allows expansion for future operation
information (eg. case-insensitive lookup request).
SGI-PV: 981520
SGI-Modid: xfs-linux-melb:xfs-kern:31206a
Signed-off-by: Barry Naujok <bnaujok@sgi.com>
Signed-off-by: Christoph Hellwig <hch@infradead.org>
|
|
Adds two pieces of functionality for the basis of case-insensitive support
in XFS:
1. A comparison result enumerated type: xfs_dacmp. It represents an
exact match, case-insensitive match or no match at all. This patch
only implements different and exact results.
2. xfs_nameops vector for specifying how to perform the hash generation
of filenames and comparision methods. In this patch the hash vector
points to the existing xfs_da_hashname function and the comparison
method does a length compare, and if the same, does a memcmp and
return the xfs_dacmp result.
All filename functions that use the hash (create, lookup remove, rename,
etc) now use the xfs_nameops.hashname function and all directory lookup
functions also use the xfs_nameops.compname function.
The lookup functions also handle case-insensitive results even though the
default comparison function cannot return that. And important aspect of
the lookup functions is that an exact match always has precedence over a
case-insensitive. So while a case-insensitive match is found, we have to
keep looking just in case there is an exact match. In the meantime, the
info for the first case-insensitive match is retained if no exact match is
found.
SGI-PV: 981519
SGI-Modid: xfs-linux-melb:xfs-kern:31205a
Signed-off-by: Barry Naujok <bnaujok@sgi.com>
Signed-off-by: Christoph Hellwig <hch@infradead.org>
|
|
SGI-PV: 976035
SGI-Modid: xfs-linux-melb:xfs-kern:30834a
Signed-off-by: Barry Naujok <bnaujok@sgi.com>
Signed-off-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Lachlan McIlroy <lachlan@sgi.com>
|
|
remove beX_add functions and replace all uses with beX_add_cpu
Signed-off-by: Marcin Slusarz <marcin.slusarz@gmail.com>
Cc: Mark Fasheh <mark.fasheh@oracle.com>
Reviewed-by: Dave Chinner <dgc@sgi.com>
Cc: Timothy Shimmin <tes@sgi.com>
Cc: <linux-ext4@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
One of the perpetual scaling problems XFS has is indexing it's incore
inodes. We currently uses hashes and the default hash sizes chosen can
only ever be a tradeoff between memory consumption and the maximum
realistic size of the cache.
As a result, anyone who has millions of inodes cached on a filesystem
needs to tunes the size of the cache via the ihashsize mount option to
allow decent scalability with inode cache operations.
A further problem is the separate inode cluster hash, whose size is based
on the ihashsize but is smaller, and so under certain conditions (sparse
cluster cache population) this can become a limitation long before the
inode hash is causing issues.
The following patchset removes the inode hash and cluster hash and
replaces them with radix trees to avoid the scalability limitations of the
hashes. It also reduces the size of the inodes by 3 pointers....
SGI-PV: 969561
SGI-Modid: xfs-linux-melb:xfs-kern:29481a
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Tim Shimmin <tes@sgi.com>
|
|
SGI-PV: 966505
SGI-Modid: xfs-linux-melb:xfs-kern:28947a
Signed-off-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Tim Shimmin <tes@sgi.com>
|
|
Patch provided by Eric Sandeen.
SGI-PV: 961694
SGI-Modid: xfs-linux-melb:xfs-kern:28204a
Signed-off-by: Eric Sandeen <sandeen@sandeen.net>
Signed-off-by: Lachlan McIlroy <lachlan@sgi.com>
Signed-off-by: Tim Shimmin <tes@sgi.com>
|
|
pure bloat.
SGI-PV: 952969
SGI-Modid: xfs-linux-melb:xfs-kern:26251a
Signed-off-by: Nathan Scott <nathans@sgi.com>
|
|
getting decremented by 1. Since nused never reaches 0, the "if
(!free->hdr.nused)" check in xfs_dir2_leafn_remove() fails every time and
xfs_dir2_shrink_inode() doesn't get called when it should. This causes
extra blocks to be left on an empty directory and the directory in unable
to be converted back to inline extent mode.
SGI-PV: 951958
SGI-Modid: xfs-linux-melb:xfs-kern:211382a
Signed-off-by: Mandy Kirkconnell <alkirkco@sgi.com>
Signed-off-by: Nathan Scott <nathans@sgi.com>
|
|
SGI-PV: 904196
SGI-Modid: xfs-linux-melb:xfs-kern:26097a
Signed-off-by: Nathan Scott <nathans@sgi.com>
|
|
SGI-PV: 943272
SGI-Modid: xfs-linux-melb:xfs-kern:25806a
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Nathan Scott <nathans@sgi.com>
|
|
these typos.
SGI-PV: 904196
SGI-Modid: xfs-linux-melb:xfs-kern:25539a
Signed-off-by: Nathan Scott <nathans@sgi.com>
|
|
SGI-PV: 943272
SGI-Modid: xfs-linux-melb:xfs-kern:25495a
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Nathan Scott <nathans@sgi.com>
|