Age | Commit message (Collapse) | Author |
|
Note: this changes the on-disk remote attribute format. I assert
that this is OK to do as CRCs are marked experimental and the first
kernel it is included in has not yet reached release yet. Further,
the userspace utilities are still evolving and so anyone using this
stuff right now is a developer or tester using volatile filesystems
for testing this feature. Hence changing the format right now to
save longer term pain is the right thing to do.
The fundamental change is to move from a header per extent in the
attribute to a header per filesytem block in the attribute. This
means there are more header blocks and the parsing of the attribute
data is slightly more complex, but it has the advantage that we
always know the size of the attribute on disk based on the length of
the data it contains.
This is where the header-per-extent method has problems. We don't
know the size of the attribute on disk without first knowing how
many extents are used to hold it. And we can't tell from a
mapping lookup, either, because remote attributes can be allocated
contiguously with other attribute blocks and so there is no obvious
way of determining the actual size of the atribute on disk short of
walking and mapping buffers.
The problem with this approach is that if we map a buffer
incorrectly (e.g. we make the last buffer for the attribute data too
long), we then get buffer cache lookup failure when we map it
correctly. i.e. we get a size mismatch on lookup. This is not
necessarily fatal, but it's a cache coherency problem that can lead
to returning the wrong data to userspace or writing the wrong data
to disk. And debug kernels will assert fail if this occurs.
I found lots of niggly little problems trying to fix this issue on a
4k block size filesystem, finally getting it to pass with lots of
fixes. The thing is, 1024 byte filesystems still failed, and it was
getting really complex handling all the corner cases that were
showing up. And there were clearly more that I hadn't found yet.
It is complex, fragile code, and if we don't fix it now, it will be
complex, fragile code forever more.
Hence the simple fix is to add a header to each filesystem block.
This gives us the same relationship between the attribute data
length and the number of blocks on disk as we have without CRCs -
it's a linear mapping and doesn't require us to guess anything. It
is simple to implement, too - the remote block count calculated at
lookup time can be used by the remote attribute set/get/remove code
without modification for both CRC and non-CRC filesystems. The world
becomes sane again.
Because the copy-in and copy-out now need to iterate over each
filesystem block, I moved them into helper functions so we separate
the block mapping and buffer manupulations from the attribute data
and CRC header manipulations. The code becomes much clearer as a
result, and it is a lot easier to understand and debug. It also
appears to be much more robust - once it worked on 4k block size
filesystems, it has worked without failure on 1k block size
filesystems, too.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
(cherry picked from commit ad1858d77771172e08016890f0eb2faedec3ecee)
|
|
Add buffer types to the buffer log items so that log recovery can
validate the buffers and calculate CRCs correctly after the buffers
are recovered.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
There are two ways of doing this - the first is to add a CRC to the
remote attribute entry in the attribute block. The second is to
treat them similar to the remote symlink, where each fragment has
it's own header and identifies fragment location in the attribute.
The problem with the CRC in the remote attr entry is that we cannot
identify the owner of the metadata from the metadata blocks
themselves, or where the blocks fit into the remote attribute. The
down side to this approach is that we never know when the attribute
has been read from disk or not and so we have to verify it every
time it is read, and we must calculate it during the create
transaction and log it. We do not log CRCs for any other metadata,
and so this creates a unique set of coherency problems that, in
general, are best avoided.
Adding an identifying header to each allocated block allows us to
identify each fragment and where in the attribute it is located. It
enables us to rebuild the remote attribute from just the raw blocks
containing the attribute. It also provides us to do per-block CRCs
verification at IO time rather than during the transaction context
that creates it or every time it is read into a user buffer. Hence
it avoids all the problems that an external, logged CRC has, and
provides all the benefits of self identifying metadata.
The only complexity is that we have to add a header per fragment,
and we don't know how many fragments will be needed prior to
allocations. If we take the symlink example, the header is 56 bytes
and hence for a 4k block size filesystem, in the worst case 16
headers requires 1 extra block for the 64k attribute data. For 512
byte filesystems the worst case is an extra block for every 9
fragments (i.e. 16 extra blocks in the worse case). This will be
very rare and so it's not really a major concern.
Because allocation is done in two steps - the first finds a hole
large enough in the attribute file, the second does the allocation -
we only need to find a hole big enough for a worst case allocation.
We only need to allocate enough extra blocks for number of headers
required by the fragments, and we can calculate that as we go....
Hence it really only makes sense to use the same model as for
symlinks - it doesn't add that much complexity, does not require an
attribute tree format change, and does not require logging
calculated CRC values.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
Adding CRC support to remote attributes adds a significant amount of
remote attribute specific code. Split the existing remote attribute
code out into it's own file so that all the relevant remote
attribute code is in a single, easy to find place.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|