Age | Commit message (Collapse) | Author |
|
Provide a stub nfs_fscache_wait_on_invalidate() function for when
CONFIG_NFS_FSCACHE=n lest the following error appear:
fs/nfs/inode.c: In function 'nfs_invalidate_mapping':
fs/nfs/inode.c:887:2: error: implicit declaration of function 'nfs_fscache_wait_on_invalidate' [-Werror=implicit-function-declaration]
cc1: some warnings being treated as errors
Reported-by: kbuild test robot <fengguang.wu@intel.com>
Reported-by: Vineet Gupta <Vineet.Gupta1@synopsys.com>
Reported-by: Borislav Petkov <bp@alien8.de>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Use the new FS-Cache invalidation facility from NFS to deal with foreign
changes being detected on the server rather than attempting to retire the old
cookie and get a new one.
The problem with the old method was that NFS did not wait for all outstanding
storage and retrieval ops on the cache to complete. There was no automatic
wait between the calls to ->readpages() and calls to invalidate_inode_pages2()
as the latter can only wait on locked pages that have been added to the
pagecache (which they haven't yet on entry to ->readpages()).
This was leading to oopses like the one below when an outstanding read got cut
off from its cookie by a premature release.
BUG: unable to handle kernel NULL pointer dereference at 00000000000000a8
IP: [<ffffffffa0075118>] __fscache_read_or_alloc_pages+0x1dd/0x315 [fscache]
PGD 15889067 PUD 15890067 PMD 0
Oops: 0000 [#1] SMP
CPU 0
Modules linked in: cachefiles nfs fscache auth_rpcgss nfs_acl lockd sunrpc
Pid: 4544, comm: tar Not tainted 3.1.0-rc4-fsdevel+ #1064 /DG965RY
RIP: 0010:[<ffffffffa0075118>] [<ffffffffa0075118>] __fscache_read_or_alloc_pages+0x1dd/0x315 [fscache]
RSP: 0018:ffff8800158799e8 EFLAGS: 00010246
RAX: 0000000000000000 RBX: ffff8800070d41e0 RCX: ffff8800083dc1b0
RDX: 0000000000000000 RSI: ffff880015879960 RDI: ffff88003e627b90
RBP: ffff880015879a28 R08: 0000000000000002 R09: 0000000000000002
R10: 0000000000000001 R11: ffff880015879950 R12: ffff880015879aa4
R13: 0000000000000000 R14: ffff8800083dc158 R15: ffff880015879be8
FS: 00007f671e9d87c0(0000) GS:ffff88003bc00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b
CR2: 00000000000000a8 CR3: 000000001587f000 CR4: 00000000000006f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400
Process tar (pid: 4544, threadinfo ffff880015878000, task ffff880015875040)
Stack:
ffffffffa00b1759 ffff8800070dc158 ffff8800000213da ffff88002a286508
ffff880015879aa4 ffff880015879be8 0000000000000001 ffff88002a2866e8
ffff880015879a88 ffffffffa00b20be 00000000000200da ffff880015875040
Call Trace:
[<ffffffffa00b1759>] ? nfs_fscache_wait_bit+0xd/0xd [nfs]
[<ffffffffa00b20be>] __nfs_readpages_from_fscache+0x7e/0x13f [nfs]
[<ffffffff81095fe7>] ? __alloc_pages_nodemask+0x156/0x662
[<ffffffffa0098763>] nfs_readpages+0xee/0x187 [nfs]
[<ffffffff81098a5e>] __do_page_cache_readahead+0x1be/0x267
[<ffffffff81098942>] ? __do_page_cache_readahead+0xa2/0x267
[<ffffffff81098d7b>] ra_submit+0x1c/0x20
[<ffffffff8109900a>] ondemand_readahead+0x28b/0x29a
[<ffffffff810990ce>] page_cache_sync_readahead+0x38/0x3a
[<ffffffff81091d8a>] generic_file_aio_read+0x2ab/0x67e
[<ffffffffa008cfbe>] nfs_file_read+0xa4/0xc9 [nfs]
[<ffffffff810c22c4>] do_sync_read+0xba/0xfa
[<ffffffff810a62c9>] ? might_fault+0x4e/0x9e
[<ffffffff81177a47>] ? security_file_permission+0x7b/0x84
[<ffffffff810c25dd>] ? rw_verify_area+0xab/0xc8
[<ffffffff810c29a4>] vfs_read+0xaa/0x13a
[<ffffffff810c2a79>] sys_read+0x45/0x6c
[<ffffffff813ac37b>] system_call_fastpath+0x16/0x1b
Reported-by: Mark Moseley <moseleymark@gmail.com>
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
|
|
I intend on creating a single nfs_fs_mount() function used by all our
mount paths. To avoid checking between new mounts and clone mounts, I
instead pass both structures to a new function in super.c that finds the
cache key and then looks up the super cookie.
Signed-off-by: Bryan Schumaker <bjschuma@netapp.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
|
|
Propagate the NFS 'fsc' mount option through NFS automounts of various types.
This is now required as commit:
commit c02d7adf8c5429727a98bad1d039bccad4c61c50
Author: Trond Myklebust <Trond.Myklebust@netapp.com>
Date: Mon Jun 22 15:09:14 2009 -0400
NFSv4: Replace nfs4_path_walk() with VFS path lookup in a private namespace
uses VFS-driven automounting to reach all submounts barring the root, thus
preventing fscaching from being enabled on any submount other than the root.
This patch gets around that by propagating the NFS_OPTION_FSCACHE flag across
automounts. If a uniquifier is supplied to a mount then this is propagated to
all automounts of that mount too.
Signed-off-by: David Howells <dhowells@redhat.com>
[Trond: Fixed up the definition of nfs_fscache_get_super_cookie for the
case of #undef CONFIG_NFS_FSCACHE]
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
|
|
Display the local caching state in /proc/fs/nfsfs/volumes.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
|
|
Store pages from an NFS inode into the cache data storage object associated
with that inode.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
|
|
Read pages from an FS-Cache data storage object representing an inode into an
NFS inode.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
|
|
FS-Cache page management for NFS. This includes hooking the releasing and
invalidation of pages marked with PG_fscache (aka PG_private_2) and waiting for
completion of the write-to-cache flag (PG_fscache_write aka PG_owner_priv_2).
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
|
|
Bind data storage objects in the local cache to NFS inodes.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
|
|
Define and create inode-level cache data storage objects (as managed by
nfs_inode structs).
Each inode-level object is created in a superblock-level index object and is
itself a data storage object into which pages from the inode are stored.
The inode object key is the NFS file handle for the inode.
The inode object is given coherency data to carry in the auxiliary data
permitted by the cache. This is a sequence made up of:
(1) i_mtime from the NFS inode.
(2) i_ctime from the NFS inode.
(3) i_size from the NFS inode.
(4) change_attr from the NFSv4 attribute data.
As the cache is a persistent cache, the auxiliary data is checked when a new
NFS in-memory inode is set up that matches an already existing data storage
object in the cache. If the coherency data is the same, the on-disk object is
retained and used; if not, it is scrapped and a new one created.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
|
|
Define and create superblock-level cache index objects (as managed by
nfs_server structs).
Each superblock object is created in a server level index object and is itself
an index into which inode-level objects are inserted.
Ideally there would be one superblock-level object per server, and the former
would be folded into the latter; however, since the "nosharecache" option
exists this isn't possible.
The superblock object key is a sequence consisting of:
(1) Certain superblock s_flags.
(2) Various connection parameters that serve to distinguish superblocks for
sget().
(3) The volume FSID.
(4) The security flavour.
(5) The uniquifier length.
(6) The uniquifier text. This is normally an empty string, unless the fsc=xyz
mount option was used to explicitly specify a uniquifier.
The key blob is of variable length, depending on the length of (6).
The superblock object is given no coherency data to carry in the auxiliary data
permitted by the cache. It is assumed that the superblock is always coherent.
This patch also adds uniquification handling such that two otherwise identical
superblocks, at least one of which is marked "nosharecache", won't end up
trying to share the on-disk cache. It will be possible to manually provide a
uniquifier through a mount option with a later patch to avoid the error
otherwise produced.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
|
|
Define and create server-level cache index objects (as managed by nfs_client
structs).
Each server object is created in the NFS top-level index object and is itself
an index into which superblock-level objects are inserted.
Ideally there would be one superblock-level object per server, and the former
would be folded into the latter; however, since the "nosharecache" option
exists this isn't possible.
The server object key is a sequence consisting of:
(1) NFS version
(2) Server address family (eg: AF_INET or AF_INET6)
(3) Server port.
(4) Server IP address.
The key blob is of variable length, depending on the length of (4).
The server object is given no coherency data to carry in the auxiliary data
permitted by the cache.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
|
|
Register NFS for caching and retrieve the top-level cache index object cookie.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
|