summaryrefslogtreecommitdiff
path: root/fs/fscache/cookie.c
AgeCommit message (Collapse)Author
2017-01-31fscache: Clear outstanding writes when disabling a cookieDavid Howells
fscache_disable_cookie() needs to clear the outstanding writes on the cookie it's disabling because they cannot be completed after. Without this, fscache_nfs_open_file() gets stuck because it disables the cookie when the file is opened for writing but can't uncache the pages till afterwards - otherwise there's a race between the open routine and anyone who already has it open R/O and is still reading from it. Looking in /proc/pid/stack of the offending process shows: [<ffffffffa0142883>] __fscache_wait_on_page_write+0x82/0x9b [fscache] [<ffffffffa014336e>] __fscache_uncache_all_inode_pages+0x91/0xe1 [fscache] [<ffffffffa01740fa>] nfs_fscache_open_file+0x59/0x9e [nfs] [<ffffffffa01ccf41>] nfs4_file_open+0x17f/0x1b8 [nfsv4] [<ffffffff8117350e>] do_dentry_open+0x16d/0x2b7 [<ffffffff811743ac>] vfs_open+0x5c/0x65 [<ffffffff81184185>] path_openat+0x785/0x8fb [<ffffffff81184343>] do_filp_open+0x48/0x9e [<ffffffff81174710>] do_sys_open+0x13b/0x1cb [<ffffffff811747b9>] SyS_open+0x19/0x1b [<ffffffff81001c44>] do_syscall_64+0x80/0x17a [<ffffffff8165c2da>] return_from_SYSCALL_64+0x0/0x7a [<ffffffffffffffff>] 0xffffffffffffffff Reported-by: Jianhong Yin <jiyin@redhat.com> Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Jeff Layton <jlayton@redhat.com> Acked-by: Steve Dickson <steved@redhat.com> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2015-11-06mm, page_alloc: distinguish between being unable to sleep, unwilling to ↵Mel Gorman
sleep and avoiding waking kswapd __GFP_WAIT has been used to identify atomic context in callers that hold spinlocks or are in interrupts. They are expected to be high priority and have access one of two watermarks lower than "min" which can be referred to as the "atomic reserve". __GFP_HIGH users get access to the first lower watermark and can be called the "high priority reserve". Over time, callers had a requirement to not block when fallback options were available. Some have abused __GFP_WAIT leading to a situation where an optimisitic allocation with a fallback option can access atomic reserves. This patch uses __GFP_ATOMIC to identify callers that are truely atomic, cannot sleep and have no alternative. High priority users continue to use __GFP_HIGH. __GFP_DIRECT_RECLAIM identifies callers that can sleep and are willing to enter direct reclaim. __GFP_KSWAPD_RECLAIM to identify callers that want to wake kswapd for background reclaim. __GFP_WAIT is redefined as a caller that is willing to enter direct reclaim and wake kswapd for background reclaim. This patch then converts a number of sites o __GFP_ATOMIC is used by callers that are high priority and have memory pools for those requests. GFP_ATOMIC uses this flag. o Callers that have a limited mempool to guarantee forward progress clear __GFP_DIRECT_RECLAIM but keep __GFP_KSWAPD_RECLAIM. bio allocations fall into this category where kswapd will still be woken but atomic reserves are not used as there is a one-entry mempool to guarantee progress. o Callers that are checking if they are non-blocking should use the helper gfpflags_allow_blocking() where possible. This is because checking for __GFP_WAIT as was done historically now can trigger false positives. Some exceptions like dm-crypt.c exist where the code intent is clearer if __GFP_DIRECT_RECLAIM is used instead of the helper due to flag manipulations. o Callers that built their own GFP flags instead of starting with GFP_KERNEL and friends now also need to specify __GFP_KSWAPD_RECLAIM. The first key hazard to watch out for is callers that removed __GFP_WAIT and was depending on access to atomic reserves for inconspicuous reasons. In some cases it may be appropriate for them to use __GFP_HIGH. The second key hazard is callers that assembled their own combination of GFP flags instead of starting with something like GFP_KERNEL. They may now wish to specify __GFP_KSWAPD_RECLAIM. It's almost certainly harmless if it's missed in most cases as other activity will wake kswapd. Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Vitaly Wool <vitalywool@gmail.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-04-02FS-Cache: The operation cancellation method needs calling in more placesDavid Howells
Any time an incomplete operation is cancelled, the operation cancellation function needs to be called to clean up. This is currently being passed directly to some of the functions that might want to call it, but not all. Instead, pass the cancellation method pointer to the fscache_operation_init() and have that cache it in the operation struct. Further, plug in a dummy cancellation handler if the caller declines to set one as this allows us to call the function unconditionally (the extra overhead isn't worth bothering about as we don't expect to be calling this typically). The cancellation method must thence be called everywhere the CANCELLED state is set. Note that we call it *before* setting the CANCELLED state such that the method can use the old state value to guide its operation. fscache_do_cancel_retrieval() needs moving higher up in the sources so that the init function can use it now. Without this, the following oops may be seen: FS-Cache: Assertion failed FS-Cache: 3 == 0 is false ------------[ cut here ]------------ kernel BUG at ../fs/fscache/page.c:261! ... RIP: 0010:[<ffffffffa0089c1b>] fscache_release_retrieval_op+0x77/0x100 [<ffffffffa008853d>] fscache_put_operation+0x114/0x2da [<ffffffffa008b8c2>] __fscache_read_or_alloc_pages+0x358/0x3b3 [<ffffffffa00b761f>] __nfs_readpages_from_fscache+0x59/0xbf [nfs] [<ffffffffa00b06c5>] nfs_readpages+0x10c/0x185 [nfs] [<ffffffff81124925>] ? alloc_pages_current+0x119/0x13e [<ffffffff810ee5fd>] ? __page_cache_alloc+0xfb/0x10a [<ffffffff810f87f8>] __do_page_cache_readahead+0x188/0x22c [<ffffffff810f8b3a>] ondemand_readahead+0x29e/0x2af [<ffffffff810f8c92>] page_cache_sync_readahead+0x38/0x3a [<ffffffff810ef337>] generic_file_read_iter+0x1a2/0x55a [<ffffffffa00a9dff>] ? nfs_revalidate_mapping+0xd6/0x288 [nfs] [<ffffffffa00a6a23>] nfs_file_read+0x49/0x70 [nfs] [<ffffffff811363be>] new_sync_read+0x78/0x9c [<ffffffff81137164>] __vfs_read+0x13/0x38 [<ffffffff8113721e>] vfs_read+0x95/0x121 [<ffffffff811372f6>] SyS_read+0x4c/0x8a [<ffffffff81557a52>] system_call_fastpath+0x12/0x17 The assertion is showing that the remaining number of pages (n_pages) is not 0 when the operation is being released. Signed-off-by: David Howells <dhowells@redhat.com> Reviewed-by: Steve Dickson <steved@redhat.com> Acked-by: Jeff Layton <jeff.layton@primarydata.com>
2015-04-02FS-Cache: fscache_object_is_dead() has wrong logic, kill itDavid Howells
fscache_object_is_dead() returns true only if the object is marked dead and the cache got an I/O error. This should be a logical OR instead. Since two of the callers got split up into handling for separate subcases, expand the other callers and kill the function. This is probably the right thing to do anyway since one of the subcases isn't about the object at all, but rather about the cache. Signed-off-by: David Howells <dhowells@redhat.com> Reviewed-by: Steve Dickson <steved@redhat.com> Acked-by: Jeff Layton <jeff.layton@primarydata.com>
2014-07-16sched: Remove proliferation of wait_on_bit() action functionsNeilBrown
The current "wait_on_bit" interface requires an 'action' function to be provided which does the actual waiting. There are over 20 such functions, many of them identical. Most cases can be satisfied by one of just two functions, one which uses io_schedule() and one which just uses schedule(). So: Rename wait_on_bit and wait_on_bit_lock to wait_on_bit_action and wait_on_bit_lock_action to make it explicit that they need an action function. Introduce new wait_on_bit{,_lock} and wait_on_bit{,_lock}_io which are *not* given an action function but implicitly use a standard one. The decision to error-out if a signal is pending is now made based on the 'mode' argument rather than being encoded in the action function. All instances of the old wait_on_bit and wait_on_bit_lock which can use the new version have been changed accordingly and their action functions have been discarded. wait_on_bit{_lock} does not return any specific error code in the event of a signal so the caller must check for non-zero and interpolate their own error code as appropriate. The wait_on_bit() call in __fscache_wait_on_invalidate() was ambiguous as it specified TASK_UNINTERRUPTIBLE but used fscache_wait_bit_interruptible as an action function. David Howells confirms this should be uniformly "uninterruptible" The main remaining user of wait_on_bit{,_lock}_action is NFS which needs to use a freezer-aware schedule() call. A comment in fs/gfs2/glock.c notes that having multiple 'action' functions is useful as they display differently in the 'wchan' field of 'ps'. (and /proc/$PID/wchan). As the new bit_wait{,_io} functions are tagged "__sched", they will not show up at all, but something higher in the stack. So the distinction will still be visible, only with different function names (gds2_glock_wait versus gfs2_glock_dq_wait in the gfs2/glock.c case). Since first version of this patch (against 3.15) two new action functions appeared, on in NFS and one in CIFS. CIFS also now uses an action function that makes the same freezer aware schedule call as NFS. Signed-off-by: NeilBrown <neilb@suse.de> Acked-by: David Howells <dhowells@redhat.com> (fscache, keys) Acked-by: Steven Whitehouse <swhiteho@redhat.com> (gfs2) Acked-by: Peter Zijlstra <peterz@infradead.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Steve French <sfrench@samba.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Link: http://lkml.kernel.org/r/20140707051603.28027.72349.stgit@notabene.brown Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-06-04fs/fscache: convert printk to pr_foo()Fabian Frederick
All printk converted to pr_foo() except internal.h: printk(KERN_DEBUG Coalesce formats. Add pr_fmt Signed-off-by: Fabian Frederick <fabf@skynet.be> Cc: David Howells <dhowells@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-27FS-Cache: Provide the ability to enable/disable cookiesDavid Howells
Provide the ability to enable and disable fscache cookies. A disabled cookie will reject or ignore further requests to: Acquire a child cookie Invalidate and update backing objects Check the consistency of a backing object Allocate storage for backing page Read backing pages Write to backing pages but still allows: Checks/waits on the completion of already in-progress objects Uncaching of pages Relinquishment of cookies Two new operations are provided: (1) Disable a cookie: void fscache_disable_cookie(struct fscache_cookie *cookie, bool invalidate); If the cookie is not already disabled, this locks the cookie against other dis/enablement ops, marks the cookie as being disabled, discards or invalidates any backing objects and waits for cessation of activity on any associated object. This is a wrapper around a chunk split out of fscache_relinquish_cookie(), but it reinitialises the cookie such that it can be reenabled. All possible failures are handled internally. The caller should consider calling fscache_uncache_all_inode_pages() afterwards to make sure all page markings are cleared up. (2) Enable a cookie: void fscache_enable_cookie(struct fscache_cookie *cookie, bool (*can_enable)(void *data), void *data) If the cookie is not already enabled, this locks the cookie against other dis/enablement ops, invokes can_enable() and, if the cookie is not an index cookie, will begin the procedure of acquiring backing objects. The optional can_enable() function is passed the data argument and returns a ruling as to whether or not enablement should actually be permitted to begin. All possible failures are handled internally. The cookie will only be marked as enabled if provisional backing objects are allocated. A later patch will introduce these to NFS. Cookie enablement during nfs_open() is then contingent on i_writecount <= 0. can_enable() checks for a race between open(O_RDONLY) and open(O_WRONLY/O_RDWR). This simplifies NFS's cookie handling and allows us to get rid of open(O_RDONLY) accidentally introducing caching to an inode that's open for writing already. One operation has its API modified: (3) Acquire a cookie. struct fscache_cookie *fscache_acquire_cookie( struct fscache_cookie *parent, const struct fscache_cookie_def *def, void *netfs_data, bool enable); This now has an additional argument that indicates whether the requested cookie should be enabled by default. It doesn't need the can_enable() function because the caller must prevent multiple calls for the same netfs object and it doesn't need to take the enablement lock because no one else can get at the cookie before this returns. Signed-off-by: David Howells <dhowells@redhat.com
2013-09-27FS-Cache: Add use/unuse/wake cookie wrappersDavid Howells
Add wrapper functions for dealing with cookie->n_active: (*) __fscache_use_cookie() to increment it. (*) __fscache_unuse_cookie() to decrement and test against zero. (*) __fscache_wake_unused_cookie() to wake up anyone waiting for it to reach zero. The second and third are split so that the third can be done after cookie->lock has been released in case the waiter wakes up whilst we're still holding it and tries to get it. We will need to wake-on-zero once the cookie disablement patch is applied because it will then be possible to see n_active become zero without the cookie being relinquished. Also move the cookie usement out of fscache_attr_changed_op() and into fscache_attr_changed() and the operation struct so that cookie disablement will be able to track it. Whilst we're at it, only increment n_active if we're about to do fscache_submit_op() so that we don't have to deal with undoing it if anything earlier fails. Possibly this should be moved into fscache_submit_op() which could look at FSCACHE_OP_UNUSE_COOKIE. Signed-off-by: David Howells <dhowells@redhat.com>
2013-09-10fscache: check consistency does not decrement refcountMilosz Tanski
__fscache_check_consistency() does not decrement the count of operations active after it finishes in the success case. This leads to a hung tasks on cookie de-registration (commonly in inode eviction). INFO: task kworker/1:2:4214 blocked for more than 120 seconds. kworker/1:2 D ffff880443513fc0 0 4214 2 0x00000000 Workqueue: ceph-msgr con_work [libceph] ... Call Trace: [<ffffffff81569fc6>] ? _raw_spin_unlock_irqrestore+0x16/0x20 [<ffffffffa0016570>] ? fscache_wait_bit_interruptible+0x30/0x30 [fscache] [<ffffffff81568d09>] schedule+0x29/0x70 [<ffffffffa001657e>] fscache_wait_atomic_t+0xe/0x20 [fscache] [<ffffffff815665cf>] out_of_line_wait_on_atomic_t+0x9f/0xe0 [<ffffffff81083560>] ? autoremove_wake_function+0x40/0x40 [<ffffffffa0015a9c>] __fscache_relinquish_cookie+0x15c/0x310 [fscache] [<ffffffffa00a4fae>] ceph_fscache_unregister_inode_cookie+0x3e/0x50 [ceph] [<ffffffffa007e373>] ceph_destroy_inode+0x33/0x200 [ceph] [<ffffffff811c13ae>] ? __fsnotify_inode_delete+0xe/0x10 [<ffffffff8119ba1c>] destroy_inode+0x3c/0x70 [<ffffffff8119bb69>] evict+0x119/0x1b0 Signed-off-by: Milosz Tanski <milosz@adfin.com> Acked-by: David Howells <dhowells@redhat.com> Signed-off-by: Sage Weil <sage@inktank.com>
2013-09-06FS-Cache: Add interface to check consistency of a cached objectDavid Howells
Extend the fscache netfs API so that the netfs can ask as to whether a cache object is up to date with respect to its corresponding netfs object: int fscache_check_consistency(struct fscache_cookie *cookie) This will call back to the netfs to check whether the auxiliary data associated with a cookie is correct. It returns 0 if it is and -ESTALE if it isn't; it may also return -ENOMEM and -ERESTARTSYS. The backends now have to implement a mandatory operation pointer: int (*check_consistency)(struct fscache_object *object) that corresponds to the above API call. FS-Cache takes care of pinning the object and the cookie in memory and managing this call with respect to the object state. Original-author: Hongyi Jia <jiayisuse@gmail.com> Signed-off-by: David Howells <dhowells@redhat.com> cc: Hongyi Jia <jiayisuse@gmail.com> cc: Milosz Tanski <milosz@adfin.com>
2013-06-19FS-Cache: Simplify cookie retention for fscache_objects, fixing oopsDavid Howells
Simplify the way fscache cache objects retain their cookie. The way I implemented the cookie storage handling made synchronisation a pain (ie. the object state machine can't rely on the cookie actually still being there). Instead of the the object being detached from the cookie and the cookie being freed in __fscache_relinquish_cookie(), we defer both operations: (*) The detachment of the object from the list in the cookie now takes place in fscache_drop_object() and is thus governed by the object state machine (fscache_detach_from_cookie() has been removed). (*) The release of the cookie is now in fscache_object_destroy() - which is called by the cache backend just before it frees the object. This means that the fscache_cookie struct is now available to the cache all the way through from ->alloc_object() to ->drop_object() and ->put_object() - meaning that it's no longer necessary to take object->lock to guarantee access. However, __fscache_relinquish_cookie() doesn't wait for the object to go all the way through to destruction before letting the netfs proceed. That would massively slow down the netfs. Since __fscache_relinquish_cookie() leaves the cookie around, in must therefore break all attachments to the netfs - which includes ->def, ->netfs_data and any outstanding page read/writes. To handle this, struct fscache_cookie now has an n_active counter: (1) This starts off initialised to 1. (2) Any time the cache needs to get at the netfs data, it calls fscache_use_cookie() to increment it - if it is not zero. If it was zero, then access is not permitted. (3) When the cache has finished with the data, it calls fscache_unuse_cookie() to decrement it. This does a wake-up on it if it reaches 0. (4) __fscache_relinquish_cookie() decrements n_active and then waits for it to reach 0. The initialisation to 1 in step (1) ensures that we only get wake ups when we're trying to get rid of the cookie. This leaves __fscache_relinquish_cookie() a lot simpler. *** This fixes a problem in the current code whereby if fscache_invalidate() is followed sufficiently quickly by fscache_relinquish_cookie() then it is possible for __fscache_relinquish_cookie() to have detached the cookie from the object and cleared the pointer before a thread is dispatched to process the invalidation state in the object state machine. Since the pending write clearance was deferred to the invalidation state to make it asynchronous, we need to either wait in relinquishment for the stores tree to be cleared in the invalidation state or we need to handle the clearance in relinquishment. Further, if the relinquishment code does clear the tree, then the invalidation state need to make the clearance contingent on still having the cookie to hand (since that's where the tree is rooted) and we have to prevent the cookie from disappearing for the duration. This can lead to an oops like the following: BUG: unable to handle kernel NULL pointer dereference at 000000000000000c ... RIP: 0010:[<ffffffff8151023e>] _spin_lock+0xe/0x30 ... CR2: 000000000000000c ... ... Process kslowd002 (...) .... Call Trace: [<ffffffffa01c3278>] fscache_invalidate_writes+0x38/0xd0 [fscache] [<ffffffff810096f0>] ? __switch_to+0xd0/0x320 [<ffffffff8105e759>] ? find_busiest_queue+0x69/0x150 [<ffffffff8110ddd4>] ? slow_work_enqueue+0x104/0x180 [<ffffffffa01c1303>] fscache_object_slow_work_execute+0x5e3/0x9d0 [fscache] [<ffffffff81096b67>] ? bit_waitqueue+0x17/0xd0 [<ffffffff8110e233>] slow_work_execute+0x233/0x310 [<ffffffff8110e515>] slow_work_thread+0x205/0x360 [<ffffffff81096ca0>] ? autoremove_wake_function+0x0/0x40 [<ffffffff8110e310>] ? slow_work_thread+0x0/0x360 [<ffffffff81096936>] kthread+0x96/0xa0 [<ffffffff8100c0ca>] child_rip+0xa/0x20 [<ffffffff810968a0>] ? kthread+0x0/0xa0 [<ffffffff8100c0c0>] ? child_rip+0x0/0x20 The parameter to fscache_invalidate_writes() was object->cookie which is NULL. Signed-off-by: David Howells <dhowells@redhat.com> Tested-By: Milosz Tanski <milosz@adfin.com> Acked-by: Jeff Layton <jlayton@redhat.com>
2013-06-19FS-Cache: Fix object state machine to have separate work and wait statesDavid Howells
Fix object state machine to have separate work and wait states as that makes it easier to envision. There are now three kinds of state: (1) Work state. This is an execution state. No event processing is performed by a work state. The function attached to a work state returns a pointer indicating the next state to which the OSM should transition. Returning NO_TRANSIT repeats the current state, but goes back to the scheduler first. (2) Wait state. This is an event processing state. No execution is performed by a wait state. Wait states are just tables of "if event X occurs, clear it and transition to state Y". The dispatcher returns to the scheduler if none of the events in which the wait state has an interest are currently pending. (3) Out-of-band state. This is a special work state. Transitions to normal states can be overridden when an unexpected event occurs (eg. I/O error). Instead the dispatcher disables and clears the OOB event and transits to the specified work state. This then acts as an ordinary work state, though object->state points to the overridden destination. Returning NO_TRANSIT resumes the overridden transition. In addition, the states have names in their definitions, so there's no need for tables of state names. Further, the EV_REQUEUE event is no longer necessary as that is automatic for work states. Since the states are now separate structs rather than values in an enum, it's not possible to use comparisons other than (non-)equality between them, so use some object->flags to indicate what phase an object is in. The EV_RELEASE, EV_RETIRE and EV_WITHDRAW events have been squished into one (EV_KILL). An object flag now carries the information about retirement. Similarly, the RELEASING, RECYCLING and WITHDRAWING states have been merged into an KILL_OBJECT state and additional states have been added for handling waiting dependent objects (JUMPSTART_DEPS and KILL_DEPENDENTS). A state has also been added for synchronising with parent object initialisation (WAIT_FOR_PARENT) and another for initiating look up (PARENT_READY). Signed-off-by: David Howells <dhowells@redhat.com> Tested-By: Milosz Tanski <milosz@adfin.com> Acked-by: Jeff Layton <jlayton@redhat.com>
2013-06-19FS-Cache: Wrap checks on object stateDavid Howells
Wrap checks on object state (mostly outside of fs/fscache/object.c) with inline functions so that the mechanism can be replaced. Some of the state checks within object.c are left as-is as they will be replaced. Signed-off-by: David Howells <dhowells@redhat.com> Tested-By: Milosz Tanski <milosz@adfin.com> Acked-by: Jeff Layton <jlayton@redhat.com>
2013-02-27hlist: drop the node parameter from iteratorsSasha Levin
I'm not sure why, but the hlist for each entry iterators were conceived list_for_each_entry(pos, head, member) The hlist ones were greedy and wanted an extra parameter: hlist_for_each_entry(tpos, pos, head, member) Why did they need an extra pos parameter? I'm not quite sure. Not only they don't really need it, it also prevents the iterator from looking exactly like the list iterator, which is unfortunate. Besides the semantic patch, there was some manual work required: - Fix up the actual hlist iterators in linux/list.h - Fix up the declaration of other iterators based on the hlist ones. - A very small amount of places were using the 'node' parameter, this was modified to use 'obj->member' instead. - Coccinelle didn't handle the hlist_for_each_entry_safe iterator properly, so those had to be fixed up manually. The semantic patch which is mostly the work of Peter Senna Tschudin is here: @@ iterator name hlist_for_each_entry, hlist_for_each_entry_continue, hlist_for_each_entry_from, hlist_for_each_entry_rcu, hlist_for_each_entry_rcu_bh, hlist_for_each_entry_continue_rcu_bh, for_each_busy_worker, ax25_uid_for_each, ax25_for_each, inet_bind_bucket_for_each, sctp_for_each_hentry, sk_for_each, sk_for_each_rcu, sk_for_each_from, sk_for_each_safe, sk_for_each_bound, hlist_for_each_entry_safe, hlist_for_each_entry_continue_rcu, nr_neigh_for_each, nr_neigh_for_each_safe, nr_node_for_each, nr_node_for_each_safe, for_each_gfn_indirect_valid_sp, for_each_gfn_sp, for_each_host; type T; expression a,c,d,e; identifier b; statement S; @@ -T b; <+... when != b ( hlist_for_each_entry(a, - b, c, d) S | hlist_for_each_entry_continue(a, - b, c) S | hlist_for_each_entry_from(a, - b, c) S | hlist_for_each_entry_rcu(a, - b, c, d) S | hlist_for_each_entry_rcu_bh(a, - b, c, d) S | hlist_for_each_entry_continue_rcu_bh(a, - b, c) S | for_each_busy_worker(a, c, - b, d) S | ax25_uid_for_each(a, - b, c) S | ax25_for_each(a, - b, c) S | inet_bind_bucket_for_each(a, - b, c) S | sctp_for_each_hentry(a, - b, c) S | sk_for_each(a, - b, c) S | sk_for_each_rcu(a, - b, c) S | sk_for_each_from -(a, b) +(a) S + sk_for_each_from(a) S | sk_for_each_safe(a, - b, c, d) S | sk_for_each_bound(a, - b, c) S | hlist_for_each_entry_safe(a, - b, c, d, e) S | hlist_for_each_entry_continue_rcu(a, - b, c) S | nr_neigh_for_each(a, - b, c) S | nr_neigh_for_each_safe(a, - b, c, d) S | nr_node_for_each(a, - b, c) S | nr_node_for_each_safe(a, - b, c, d) S | - for_each_gfn_sp(a, c, d, b) S + for_each_gfn_sp(a, c, d) S | - for_each_gfn_indirect_valid_sp(a, c, d, b) S + for_each_gfn_indirect_valid_sp(a, c, d) S | for_each_host(a, - b, c) S | for_each_host_safe(a, - b, c, d) S | for_each_mesh_entry(a, - b, c, d) S ) ...+> [akpm@linux-foundation.org: drop bogus change from net/ipv4/raw.c] [akpm@linux-foundation.org: drop bogus hunk from net/ipv6/raw.c] [akpm@linux-foundation.org: checkpatch fixes] [akpm@linux-foundation.org: fix warnings] [akpm@linux-foudnation.org: redo intrusive kvm changes] Tested-by: Peter Senna Tschudin <peter.senna@gmail.com> Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Sasha Levin <sasha.levin@oracle.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Gleb Natapov <gleb@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-20FS-Cache: Provide proper invalidationDavid Howells
Provide a proper invalidation method rather than relying on the netfs retiring the cookie it has and getting a new one. The problem with this is that isn't easy for the netfs to make sure that it has completed/cancelled all its outstanding storage and retrieval operations on the cookie it is retiring. Instead, have the cache provide an invalidation method that will cancel or wait for all currently outstanding operations before invalidating the cache, and will cause new operations to queue up behind that. Whilst invalidation is in progress, some requests will be rejected until the cache can stack a barrier on the operation queue to cause new operations to be deferred behind it. Signed-off-by: David Howells <dhowells@redhat.com>
2012-12-20FS-Cache: Make cookie relinquishment wait for outstanding readsDavid Howells
Make fscache_relinquish_cookie() log a warning and wait if there are any outstanding reads left on the cookie it was given. Signed-off-by: David Howells <dhowells@redhat.com>
2012-12-20FS-Cache: Check that there are no read ops when cookie relinquishedDavid Howells
Check that the netfs isn't trying to relinquish a cookie that still has read operations in progress upon it. If there are, then give log a warning and BUG. Signed-off-by: David Howells <dhowells@redhat.com>
2009-11-19FS-Cache: Add a retirement stat counterDavid Howells
Add a stat counter to count retirement events rather than ordinary release events (the retire argument to fscache_relinquish_cookie()). Signed-off-by: David Howells <dhowells@redhat.com>
2009-11-19FS-Cache: Fix lock misorder in fscache_write_op()David Howells
FS-Cache has two structs internally for keeping track of the internal state of a cached file: the fscache_cookie struct, which represents the netfs's state, and fscache_object struct, which represents the cache's state. Each has a pointer that points to the other (when both are in existence), and each has a spinlock for pointer maintenance. Since netfs operations approach these structures from the cookie side, they get the cookie lock first, then the object lock. Cache operations, on the other hand, approach from the object side, and get the object lock first. It is not then permitted for a cache operation to get the cookie lock whilst it is holding the object lock lest deadlock occur; instead, it must do one of two things: (1) increment the cookie usage counter, drop the object lock and then get both locks in order, or (2) simply hold the object lock as certain parts of the cookie may not be altered whilst the object lock is held. It is also not permitted to follow either pointer without holding the lock at the end you start with. To break the pointers between the cookie and the object, both locks must be held. fscache_write_op(), however, violates the locking rules: It attempts to get the cookie lock without (a) checking that the cookie pointer is a valid pointer, and (b) holding the object lock to protect the cookie pointer whilst it follows it. This is so that it can access the pending page store tree without interference from __fscache_write_page(). This is fixed by splitting the cookie lock, such that the page store tracking tree is protected by its own lock, and checking that the cookie pointer is non-NULL before we attempt to follow it whilst holding the object lock. The new lock is subordinate to both the cookie lock and the object lock, and so should be taken after those. Signed-off-by: David Howells <dhowells@redhat.com>
2009-11-19FS-Cache: Use radix tree preload correctly in tracking of pages to be storedDavid Howells
__fscache_write_page() attempts to load the radix tree preallocation pool for the CPU it is on before calling radix_tree_insert(), as the insertion must be done inside a pair of spinlocks. Use of the preallocation pool, however, is contingent on the radix tree being initialised without __GFP_WAIT specified. __fscache_acquire_cookie() was passing GFP_NOFS to INIT_RADIX_TREE() - but that includes __GFP_WAIT. The solution is to AND out __GFP_WAIT. Additionally, the banner comment to radix_tree_preload() is altered to make note of this prerequisite. Possibly there should be a WARN_ON() too. Without this fix, I have seen the following recursive deadlock caused by radix_tree_insert() attempting to allocate memory inside the spinlocked region, which resulted in FS-Cache being called back into to release memory - which required the spinlock already held. ============================================= [ INFO: possible recursive locking detected ] 2.6.32-rc6-cachefs #24 --------------------------------------------- nfsiod/7916 is trying to acquire lock: (&cookie->lock){+.+.-.}, at: [<ffffffffa0076872>] __fscache_uncache_page+0xdb/0x160 [fscache] but task is already holding lock: (&cookie->lock){+.+.-.}, at: [<ffffffffa0076acc>] __fscache_write_page+0x15c/0x3f3 [fscache] other info that might help us debug this: 5 locks held by nfsiod/7916: #0: (nfsiod){+.+.+.}, at: [<ffffffff81048290>] worker_thread+0x19a/0x2e2 #1: (&task->u.tk_work#2){+.+.+.}, at: [<ffffffff81048290>] worker_thread+0x19a/0x2e2 #2: (&cookie->lock){+.+.-.}, at: [<ffffffffa0076acc>] __fscache_write_page+0x15c/0x3f3 [fscache] #3: (&object->lock#2){+.+.-.}, at: [<ffffffffa0076b07>] __fscache_write_page+0x197/0x3f3 [fscache] #4: (&cookie->stores_lock){+.+...}, at: [<ffffffffa0076b0f>] __fscache_write_page+0x19f/0x3f3 [fscache] stack backtrace: Pid: 7916, comm: nfsiod Not tainted 2.6.32-rc6-cachefs #24 Call Trace: [<ffffffff8105ac7f>] __lock_acquire+0x1649/0x16e3 [<ffffffff81059ded>] ? __lock_acquire+0x7b7/0x16e3 [<ffffffff8100e27d>] ? dump_trace+0x248/0x257 [<ffffffff8105ad70>] lock_acquire+0x57/0x6d [<ffffffffa0076872>] ? __fscache_uncache_page+0xdb/0x160 [fscache] [<ffffffff8135467c>] _spin_lock+0x2c/0x3b [<ffffffffa0076872>] ? __fscache_uncache_page+0xdb/0x160 [fscache] [<ffffffffa0076872>] __fscache_uncache_page+0xdb/0x160 [fscache] [<ffffffffa0077eb7>] ? __fscache_check_page_write+0x0/0x71 [fscache] [<ffffffffa00b4755>] nfs_fscache_release_page+0x86/0xc4 [nfs] [<ffffffffa00907f0>] nfs_release_page+0x3c/0x41 [nfs] [<ffffffff81087ffb>] try_to_release_page+0x32/0x3b [<ffffffff81092c2b>] shrink_page_list+0x316/0x4ac [<ffffffff81058a9b>] ? mark_held_locks+0x52/0x70 [<ffffffff8135451b>] ? _spin_unlock_irq+0x2b/0x31 [<ffffffff81093153>] shrink_inactive_list+0x392/0x67c [<ffffffff81058a9b>] ? mark_held_locks+0x52/0x70 [<ffffffff810934ca>] shrink_list+0x8d/0x8f [<ffffffff81093744>] shrink_zone+0x278/0x33c [<ffffffff81052c70>] ? ktime_get_ts+0xad/0xba [<ffffffff8109453b>] try_to_free_pages+0x22e/0x392 [<ffffffff8109184c>] ? isolate_pages_global+0x0/0x212 [<ffffffff8108e16b>] __alloc_pages_nodemask+0x3dc/0x5cf [<ffffffff810ae24a>] cache_alloc_refill+0x34d/0x6c1 [<ffffffff811bcf74>] ? radix_tree_node_alloc+0x52/0x5c [<ffffffff810ae929>] kmem_cache_alloc+0xb2/0x118 [<ffffffff811bcf74>] radix_tree_node_alloc+0x52/0x5c [<ffffffff811bcfd5>] radix_tree_insert+0x57/0x19c [<ffffffffa0076b53>] __fscache_write_page+0x1e3/0x3f3 [fscache] [<ffffffffa00b4248>] __nfs_readpage_to_fscache+0x58/0x11e [nfs] [<ffffffffa009bb77>] nfs_readpage_release+0x34/0x9b [nfs] [<ffffffffa009c0d9>] nfs_readpage_release_full+0x32/0x4b [nfs] [<ffffffffa0006cff>] rpc_release_calldata+0x12/0x14 [sunrpc] [<ffffffffa0006e2d>] rpc_free_task+0x59/0x61 [sunrpc] [<ffffffffa0006f03>] rpc_async_release+0x10/0x12 [sunrpc] [<ffffffff810482e5>] worker_thread+0x1ef/0x2e2 [<ffffffff81048290>] ? worker_thread+0x19a/0x2e2 [<ffffffff81352433>] ? thread_return+0x3e/0x101 [<ffffffffa0006ef3>] ? rpc_async_release+0x0/0x12 [sunrpc] [<ffffffff8104bff5>] ? autoremove_wake_function+0x0/0x34 [<ffffffff81058d25>] ? trace_hardirqs_on+0xd/0xf [<ffffffff810480f6>] ? worker_thread+0x0/0x2e2 [<ffffffff8104bd21>] kthread+0x7a/0x82 [<ffffffff8100beda>] child_rip+0xa/0x20 [<ffffffff8100b87c>] ? restore_args+0x0/0x30 [<ffffffff8104c2b9>] ? add_wait_queue+0x15/0x44 [<ffffffff8104bca7>] ? kthread+0x0/0x82 [<ffffffff8100bed0>] ? child_rip+0x0/0x20 Signed-off-by: David Howells <dhowells@redhat.com>
2009-11-19FS-Cache: Clear netfs pointers in cookie after detaching object, not beforeDavid Howells
Clear the pointers from the fscache_cookie struct to netfs private data after clearing the pointer to the cookie from the fscache_object struct and releasing the object lock, rather than before. This allows the netfs private data pointers to be relied on simply by holding the object lock, rather than having to hold the cookie lock. This is makes things simpler as the cookie lock has to be taken before the object lock, but sometimes the object pointer is all that the code has. Signed-off-by: David Howells <dhowells@redhat.com>
2009-11-19FS-Cache: Add counters for entry/exit to/from cache operation functionsDavid Howells
Count entries to and exits from cache operation table functions. Maintain these as a single counter that's added to or removed from as appropriate. Signed-off-by: David Howells <dhowells@redhat.com>
2009-11-19FS-Cache: Allow the current state of all objects to be dumpedDavid Howells
Allow the current state of all fscache objects to be dumped by doing: cat /proc/fs/fscache/objects By default, all objects and all fields will be shown. This can be restricted by adding a suitable key to one of the caller's keyrings (such as the session keyring): keyctl add user fscache:objlist "<restrictions>" @s The <restrictions> are: K Show hexdump of object key (don't show if not given) A Show hexdump of object aux data (don't show if not given) And paired restrictions: C Show objects that have a cookie c Show objects that don't have a cookie B Show objects that are busy b Show objects that aren't busy W Show objects that have pending writes w Show objects that don't have pending writes R Show objects that have outstanding reads r Show objects that don't have outstanding reads S Show objects that have slow work queued s Show objects that don't have slow work queued If neither side of a restriction pair is given, then both are implied. For example: keyctl add user fscache:objlist KB @s shows objects that are busy, and lists their object keys, but does not dump their auxiliary data. It also implies "CcWwRrSs", but as 'B' is given, 'b' is not implied. Signed-off-by: David Howells <dhowells@redhat.com>
2009-04-03FS-Cache: Implement the cookie management part of the netfs APIDavid Howells
Implement the cookie management part of the FS-Cache netfs client API. The documentation and API header file were added in a previous patch. This patch implements the following three functions: (1) fscache_acquire_cookie(). Acquire a cookie to represent an object to the netfs. If the object in question is a non-index object, then that object and its parent indices will be created on disk at this point if they don't already exist. Index creation is deferred because an index may reside in multiple caches. (2) fscache_relinquish_cookie(). Retire or release a cookie previously acquired. At this point, the object on disk may be destroyed. (3) fscache_update_cookie(). Update the in-cache representation of a cookie. This is used to update the auxiliary data for coherency management purposes. With this patch it is possible to have a netfs instruct a cache backend to look up, validate and create metadata on disk and to destroy it again. The ability to actually store and retrieve data in the objects so created is added in later patches. Note that these functions will never return an error. _All_ errors are handled internally to FS-Cache. The worst that can happen is that fscache_acquire_cookie() may return a NULL pointer - which is considered a negative cookie pointer and can be passed back to any function that takes a cookie without harm. A negative cookie pointer merely suppresses caching at that level. The stub in linux/fscache.h will detect inline the negative cookie pointer and abort the operation as fast as possible. This means that the compiler doesn't have to set up for a call in that case. See the documentation in Documentation/filesystems/caching/netfs-api.txt for more information. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Steve Dickson <steved@redhat.com> Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com> Acked-by: Al Viro <viro@zeniv.linux.org.uk> Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
2009-04-03FS-Cache: Provide a slab for cookie allocationDavid Howells
Provide a slab from which can be allocated the FS-Cache cookies that will be presented to the netfs. Also provide a slab constructor and a function to recursively discard a cookie and its ancestor chain. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Steve Dickson <steved@redhat.com> Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com> Acked-by: Al Viro <viro@zeniv.linux.org.uk> Tested-by: Daire Byrne <Daire.Byrne@framestore.com>