Age | Commit message (Collapse) | Author |
|
git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs
Pull btrfs updates from Chris Mason:
"This pull is dedicated to Josef's enospc rework, which we've been
testing for a few releases now. It fixes some early enospc problems
and is dramatically faster.
This also includes an updated fix for the delalloc accounting that
happens after a fault in copy_from_user. My patch in v4.7 was almost
but not quite enough"
* 'for-linus-4.8' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
Btrfs: fix delalloc accounting after copy_from_user faults
Btrfs: avoid deadlocks during reservations in btrfs_truncate_block
Btrfs: use FLUSH_LIMIT for relocation in reserve_metadata_bytes
Btrfs: fill relocation block rsv after allocation
Btrfs: always use trans->block_rsv for orphans
Btrfs: change how we calculate the global block rsv
Btrfs: use root when checking need_async_flush
Btrfs: don't bother kicking async if there's nothing to reclaim
Btrfs: fix release reserved extents trace points
Btrfs: add fsid to some tracepoints
Btrfs: add tracepoints for flush events
Btrfs: fix delalloc reservation amount tracepoint
Btrfs: trace pinned extents
Btrfs: introduce ticketed enospc infrastructure
Btrfs: add tracepoint for adding block groups
Btrfs: warn_on for unaccounted spaces
Btrfs: change delayed reservation fallback behavior
Btrfs: always reserve metadata for delalloc extents
Btrfs: fix callers of btrfs_block_rsv_migrate
Btrfs: add bytes_readonly to the spaceinfo at once
|
|
Pull core block updates from Jens Axboe:
- the big change is the cleanup from Mike Christie, cleaning up our
uses of command types and modified flags. This is what will throw
some merge conflicts
- regression fix for the above for btrfs, from Vincent
- following up to the above, better packing of struct request from
Christoph
- a 2038 fix for blktrace from Arnd
- a few trivial/spelling fixes from Bart Van Assche
- a front merge check fix from Damien, which could cause issues on
SMR drives
- Atari partition fix from Gabriel
- convert cfq to highres timers, since jiffies isn't granular enough
for some devices these days. From Jan and Jeff
- CFQ priority boost fix idle classes, from me
- cleanup series from Ming, improving our bio/bvec iteration
- a direct issue fix for blk-mq from Omar
- fix for plug merging not involving the IO scheduler, like we do for
other types of merges. From Tahsin
- expose DAX type internally and through sysfs. From Toshi and Yigal
* 'for-4.8/core' of git://git.kernel.dk/linux-block: (76 commits)
block: Fix front merge check
block: do not merge requests without consulting with io scheduler
block: Fix spelling in a source code comment
block: expose QUEUE_FLAG_DAX in sysfs
block: add QUEUE_FLAG_DAX for devices to advertise their DAX support
Btrfs: fix comparison in __btrfs_map_block()
block: atari: Return early for unsupported sector size
Doc: block: Fix a typo in queue-sysfs.txt
cfq-iosched: Charge at least 1 jiffie instead of 1 ns
cfq-iosched: Fix regression in bonnie++ rewrite performance
cfq-iosched: Convert slice_resid from u64 to s64
block: Convert fifo_time from ulong to u64
blktrace: avoid using timespec
block/blk-cgroup.c: Declare local symbols static
block/bio-integrity.c: Add #include "blk.h"
block/partition-generic.c: Remove a set-but-not-used variable
block: bio: kill BIO_MAX_SIZE
cfq-iosched: temporarily boost queue priority for idle classes
block: drbd: avoid to use BIO_MAX_SIZE
block: bio: remove BIO_MAX_SECTORS
...
|
|
So btrfs_block_rsv_migrate just unconditionally calls block_rsv_migrate_bytes.
Not only this but it unconditionally changes the size of the block_rsv. This
isn't a bug strictly speaking, but it makes truncate block rsv's look funny
because every time we migrate bytes over its size grows, even though we only
want it to be a specific size. So collapse this into one function that takes an
update_size argument and make truncate and evict not update the size for
consistency sake. Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs
Pull btrfs fixes part 2 from Chris Mason:
"This has one patch from Omar to bring iterate_shared back to btrfs.
We have a tree of work we queue up for directory items and it doesn't
lend itself well to shared access. While we're cleaning it up, Omar
has changed things to use an exclusive lock when there are delayed
items"
* 'for-linus-4.7-part2' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
Btrfs: fix ->iterate_shared() by upgrading i_rwsem for delayed nodes
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs
Pull btrfs fixes from Chris Mason:
"I have a two part pull this time because one of the patches Dave
Sterba collected needed to be against v4.7-rc2 or higher (we used
rc4). I try to make my for-linus-xx branch testable on top of the
last major so we can hand fixes to people on the list more easily, so
I've split this pull in two.
This first part has some fixes and two performance improvements that
we've been testing for some time.
Josef's two performance fixes are most notable. The transid tracking
patch makes a big improvement on pretty much every workload"
* 'for-linus-4.7' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
Btrfs: Force stripesize to the value of sectorsize
btrfs: fix disk_i_size update bug when fallocate() fails
Btrfs: fix error handling in map_private_extent_buffer
Btrfs: fix error return code in btrfs_init_test_fs()
Btrfs: don't do nocow check unless we have to
btrfs: fix deadlock in delayed_ref_async_start
Btrfs: track transid for delayed ref flushing
|
|
Commit fe742fd4f90f ("Revert "btrfs: switch to ->iterate_shared()"")
backed out the conversion to ->iterate_shared() for Btrfs because the
delayed inode handling in btrfs_real_readdir() is racy. However, we can
still do readdir in parallel if there are no delayed nodes.
This is a temporary fix which upgrades the shared inode lock to an
exclusive lock only when we have delayed items until we come up with a
more complete solution. While we're here, rename the
btrfs_{get,put}_delayed_items functions to make it very clear that
they're just for readdir.
Tested with xfstests and by doing a parallel kernel build:
while make tinyconfig && make -j4 && git clean dqfx; do
:
done
along with a bunch of parallel finds in another shell:
while true; do
for ((i=0; i<4; i++)); do
find . >/dev/null &
done
wait
done
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
|
|
Using the offwakecputime bpf script I noticed most of our time was spent waiting
on the delayed ref throttling. This is what is supposed to happen, but
sometimes the transaction can commit and then we're waiting for throttling that
doesn't matter anymore. So change this stuff to be a little smarter by tracking
the transid we were in when we initiated the throttling. If the transaction we
get is different then we can just bail out. This resulted in a 50% speedup in
my fs_mark test, and reduced the amount of time spent throttling by 60 seconds
over the entire run (which is about 30 minutes). Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs
Pull btrfs fixes from Chris Mason:
"The most user visible change here is a fix for our recent superblock
validation checks that were causing problems on non-4k pagesized
systems"
* 'for-linus-4.7' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
Btrfs: btrfs_check_super_valid: Allow 4096 as stripesize
btrfs: remove build fixup for qgroup_account_snapshot
btrfs: use new error message helper in qgroup_account_snapshot
btrfs: avoid blocking open_ctree from cleaner_kthread
Btrfs: don't BUG_ON() in btrfs_orphan_add
btrfs: account for non-CoW'd blocks in btrfs_abort_transaction
Btrfs: check if extent buffer is aligned to sectorsize
btrfs: Use correct format specifier
|
|
This is just a screwup for developers, so change it to an ASSERT() so developers
notice when things go wrong and deal with the error appropriately if ASSERT()
isn't enabled. Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Reviewed-by: Mark Fasheh <mfasheh@suse.de>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
We don't need bi_rw to be so large on 64 bit archs, so
reduce it to unsigned int.
Signed-off-by: Mike Christie <mchristi@redhat.com>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
|
|
The bio REQ_OP and bi_rw rq_flag_bits are now always setup, so there is
no need to pass around the rq_flag_bits bits too. btrfs users should
should access the bio insead.
Signed-off-by: Mike Christie <mchristi@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
|
|
We no longer pass in a bitmap of rq_flag_bits bits to __btrfs_map_block.
It will always be a REQ_OP, or the btrfs specific REQ_GET_READ_MIRRORS,
so this drops the bit tests.
Signed-off-by: Mike Christie <mchristi@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
|
|
This should be the easier cases to convert btrfs to
bio_set_op_attrs/bio_op.
They are mostly just cut and replace type of changes.
Signed-off-by: Mike Christie <mchristi@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
|
|
This patch has the dio code use a REQ_OP for the op and rq_flag_bits
for bi_rw flags. To set/get the op it uses the bio_set_op_attrs/bio_op
accssors.
It also begins to convert btrfs's dio_submit_t because of the dio
submit_io callout use. The next patches will completely convert
this code and the reset of the btrfs code paths.
Signed-off-by: Mike Christie <mchristi@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs
Pull btrfs fixes from Chris Mason:
"The important part of this pull is Filipe's set of fixes for btrfs
device replacement. Filipe fixed a few issues seen on the list and a
number he found on his own"
* 'for-linus-4.7' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
Btrfs: deal with duplciates during extent_map insertion in btrfs_get_extent
Btrfs: fix race between device replace and read repair
Btrfs: fix race between device replace and discard
Btrfs: fix race between device replace and chunk allocation
Btrfs: fix race setting block group back to RW mode during device replace
Btrfs: fix unprotected assignment of the left cursor for device replace
Btrfs: fix race setting block group readonly during device replace
Btrfs: fix race between device replace and block group removal
Btrfs: fix race between readahead and device replace/removal
|
|
When dealing with inline extents, btrfs_get_extent will incorrectly try
to insert a duplicate extent_map. The dup hits -EEXIST from
add_extent_map, but then we try to merge with the existing one and end
up trying to insert a zero length extent_map.
This actually works most of the time, except when there are extent maps
past the end of the inline extent. rocksdb will trigger this sometimes
because it preallocates an extent and then truncates down.
Josef made a script to trigger with xfs_io:
#!/bin/bash
xfs_io -f -c "pwrite 0 1000" inline
xfs_io -c "falloc -k 4k 1M" inline
xfs_io -c "pread 0 1000" -c "fadvise -d 0 1000" -c "pread 0 1000" inline
xfs_io -c "fadvise -d 0 1000" inline
cat inline
You'll get EIOs trying to read inline after this because add_extent_map
is returning EEXIST
Signed-off-by: Chris Mason <clm@fb.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs
Pull btrfs cleanups and fixes from Chris Mason:
"We have another round of fixes and a few cleanups.
I have a fix for short returns from btrfs_copy_from_user, which
finally nails down a very hard to find regression we added in v4.6.
Dave is pushing around gfp parameters, mostly to cleanup internal apis
and make it a little more consistent.
The rest are smaller fixes, and one speelling fixup patch"
* 'for-linus-4.7' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs: (22 commits)
Btrfs: fix handling of faults from btrfs_copy_from_user
btrfs: fix string and comment grammatical issues and typos
btrfs: scrub: Set bbio to NULL before calling btrfs_map_block
Btrfs: fix unexpected return value of fiemap
Btrfs: free sys_array eb as soon as possible
btrfs: sink gfp parameter to convert_extent_bit
btrfs: make state preallocation more speculative in __set_extent_bit
btrfs: untangle gotos a bit in convert_extent_bit
btrfs: untangle gotos a bit in __clear_extent_bit
btrfs: untangle gotos a bit in __set_extent_bit
btrfs: sink gfp parameter to set_record_extent_bits
btrfs: sink gfp parameter to set_extent_new
btrfs: sink gfp parameter to set_extent_defrag
btrfs: sink gfp parameter to set_extent_delalloc
btrfs: sink gfp parameter to clear_extent_dirty
btrfs: sink gfp parameter to clear_record_extent_bits
btrfs: sink gfp parameter to clear_extent_bits
btrfs: sink gfp parameter to set_extent_bits
btrfs: make find_workspace warn if there are no workspaces
btrfs: make find_workspace always succeed
...
|
|
|
|
Signed-off-by: Nicholas D Steeves <nsteeves@gmail.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs
Pull btrfs updates from Chris Mason:
"This has our merge window series of cleanups and fixes. These target
a wide range of issues, but do include some important fixes for
qgroups, O_DIRECT, and fsync handling. Jeff Mahoney moved around a
few definitions to make them easier for userland to consume.
Also whiteout support is included now that issues with overlayfs have
been cleared up.
I have one more fix pending for page faults during btrfs_copy_from_user,
but I wanted to get this bulk out the door first"
* 'for-linus-4.7' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs: (90 commits)
btrfs: fix memory leak during RAID 5/6 device replacement
Btrfs: add semaphore to synchronize direct IO writes with fsync
Btrfs: fix race between block group relocation and nocow writes
Btrfs: fix race between fsync and direct IO writes for prealloc extents
Btrfs: fix number of transaction units for renames with whiteout
Btrfs: pin logs earlier when doing a rename exchange operation
Btrfs: unpin logs if rename exchange operation fails
Btrfs: fix inode leak on failure to setup whiteout inode in rename
btrfs: add support for RENAME_EXCHANGE and RENAME_WHITEOUT
Btrfs: pin log earlier when renaming
Btrfs: unpin log if rename operation fails
Btrfs: don't do unnecessary delalloc flushes when relocating
Btrfs: don't wait for unrelated IO to finish before relocation
Btrfs: fix empty symlink after creating symlink and fsync parent dir
Btrfs: fix for incorrect directory entries after fsync log replay
btrfs: build fixup for qgroup_account_snapshot
btrfs: qgroup: Fix qgroup accounting when creating snapshot
Btrfs: fix fspath error deallocation
btrfs: make find_workspace warn if there are no workspaces
btrfs: make find_workspace always succeed
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull parallel lookup fixups from Al Viro:
"Fix for xfs parallel readdir (turns out the cxfs exposure was not
enough to catch all problems), and a reversion of btrfs back to
->iterate() until the fs/btrfs/delayed-inode.c gets fixed"
* 'work.lookups' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
xfs: concurrent readdir hangs on data buffer locks
Revert "btrfs: switch to ->iterate_shared()"
|
|
This reverts commit 972b241f8441dc37a3f89dcd7e71d7f013873d13.
Quoth Chris:
didn't take the delayed inode stuff into account
it got an rbtree of items and it pulls things out
so in shared mode, its hugely racey
sorry, lets revert and fix it for real inside of btrfs
Signed-off-by: Chris Mason <clm@fb.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull remaining vfs xattr work from Al Viro:
"The rest of work.xattr (non-cifs conversions)"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
btrfs: Switch to generic xattr handlers
ubifs: Switch to generic xattr handlers
jfs: Switch to generic xattr handlers
jfs: Clean up xattr name mapping
gfs2: Switch to generic xattr handlers
ceph: kill __ceph_removexattr()
ceph: Switch to generic xattr handlers
ceph: Get rid of d_find_alias in ceph_set_acl
|
|
The btrfs_{set,remove}xattr inode operations check for a read-only root
(btrfs_root_readonly) before calling into generic_{set,remove}xattr. If
this check is moved into __btrfs_setxattr, we can get rid of
btrfs_{set,remove}xattr.
This patch applies to mainline, I would like to keep it together with
the other xattr cleanups if possible, though. Could you please review?
Thanks,
Andreas
Signed-off-by: Andreas Gruenbacher <agruenba@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull vfs cleanups from Al Viro:
"More cleanups from Christoph"
* 'work.preadv2' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
nfsd: use RWF_SYNC
fs: add RWF_DSYNC aand RWF_SYNC
ceph: use generic_write_sync
fs: simplify the generic_write_sync prototype
fs: add IOCB_SYNC and IOCB_DSYNC
direct-io: remove the offset argument to dio_complete
direct-io: eliminate the offset argument to ->direct_IO
xfs: eliminate the pos variable in xfs_file_dio_aio_write
filemap: remove the pos argument to generic_file_direct_write
filemap: remove pos variables in generic_file_read_iter
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/fdmanana/linux into for-linus-4.7
Signed-off-by: Chris Mason <clm@fb.com>
|
|
Due to the optimization of lockless direct IO writes (the inode's i_mutex
is not held) introduced in commit 38851cc19adb ("Btrfs: implement unlocked
dio write"), we started having races between such writes with concurrent
fsync operations that use the fast fsync path. These races were addressed
in the patches titled "Btrfs: fix race between fsync and lockless direct
IO writes" and "Btrfs: fix race between fsync and direct IO writes for
prealloc extents". The races happened because the direct IO path, like
every other write path, does create extent maps followed by the
corresponding ordered extents while the fast fsync path collected first
ordered extents and then it collected extent maps. This made it possible
to log file extent items (based on the collected extent maps) without
waiting for the corresponding ordered extents to complete (get their IO
done). The two fixes mentioned before added a solution that consists of
making the direct IO path create first the ordered extents and then the
extent maps, while the fsync path attempts to collect any new ordered
extents once it collects the extent maps. This was simple and did not
require adding any synchonization primitive to any data structure (struct
btrfs_inode for example) but it makes things more fragile for future
development endeavours and adds an exceptional approach compared to the
other write paths.
This change adds a read-write semaphore to the btrfs inode structure and
makes the direct IO path create the extent maps and the ordered extents
while holding read access on that semaphore, while the fast fsync path
collects extent maps and ordered extents while holding write access on
that semaphore. The logic for direct IO write path is encapsulated in a
new helper function that is used both for cow and nocow direct IO writes.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Josef Bacik <jbacik@fb.com>
|
|
Relocation of a block group waits for all existing tasks flushing
dellaloc, starting direct IO writes and any ordered extents before
starting the relocation process. However for direct IO writes that end
up doing nocow (inode either has the flag nodatacow set or the write is
against a prealloc extent) we have a short time window that allows for a
race that makes relocation proceed without waiting for the direct IO
write to complete first, resulting in data loss after the relocation
finishes. This is illustrated by the following diagram:
CPU 1 CPU 2
btrfs_relocate_block_group(bg X)
direct IO write starts against
an extent in block group X
using nocow mode (inode has the
nodatacow flag or the write is
for a prealloc extent)
btrfs_direct_IO()
btrfs_get_blocks_direct()
--> can_nocow_extent() returns 1
btrfs_inc_block_group_ro(bg X)
--> turns block group into RO mode
btrfs_wait_ordered_roots()
--> returns and does not know about
the DIO write happening at CPU 2
(the task there has not created
yet an ordered extent)
relocate_block_group(bg X)
--> rc->stage == MOVE_DATA_EXTENTS
find_next_extent()
--> returns extent that the DIO
write is going to write to
relocate_data_extent()
relocate_file_extent_cluster()
--> reads the extent from disk into
pages belonging to the relocation
inode and dirties them
--> creates DIO ordered extent
btrfs_submit_direct()
--> submits bio against a location
on disk obtained from an extent
map before the relocation started
btrfs_wait_ordered_range()
--> writes all the pages read before
to disk (belonging to the
relocation inode)
relocation finishes
bio completes and wrote new data
to the old location of the block
group
So fix this by tracking the number of nocow writers for a block group and
make sure relocation waits for that number to go down to 0 before starting
to move the extents.
The same race can also happen with buffered writes in nocow mode since the
patch I recently made titled "Btrfs: don't do unnecessary delalloc flushes
when relocating", because we are no longer flushing all delalloc which
served as a synchonization mechanism (due to page locking) and ensured
the ordered extents for nocow buffered writes were created before we
called btrfs_wait_ordered_roots(). The race with direct IO writes in nocow
mode existed before that patch (no pages are locked or used during direct
IO) and that fixed only races with direct IO writes that do cow.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Josef Bacik <jbacik@fb.com>
|
|
When we do a direct IO write against a preallocated extent (fallocate)
that does not go beyond the i_size of the inode, we do the write operation
without holding the inode's i_mutex (an optimization that landed in
commit 38851cc19adb ("Btrfs: implement unlocked dio write")). This allows
for a very tiny time window where a race can happen with a concurrent
fsync using the fast code path, as the direct IO write path creates first
a new extent map (no longer flagged as a prealloc extent) and then it
creates the ordered extent, while the fast fsync path first collects
ordered extents and then it collects extent maps. This allows for the
possibility of the fast fsync path to collect the new extent map without
collecting the new ordered extent, and therefore logging an extent item
based on the extent map without waiting for the ordered extent to be
created and complete. This can result in a situation where after a log
replay we end up with an extent not marked anymore as prealloc but it was
only partially written (or not written at all), exposing random, stale or
garbage data corresponding to the unwritten pages and without any
checksums in the csum tree covering the extent's range.
This is an extension of what was done in commit de0ee0edb21f ("Btrfs: fix
race between fsync and lockless direct IO writes").
So fix this by creating first the ordered extent and then the extent
map, so that this way if the fast fsync patch collects the new extent
map it also collects the corresponding ordered extent.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Josef Bacik <jbacik@fb.com>
|
|
When we do a rename with the whiteout flag, we need to create the whiteout
inode, which in the worst case requires 5 transaction units (1 inode item,
1 inode ref, 2 dir items and 1 xattr if selinux is enabled). So bump the
number of transaction units from 11 to 16 if the whiteout flag is set.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
|
|
The btrfs_rename_exchange() started as a copy-paste from btrfs_rename(),
which had a race fixed by my previous patch titled "Btrfs: pin log earlier
when renaming", and so it suffers from the same problem.
We pin the logs of the affected roots after we insert the new inode
references, leaving a time window where concurrent tasks logging the
inodes can end up logging both the new and old references, resulting
in log trees that when replayed can turn the metadata into inconsistent
states. This behaviour was added to btrfs_rename() in 2009 without any
explanation about why not pinning the logs earlier, just leaving a
comment about the posibility for the race. As of today it's perfectly
safe and sane to pin the logs before we start doing any of the steps
involved in the rename operation.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
|
|
If rename exchange operations fail at some point after we pinned any of
the logs, we end up aborting the current transaction but never unpin the
logs, which leaves concurrent tasks that are trying to sync the logs (as
part of an fsync request from user space) blocked forever and preventing
the filesystem from being unmountable.
Fix this by safely unpinning the log.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
|
|
If we failed to fully setup the whiteout inode during a rename operation
with the whiteout flag, we ended up leaking the inode, not decrementing
its link count nor removing all its items from the fs/subvol tree.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
|
|
Two new flags, RENAME_EXCHANGE and RENAME_WHITEOUT, provide for new
behavior in the renameat2() syscall. This behavior is primarily used by
overlayfs. This patch adds support for these flags to btrfs, enabling it to
be used as a fully functional upper layer for overlayfs.
RENAME_EXCHANGE support was written by Davide Italiano originally
submitted on 2 April 2015.
Signed-off-by: Davide Italiano <dccitaliano@gmail.com>
Signed-off-by: Dan Fuhry <dfuhry@datto.com>
[ remove unlikely ]
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
|
|
We were pinning the log right after the first step in the rename operation
(inserting inode ref for the new name in the destination directory)
instead of doing it before. This behaviour was introduced in 2009 for some
reason that was not mentioned neither on the changelog nor any comment,
with the drawback of a small time window where concurrent log writers can
end up logging the new inode reference for the inode we are renaming while
the rename operation is in progress (so that we can end up with a log
containing both the new and old references). As of today there's no reason
to not pin the log before that first step anymore, so just fix this.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
|
|
If rename operations fail at some point after we pinned the log, we end
up aborting the current transaction but never unpin the log, which leaves
concurrent tasks that are trying to sync the log (as part of an fsync
request from user space) blocked forever and preventing the filesystem
from being unmountable.
Fix this by safely unpinning the log.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
|
|
Before we start the actual relocation process of a block group, we do
calls to flush delalloc of all inodes and then wait for ordered extents
to complete. However we do these flush calls just to make sure we don't
race with concurrent tasks that have actually already started to run
delalloc and have allocated an extent from the block group we want to
relocate, right before we set it to readonly mode, but have not yet
created the respective ordered extents. The flush calls make us wait
for such concurrent tasks because they end up calling
filemap_fdatawrite_range() (through btrfs_start_delalloc_roots() ->
__start_delalloc_inodes() -> btrfs_alloc_delalloc_work() ->
btrfs_run_delalloc_work()) which ends up serializing us with those tasks
due to attempts to lock the same pages (and the delalloc flush procedure
calls the allocator and creates the ordered extents before unlocking the
pages).
These flushing calls not only make us waste time (cpu, IO) but also reduce
the chances of writing larger extents (applications might be writing to
contiguous ranges and we flush before they finish dirtying the whole
ranges).
So make sure we don't flush delalloc and just wait for concurrent tasks
that have already started flushing delalloc and have allocated an extent
from the block group we are about to relocate.
This change also ends up fixing a race with direct IO writes that makes
relocation not wait for direct IO ordered extents. This race is
illustrated by the following diagram:
CPU 1 CPU 2
btrfs_relocate_block_group(bg X)
starts direct IO write,
target inode currently has no
ordered extents ongoing nor
dirty pages (delalloc regions),
therefore the root for our inode
is not in the list
fs_info->ordered_roots
btrfs_direct_IO()
__blockdev_direct_IO()
btrfs_get_blocks_direct()
btrfs_lock_extent_direct()
locks range in the io tree
btrfs_new_extent_direct()
btrfs_reserve_extent()
--> extent allocated
from bg X
btrfs_inc_block_group_ro(bg X)
btrfs_start_delalloc_roots()
__start_delalloc_inodes()
--> does nothing, no dealloc ranges
in the inode's io tree so the
inode's root is not in the list
fs_info->delalloc_roots
btrfs_wait_ordered_roots()
--> does not find the inode's root in the
list fs_info->ordered_roots
--> ends up not waiting for the direct IO
write started by the task at CPU 2
relocate_block_group(rc->stage ==
MOVE_DATA_EXTENTS)
prepare_to_relocate()
btrfs_commit_transaction()
iterates the extent tree, using its
commit root and moves extents into new
locations
btrfs_add_ordered_extent_dio()
--> now a ordered extent is
created and added to the
list root->ordered_extents
and the root added to the
list fs_info->ordered_roots
--> this is too late and the
task at CPU 1 already
started the relocation
btrfs_commit_transaction()
btrfs_finish_ordered_io()
btrfs_alloc_reserved_file_extent()
--> adds delayed data reference
for the extent allocated
from bg X
relocate_block_group(rc->stage ==
UPDATE_DATA_PTRS)
prepare_to_relocate()
btrfs_commit_transaction()
--> delayed refs are run, so an extent
item for the allocated extent from
bg X is added to extent tree
--> commit roots are switched, so the
next scan in the extent tree will
see the extent item
sees the extent in the extent tree
When this happens the relocation produces the following warning when it
finishes:
[ 7260.832836] ------------[ cut here ]------------
[ 7260.834653] WARNING: CPU: 5 PID: 6765 at fs/btrfs/relocation.c:4318 btrfs_relocate_block_group+0x245/0x2a1 [btrfs]()
[ 7260.838268] Modules linked in: btrfs crc32c_generic xor ppdev raid6_pq psmouse sg acpi_cpufreq evdev i2c_piix4 tpm_tis serio_raw tpm i2c_core pcspkr parport_pc
[ 7260.850935] CPU: 5 PID: 6765 Comm: btrfs Not tainted 4.5.0-rc6-btrfs-next-28+ #1
[ 7260.852998] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS by qemu-project.org 04/01/2014
[ 7260.852998] 0000000000000000 ffff88020bf57bc0 ffffffff812648b3 0000000000000000
[ 7260.852998] 0000000000000009 ffff88020bf57bf8 ffffffff81051608 ffffffffa03c1b2d
[ 7260.852998] ffff8800b2bbb800 0000000000000000 ffff8800b17bcc58 ffff8800399dd000
[ 7260.852998] Call Trace:
[ 7260.852998] [<ffffffff812648b3>] dump_stack+0x67/0x90
[ 7260.852998] [<ffffffff81051608>] warn_slowpath_common+0x99/0xb2
[ 7260.852998] [<ffffffffa03c1b2d>] ? btrfs_relocate_block_group+0x245/0x2a1 [btrfs]
[ 7260.852998] [<ffffffff810516d4>] warn_slowpath_null+0x1a/0x1c
[ 7260.852998] [<ffffffffa03c1b2d>] btrfs_relocate_block_group+0x245/0x2a1 [btrfs]
[ 7260.852998] [<ffffffffa039d9de>] btrfs_relocate_chunk.isra.29+0x66/0xdb [btrfs]
[ 7260.852998] [<ffffffffa039f314>] btrfs_balance+0xde1/0xe4e [btrfs]
[ 7260.852998] [<ffffffff8127d671>] ? debug_smp_processor_id+0x17/0x19
[ 7260.852998] [<ffffffffa03a9583>] btrfs_ioctl_balance+0x255/0x2d3 [btrfs]
[ 7260.852998] [<ffffffffa03ac96a>] btrfs_ioctl+0x11e0/0x1dff [btrfs]
[ 7260.852998] [<ffffffff811451df>] ? handle_mm_fault+0x443/0xd63
[ 7260.852998] [<ffffffff81491817>] ? _raw_spin_unlock+0x31/0x44
[ 7260.852998] [<ffffffff8108b36a>] ? arch_local_irq_save+0x9/0xc
[ 7260.852998] [<ffffffff811876ab>] vfs_ioctl+0x18/0x34
[ 7260.852998] [<ffffffff81187cb2>] do_vfs_ioctl+0x550/0x5be
[ 7260.852998] [<ffffffff81190c30>] ? __fget_light+0x4d/0x71
[ 7260.852998] [<ffffffff81187d77>] SyS_ioctl+0x57/0x79
[ 7260.852998] [<ffffffff81492017>] entry_SYSCALL_64_fastpath+0x12/0x6b
[ 7260.893268] ---[ end trace eb7803b24ebab8ad ]---
This is because at the end of the first stage, in relocate_block_group(),
we commit the current transaction, which makes delayed refs run, the
commit roots are switched and so the second stage will find the extent
item that the ordered extent added to the delayed refs. But this extent
was not moved (ordered extent completed after first stage finished), so
at the end of the relocation our block group item still has a positive
used bytes counter, triggering a warning at the end of
btrfs_relocate_block_group(). Later on when trying to read the extent
contents from disk we hit a BUG_ON() due to the inability to map a block
with a logical address that belongs to the block group we relocated and
is no longer valid, resulting in the following trace:
[ 7344.885290] BTRFS critical (device sdi): unable to find logical 12845056 len 4096
[ 7344.887518] ------------[ cut here ]------------
[ 7344.888431] kernel BUG at fs/btrfs/inode.c:1833!
[ 7344.888431] invalid opcode: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC
[ 7344.888431] Modules linked in: btrfs crc32c_generic xor ppdev raid6_pq psmouse sg acpi_cpufreq evdev i2c_piix4 tpm_tis serio_raw tpm i2c_core pcspkr parport_pc
[ 7344.888431] CPU: 0 PID: 6831 Comm: od Tainted: G W 4.5.0-rc6-btrfs-next-28+ #1
[ 7344.888431] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS by qemu-project.org 04/01/2014
[ 7344.888431] task: ffff880215818600 ti: ffff880204684000 task.ti: ffff880204684000
[ 7344.888431] RIP: 0010:[<ffffffffa037c88c>] [<ffffffffa037c88c>] btrfs_merge_bio_hook+0x54/0x6b [btrfs]
[ 7344.888431] RSP: 0018:ffff8802046878f0 EFLAGS: 00010282
[ 7344.888431] RAX: 00000000ffffffea RBX: 0000000000001000 RCX: 0000000000000001
[ 7344.888431] RDX: ffff88023ec0f950 RSI: ffffffff8183b638 RDI: 00000000ffffffff
[ 7344.888431] RBP: ffff880204687908 R08: 0000000000000001 R09: 0000000000000000
[ 7344.888431] R10: ffff880204687770 R11: ffffffff82f2d52d R12: 0000000000001000
[ 7344.888431] R13: ffff88021afbfee8 R14: 0000000000006208 R15: ffff88006cd199b0
[ 7344.888431] FS: 00007f1f9e1d6700(0000) GS:ffff88023ec00000(0000) knlGS:0000000000000000
[ 7344.888431] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 7344.888431] CR2: 00007f1f9dc8cb60 CR3: 000000023e3b6000 CR4: 00000000000006f0
[ 7344.888431] Stack:
[ 7344.888431] 0000000000001000 0000000000001000 ffff880204687b98 ffff880204687950
[ 7344.888431] ffffffffa0395c8f ffffea0004d64d48 0000000000000000 0000000000001000
[ 7344.888431] ffffea0004d64d48 0000000000001000 0000000000000000 0000000000000000
[ 7344.888431] Call Trace:
[ 7344.888431] [<ffffffffa0395c8f>] submit_extent_page+0xf5/0x16f [btrfs]
[ 7344.888431] [<ffffffffa03970ac>] __do_readpage+0x4a0/0x4f1 [btrfs]
[ 7344.888431] [<ffffffffa039680d>] ? btrfs_create_repair_bio+0xcb/0xcb [btrfs]
[ 7344.888431] [<ffffffffa037eeb4>] ? btrfs_writepage_start_hook+0xbc/0xbc [btrfs]
[ 7344.888431] [<ffffffff8108df55>] ? trace_hardirqs_on+0xd/0xf
[ 7344.888431] [<ffffffffa039728c>] __do_contiguous_readpages.constprop.26+0xc2/0xe4 [btrfs]
[ 7344.888431] [<ffffffffa037eeb4>] ? btrfs_writepage_start_hook+0xbc/0xbc [btrfs]
[ 7344.888431] [<ffffffffa039739b>] __extent_readpages.constprop.25+0xed/0x100 [btrfs]
[ 7344.888431] [<ffffffff81129d24>] ? lru_cache_add+0xe/0x10
[ 7344.888431] [<ffffffffa0397ea8>] extent_readpages+0x160/0x1aa [btrfs]
[ 7344.888431] [<ffffffffa037eeb4>] ? btrfs_writepage_start_hook+0xbc/0xbc [btrfs]
[ 7344.888431] [<ffffffff8115daad>] ? alloc_pages_current+0xa9/0xcd
[ 7344.888431] [<ffffffffa037cdc9>] btrfs_readpages+0x1f/0x21 [btrfs]
[ 7344.888431] [<ffffffff81128316>] __do_page_cache_readahead+0x168/0x1fc
[ 7344.888431] [<ffffffff811285a0>] ondemand_readahead+0x1f6/0x207
[ 7344.888431] [<ffffffff811285a0>] ? ondemand_readahead+0x1f6/0x207
[ 7344.888431] [<ffffffff8111cf34>] ? pagecache_get_page+0x2b/0x154
[ 7344.888431] [<ffffffff8112870e>] page_cache_sync_readahead+0x3d/0x3f
[ 7344.888431] [<ffffffff8111dbf7>] generic_file_read_iter+0x197/0x4e1
[ 7344.888431] [<ffffffff8117773a>] __vfs_read+0x79/0x9d
[ 7344.888431] [<ffffffff81178050>] vfs_read+0x8f/0xd2
[ 7344.888431] [<ffffffff81178a38>] SyS_read+0x50/0x7e
[ 7344.888431] [<ffffffff81492017>] entry_SYSCALL_64_fastpath+0x12/0x6b
[ 7344.888431] Code: 8d 4d e8 45 31 c9 45 31 c0 48 8b 00 48 c1 e2 09 48 8b 80 80 fc ff ff 4c 89 65 e8 48 8b b8 f0 01 00 00 e8 1d 42 02 00 85 c0 79 02 <0f> 0b 4c 0
[ 7344.888431] RIP [<ffffffffa037c88c>] btrfs_merge_bio_hook+0x54/0x6b [btrfs]
[ 7344.888431] RSP <ffff8802046878f0>
[ 7344.970544] ---[ end trace eb7803b24ebab8ae ]---
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Josef Bacik <jbacik@fb.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
|
|
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
Including blkdev_direct_IO and dax_do_io. It has to be ki_pos to actually
work, so eliminate the superflous argument.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
Callers pass GFP_NOFS and tests pass GFP_KERNEL, but using NOFS there
does not hurt. No need to pass the flags around.
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Callers pass GFP_NOFS and GFP_KERNEL. No need to pass the flags around.
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
32-bit ioctl uses these rather than the regular FS_IOC_* versions. They can
be handled in btrfs using the same code. Without this, 32-bit {ch,ls}attr
fail.
Signed-off-by: Luke Dashjr <luke-jr+git@utopios.org>
Cc: stable@vger.kernel.org
Reviewed-by: Josef Bacik <jbacik@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time
ago with promise that one day it will be possible to implement page
cache with bigger chunks than PAGE_SIZE.
This promise never materialized. And unlikely will.
We have many places where PAGE_CACHE_SIZE assumed to be equal to
PAGE_SIZE. And it's constant source of confusion on whether
PAGE_CACHE_* or PAGE_* constant should be used in a particular case,
especially on the border between fs and mm.
Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much
breakage to be doable.
Let's stop pretending that pages in page cache are special. They are
not.
The changes are pretty straight-forward:
- <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>;
- <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>;
- PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN};
- page_cache_get() -> get_page();
- page_cache_release() -> put_page();
This patch contains automated changes generated with coccinelle using
script below. For some reason, coccinelle doesn't patch header files.
I've called spatch for them manually.
The only adjustment after coccinelle is revert of changes to
PAGE_CAHCE_ALIGN definition: we are going to drop it later.
There are few places in the code where coccinelle didn't reach. I'll
fix them manually in a separate patch. Comments and documentation also
will be addressed with the separate patch.
virtual patch
@@
expression E;
@@
- E << (PAGE_CACHE_SHIFT - PAGE_SHIFT)
+ E
@@
expression E;
@@
- E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT)
+ E
@@
@@
- PAGE_CACHE_SHIFT
+ PAGE_SHIFT
@@
@@
- PAGE_CACHE_SIZE
+ PAGE_SIZE
@@
@@
- PAGE_CACHE_MASK
+ PAGE_MASK
@@
expression E;
@@
- PAGE_CACHE_ALIGN(E)
+ PAGE_ALIGN(E)
@@
expression E;
@@
- page_cache_get(E)
+ get_page(E)
@@
expression E;
@@
- page_cache_release(E)
+ put_page(E)
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
While running a test with a mix of buffered IO and direct IO against
the same files I hit a deadlock reported by the following trace:
[11642.140352] INFO: task kworker/u32:3:15282 blocked for more than 120 seconds.
[11642.142452] Not tainted 4.4.0-rc6-btrfs-next-21+ #1
[11642.143982] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
[11642.146332] kworker/u32:3 D ffff880230ef7988 [11642.147737] systemd-journald[571]: Sent WATCHDOG=1 notification.
[11642.149771] 0 15282 2 0x00000000
[11642.151205] Workqueue: btrfs-flush_delalloc btrfs_flush_delalloc_helper [btrfs]
[11642.154074] ffff880230ef7988 0000000000000246 0000000000014ec0 ffff88023ec94ec0
[11642.156722] ffff880233fe8f80 ffff880230ef8000 ffff88023ec94ec0 7fffffffffffffff
[11642.159205] 0000000000000002 ffffffff8147b7f9 ffff880230ef79a0 ffffffff8147b541
[11642.161403] Call Trace:
[11642.162129] [<ffffffff8147b7f9>] ? bit_wait+0x2f/0x2f
[11642.163396] [<ffffffff8147b541>] schedule+0x82/0x9a
[11642.164871] [<ffffffff8147e7fe>] schedule_timeout+0x43/0x109
[11642.167020] [<ffffffff8147b7f9>] ? bit_wait+0x2f/0x2f
[11642.167931] [<ffffffff8108afd1>] ? trace_hardirqs_on_caller+0x17b/0x197
[11642.182320] [<ffffffff8108affa>] ? trace_hardirqs_on+0xd/0xf
[11642.183762] [<ffffffff810b079b>] ? timekeeping_get_ns+0xe/0x33
[11642.185308] [<ffffffff810b0f61>] ? ktime_get+0x41/0x52
[11642.186782] [<ffffffff8147ac08>] io_schedule_timeout+0xa0/0x102
[11642.188217] [<ffffffff8147ac08>] ? io_schedule_timeout+0xa0/0x102
[11642.189626] [<ffffffff8147b814>] bit_wait_io+0x1b/0x39
[11642.190803] [<ffffffff8147bb21>] __wait_on_bit_lock+0x4c/0x90
[11642.192158] [<ffffffff8111829f>] __lock_page+0x66/0x68
[11642.193379] [<ffffffff81082f29>] ? autoremove_wake_function+0x3a/0x3a
[11642.194831] [<ffffffffa0450ddd>] lock_page+0x31/0x34 [btrfs]
[11642.197068] [<ffffffffa0454e3b>] extent_write_cache_pages.isra.19.constprop.35+0x1af/0x2f4 [btrfs]
[11642.199188] [<ffffffffa0455373>] extent_writepages+0x4b/0x5c [btrfs]
[11642.200723] [<ffffffffa043c913>] ? btrfs_writepage_start_hook+0xce/0xce [btrfs]
[11642.202465] [<ffffffffa043aa82>] btrfs_writepages+0x28/0x2a [btrfs]
[11642.203836] [<ffffffff811236bc>] do_writepages+0x23/0x2c
[11642.205624] [<ffffffff811198c9>] __filemap_fdatawrite_range+0x5a/0x61
[11642.207057] [<ffffffff81119946>] filemap_fdatawrite_range+0x13/0x15
[11642.208529] [<ffffffffa044f87e>] btrfs_start_ordered_extent+0xd0/0x1a1 [btrfs]
[11642.210375] [<ffffffffa0462613>] ? btrfs_scrubparity_helper+0x140/0x33a [btrfs]
[11642.212132] [<ffffffffa044f974>] btrfs_run_ordered_extent_work+0x25/0x34 [btrfs]
[11642.213837] [<ffffffffa046262f>] btrfs_scrubparity_helper+0x15c/0x33a [btrfs]
[11642.215457] [<ffffffffa046293b>] btrfs_flush_delalloc_helper+0xe/0x10 [btrfs]
[11642.217095] [<ffffffff8106483e>] process_one_work+0x256/0x48b
[11642.218324] [<ffffffff81064f20>] worker_thread+0x1f5/0x2a7
[11642.219466] [<ffffffff81064d2b>] ? rescuer_thread+0x289/0x289
[11642.220801] [<ffffffff8106a500>] kthread+0xd4/0xdc
[11642.222032] [<ffffffff8106a42c>] ? kthread_parkme+0x24/0x24
[11642.223190] [<ffffffff8147fdef>] ret_from_fork+0x3f/0x70
[11642.224394] [<ffffffff8106a42c>] ? kthread_parkme+0x24/0x24
[11642.226295] 2 locks held by kworker/u32:3/15282:
[11642.227273] #0: ("%s-%s""btrfs", name){++++.+}, at: [<ffffffff8106474d>] process_one_work+0x165/0x48b
[11642.229412] #1: ((&work->normal_work)){+.+.+.}, at: [<ffffffff8106474d>] process_one_work+0x165/0x48b
[11642.231414] INFO: task kworker/u32:8:15289 blocked for more than 120 seconds.
[11642.232872] Not tainted 4.4.0-rc6-btrfs-next-21+ #1
[11642.234109] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
[11642.235776] kworker/u32:8 D ffff88020de5f848 0 15289 2 0x00000000
[11642.237412] Workqueue: writeback wb_workfn (flush-btrfs-481)
[11642.238670] ffff88020de5f848 0000000000000246 0000000000014ec0 ffff88023ed54ec0
[11642.240475] ffff88021b1ece40 ffff88020de60000 ffff88023ed54ec0 7fffffffffffffff
[11642.242154] 0000000000000002 ffffffff8147b7f9 ffff88020de5f860 ffffffff8147b541
[11642.243715] Call Trace:
[11642.244390] [<ffffffff8147b7f9>] ? bit_wait+0x2f/0x2f
[11642.245432] [<ffffffff8147b541>] schedule+0x82/0x9a
[11642.246392] [<ffffffff8147e7fe>] schedule_timeout+0x43/0x109
[11642.247479] [<ffffffff8147b7f9>] ? bit_wait+0x2f/0x2f
[11642.248551] [<ffffffff8108afd1>] ? trace_hardirqs_on_caller+0x17b/0x197
[11642.249968] [<ffffffff8108affa>] ? trace_hardirqs_on+0xd/0xf
[11642.251043] [<ffffffff810b079b>] ? timekeeping_get_ns+0xe/0x33
[11642.252202] [<ffffffff810b0f61>] ? ktime_get+0x41/0x52
[11642.253210] [<ffffffff8147ac08>] io_schedule_timeout+0xa0/0x102
[11642.254307] [<ffffffff8147ac08>] ? io_schedule_timeout+0xa0/0x102
[11642.256118] [<ffffffff8147b814>] bit_wait_io+0x1b/0x39
[11642.257131] [<ffffffff8147bb21>] __wait_on_bit_lock+0x4c/0x90
[11642.258200] [<ffffffff8111829f>] __lock_page+0x66/0x68
[11642.259168] [<ffffffff81082f29>] ? autoremove_wake_function+0x3a/0x3a
[11642.260516] [<ffffffffa0450ddd>] lock_page+0x31/0x34 [btrfs]
[11642.261841] [<ffffffffa0454e3b>] extent_write_cache_pages.isra.19.constprop.35+0x1af/0x2f4 [btrfs]
[11642.263531] [<ffffffffa0455373>] extent_writepages+0x4b/0x5c [btrfs]
[11642.264747] [<ffffffffa043c913>] ? btrfs_writepage_start_hook+0xce/0xce [btrfs]
[11642.266148] [<ffffffffa043aa82>] btrfs_writepages+0x28/0x2a [btrfs]
[11642.267264] [<ffffffff811236bc>] do_writepages+0x23/0x2c
[11642.268280] [<ffffffff81192a2b>] __writeback_single_inode+0xda/0x5ba
[11642.269407] [<ffffffff811939f0>] writeback_sb_inodes+0x27b/0x43d
[11642.270476] [<ffffffff81193c28>] __writeback_inodes_wb+0x76/0xae
[11642.271547] [<ffffffff81193ea6>] wb_writeback+0x19e/0x41c
[11642.272588] [<ffffffff81194821>] wb_workfn+0x201/0x341
[11642.273523] [<ffffffff81194821>] ? wb_workfn+0x201/0x341
[11642.274479] [<ffffffff8106483e>] process_one_work+0x256/0x48b
[11642.275497] [<ffffffff81064f20>] worker_thread+0x1f5/0x2a7
[11642.276518] [<ffffffff81064d2b>] ? rescuer_thread+0x289/0x289
[11642.277520] [<ffffffff81064d2b>] ? rescuer_thread+0x289/0x289
[11642.278517] [<ffffffff8106a500>] kthread+0xd4/0xdc
[11642.279371] [<ffffffff8106a42c>] ? kthread_parkme+0x24/0x24
[11642.280468] [<ffffffff8147fdef>] ret_from_fork+0x3f/0x70
[11642.281607] [<ffffffff8106a42c>] ? kthread_parkme+0x24/0x24
[11642.282604] 3 locks held by kworker/u32:8/15289:
[11642.283423] #0: ("writeback"){++++.+}, at: [<ffffffff8106474d>] process_one_work+0x165/0x48b
[11642.285629] #1: ((&(&wb->dwork)->work)){+.+.+.}, at: [<ffffffff8106474d>] process_one_work+0x165/0x48b
[11642.287538] #2: (&type->s_umount_key#37){+++++.}, at: [<ffffffff81171217>] trylock_super+0x1b/0x4b
[11642.289423] INFO: task fdm-stress:26848 blocked for more than 120 seconds.
[11642.290547] Not tainted 4.4.0-rc6-btrfs-next-21+ #1
[11642.291453] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
[11642.292864] fdm-stress D ffff88022c107c20 0 26848 26591 0x00000000
[11642.294118] ffff88022c107c20 000000038108affa 0000000000014ec0 ffff88023ed54ec0
[11642.295602] ffff88013ab1ca40 ffff88022c108000 ffff8800b2fc19d0 00000000000e0fff
[11642.297098] ffff8800b2fc19b0 ffff88022c107c88 ffff88022c107c38 ffffffff8147b541
[11642.298433] Call Trace:
[11642.298896] [<ffffffff8147b541>] schedule+0x82/0x9a
[11642.299738] [<ffffffffa045225d>] lock_extent_bits+0xfe/0x1a3 [btrfs]
[11642.300833] [<ffffffff81082eef>] ? add_wait_queue_exclusive+0x44/0x44
[11642.301943] [<ffffffffa0447516>] lock_and_cleanup_extent_if_need+0x68/0x18e [btrfs]
[11642.303270] [<ffffffffa04485ba>] __btrfs_buffered_write+0x238/0x4c1 [btrfs]
[11642.304552] [<ffffffffa044b50a>] ? btrfs_file_write_iter+0x17c/0x408 [btrfs]
[11642.305782] [<ffffffffa044b682>] btrfs_file_write_iter+0x2f4/0x408 [btrfs]
[11642.306878] [<ffffffff8116e298>] __vfs_write+0x7c/0xa5
[11642.307729] [<ffffffff8116e7d1>] vfs_write+0x9d/0xe8
[11642.308602] [<ffffffff8116efbb>] SyS_write+0x50/0x7e
[11642.309410] [<ffffffff8147fa97>] entry_SYSCALL_64_fastpath+0x12/0x6b
[11642.310403] 3 locks held by fdm-stress/26848:
[11642.311108] #0: (&f->f_pos_lock){+.+.+.}, at: [<ffffffff811877e8>] __fdget_pos+0x3a/0x40
[11642.312578] #1: (sb_writers#11){.+.+.+}, at: [<ffffffff811706ee>] __sb_start_write+0x5f/0xb0
[11642.314170] #2: (&sb->s_type->i_mutex_key#15){+.+.+.}, at: [<ffffffffa044b401>] btrfs_file_write_iter+0x73/0x408 [btrfs]
[11642.316796] INFO: task fdm-stress:26849 blocked for more than 120 seconds.
[11642.317842] Not tainted 4.4.0-rc6-btrfs-next-21+ #1
[11642.318691] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
[11642.319959] fdm-stress D ffff8801964ffa68 0 26849 26591 0x00000000
[11642.321312] ffff8801964ffa68 00ff8801e9975f80 0000000000014ec0 ffff88023ed94ec0
[11642.322555] ffff8800b00b4840 ffff880196500000 ffff8801e9975f20 0000000000000002
[11642.323715] ffff8801e9975f18 ffff8800b00b4840 ffff8801964ffa80 ffffffff8147b541
[11642.325096] Call Trace:
[11642.325532] [<ffffffff8147b541>] schedule+0x82/0x9a
[11642.326303] [<ffffffff8147e7fe>] schedule_timeout+0x43/0x109
[11642.327180] [<ffffffff8108ae40>] ? mark_held_locks+0x5e/0x74
[11642.328114] [<ffffffff8147f30e>] ? _raw_spin_unlock_irq+0x2c/0x4a
[11642.329051] [<ffffffff8108afd1>] ? trace_hardirqs_on_caller+0x17b/0x197
[11642.330053] [<ffffffff8147bceb>] __wait_for_common+0x109/0x147
[11642.330952] [<ffffffff8147bceb>] ? __wait_for_common+0x109/0x147
[11642.331869] [<ffffffff8147e7bb>] ? usleep_range+0x4a/0x4a
[11642.332925] [<ffffffff81074075>] ? wake_up_q+0x47/0x47
[11642.333736] [<ffffffff8147bd4d>] wait_for_completion+0x24/0x26
[11642.334672] [<ffffffffa044f5ce>] btrfs_wait_ordered_extents+0x1c8/0x217 [btrfs]
[11642.335858] [<ffffffffa0465b5a>] btrfs_mksubvol+0x224/0x45d [btrfs]
[11642.336854] [<ffffffff81082eef>] ? add_wait_queue_exclusive+0x44/0x44
[11642.337820] [<ffffffffa0465edb>] btrfs_ioctl_snap_create_transid+0x148/0x17a [btrfs]
[11642.339026] [<ffffffffa046603b>] btrfs_ioctl_snap_create_v2+0xc7/0x110 [btrfs]
[11642.340214] [<ffffffffa0468582>] btrfs_ioctl+0x590/0x27bd [btrfs]
[11642.341123] [<ffffffff8147dc00>] ? mutex_unlock+0xe/0x10
[11642.341934] [<ffffffffa00fa6e9>] ? ext4_file_write_iter+0x2a3/0x36f [ext4]
[11642.342936] [<ffffffff8108895d>] ? __lock_is_held+0x3c/0x57
[11642.343772] [<ffffffff81186a1d>] ? rcu_read_unlock+0x3e/0x5d
[11642.344673] [<ffffffff8117dc95>] do_vfs_ioctl+0x458/0x4dc
[11642.346024] [<ffffffff81186bbe>] ? __fget_light+0x62/0x71
[11642.346873] [<ffffffff8117dd70>] SyS_ioctl+0x57/0x79
[11642.347720] [<ffffffff8147fa97>] entry_SYSCALL_64_fastpath+0x12/0x6b
[11642.350222] 4 locks held by fdm-stress/26849:
[11642.350898] #0: (sb_writers#11){.+.+.+}, at: [<ffffffff811706ee>] __sb_start_write+0x5f/0xb0
[11642.352375] #1: (&type->i_mutex_dir_key#4/1){+.+.+.}, at: [<ffffffffa0465981>] btrfs_mksubvol+0x4b/0x45d [btrfs]
[11642.354072] #2: (&fs_info->subvol_sem){++++..}, at: [<ffffffffa0465a2a>] btrfs_mksubvol+0xf4/0x45d [btrfs]
[11642.355647] #3: (&root->ordered_extent_mutex){+.+...}, at: [<ffffffffa044f456>] btrfs_wait_ordered_extents+0x50/0x217 [btrfs]
[11642.357516] INFO: task fdm-stress:26850 blocked for more than 120 seconds.
[11642.358508] Not tainted 4.4.0-rc6-btrfs-next-21+ #1
[11642.359376] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
[11642.368625] fdm-stress D ffff88021f167688 0 26850 26591 0x00000000
[11642.369716] ffff88021f167688 0000000000000001 0000000000014ec0 ffff88023edd4ec0
[11642.370950] ffff880128a98680 ffff88021f168000 ffff88023edd4ec0 7fffffffffffffff
[11642.372210] 0000000000000002 ffffffff8147b7f9 ffff88021f1676a0 ffffffff8147b541
[11642.373430] Call Trace:
[11642.373853] [<ffffffff8147b7f9>] ? bit_wait+0x2f/0x2f
[11642.374623] [<ffffffff8147b541>] schedule+0x82/0x9a
[11642.375948] [<ffffffff8147e7fe>] schedule_timeout+0x43/0x109
[11642.376862] [<ffffffff8147b7f9>] ? bit_wait+0x2f/0x2f
[11642.377637] [<ffffffff8108afd1>] ? trace_hardirqs_on_caller+0x17b/0x197
[11642.378610] [<ffffffff8108affa>] ? trace_hardirqs_on+0xd/0xf
[11642.379457] [<ffffffff810b079b>] ? timekeeping_get_ns+0xe/0x33
[11642.380366] [<ffffffff810b0f61>] ? ktime_get+0x41/0x52
[11642.381353] [<ffffffff8147ac08>] io_schedule_timeout+0xa0/0x102
[11642.382255] [<ffffffff8147ac08>] ? io_schedule_timeout+0xa0/0x102
[11642.383162] [<ffffffff8147b814>] bit_wait_io+0x1b/0x39
[11642.383945] [<ffffffff8147bb21>] __wait_on_bit_lock+0x4c/0x90
[11642.384875] [<ffffffff8111829f>] __lock_page+0x66/0x68
[11642.385749] [<ffffffff81082f29>] ? autoremove_wake_function+0x3a/0x3a
[11642.386721] [<ffffffffa0450ddd>] lock_page+0x31/0x34 [btrfs]
[11642.387596] [<ffffffffa0454e3b>] extent_write_cache_pages.isra.19.constprop.35+0x1af/0x2f4 [btrfs]
[11642.389030] [<ffffffffa0455373>] extent_writepages+0x4b/0x5c [btrfs]
[11642.389973] [<ffffffff810a25ad>] ? rcu_read_lock_sched_held+0x61/0x69
[11642.390939] [<ffffffffa043c913>] ? btrfs_writepage_start_hook+0xce/0xce [btrfs]
[11642.392271] [<ffffffffa0451c32>] ? __clear_extent_bit+0x26e/0x2c0 [btrfs]
[11642.393305] [<ffffffffa043aa82>] btrfs_writepages+0x28/0x2a [btrfs]
[11642.394239] [<ffffffff811236bc>] do_writepages+0x23/0x2c
[11642.395045] [<ffffffff811198c9>] __filemap_fdatawrite_range+0x5a/0x61
[11642.395991] [<ffffffff81119946>] filemap_fdatawrite_range+0x13/0x15
[11642.397144] [<ffffffffa044f87e>] btrfs_start_ordered_extent+0xd0/0x1a1 [btrfs]
[11642.398392] [<ffffffffa0452094>] ? clear_extent_bit+0x17/0x19 [btrfs]
[11642.399363] [<ffffffffa0445945>] btrfs_get_blocks_direct+0x12b/0x61c [btrfs]
[11642.400445] [<ffffffff8119f7a1>] ? dio_bio_add_page+0x3d/0x54
[11642.401309] [<ffffffff8119fa93>] ? submit_page_section+0x7b/0x111
[11642.402213] [<ffffffff811a0258>] do_blockdev_direct_IO+0x685/0xc24
[11642.403139] [<ffffffffa044581a>] ? btrfs_page_exists_in_range+0x1a1/0x1a1 [btrfs]
[11642.404360] [<ffffffffa043d267>] ? btrfs_get_extent_fiemap+0x1c0/0x1c0 [btrfs]
[11642.406187] [<ffffffff811a0828>] __blockdev_direct_IO+0x31/0x33
[11642.407070] [<ffffffff811a0828>] ? __blockdev_direct_IO+0x31/0x33
[11642.407990] [<ffffffffa043d267>] ? btrfs_get_extent_fiemap+0x1c0/0x1c0 [btrfs]
[11642.409192] [<ffffffffa043b4ca>] btrfs_direct_IO+0x1c7/0x27e [btrfs]
[11642.410146] [<ffffffffa043d267>] ? btrfs_get_extent_fiemap+0x1c0/0x1c0 [btrfs]
[11642.411291] [<ffffffff81119a2c>] generic_file_read_iter+0x89/0x4e1
[11642.412263] [<ffffffff8108ac05>] ? mark_lock+0x24/0x201
[11642.413057] [<ffffffff8116e1f8>] __vfs_read+0x79/0x9d
[11642.413897] [<ffffffff8116e6f1>] vfs_read+0x8f/0xd2
[11642.414708] [<ffffffff8116ef3d>] SyS_read+0x50/0x7e
[11642.415573] [<ffffffff8147fa97>] entry_SYSCALL_64_fastpath+0x12/0x6b
[11642.416572] 1 lock held by fdm-stress/26850:
[11642.417345] #0: (&f->f_pos_lock){+.+.+.}, at: [<ffffffff811877e8>] __fdget_pos+0x3a/0x40
[11642.418703] INFO: task fdm-stress:26851 blocked for more than 120 seconds.
[11642.419698] Not tainted 4.4.0-rc6-btrfs-next-21+ #1
[11642.420612] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
[11642.421807] fdm-stress D ffff880196483d28 0 26851 26591 0x00000000
[11642.422878] ffff880196483d28 00ff8801c8f60740 0000000000014ec0 ffff88023ed94ec0
[11642.424149] ffff8801c8f60740 ffff880196484000 0000000000000246 ffff8801c8f60740
[11642.425374] ffff8801bb711840 ffff8801bb711878 ffff880196483d40 ffffffff8147b541
[11642.426591] Call Trace:
[11642.427013] [<ffffffff8147b541>] schedule+0x82/0x9a
[11642.427856] [<ffffffff8147b6d5>] schedule_preempt_disabled+0x18/0x24
[11642.428852] [<ffffffff8147c23a>] mutex_lock_nested+0x1d7/0x3b4
[11642.429743] [<ffffffffa044f456>] ? btrfs_wait_ordered_extents+0x50/0x217 [btrfs]
[11642.430911] [<ffffffffa044f456>] btrfs_wait_ordered_extents+0x50/0x217 [btrfs]
[11642.432102] [<ffffffffa044f674>] ? btrfs_wait_ordered_roots+0x57/0x191 [btrfs]
[11642.433259] [<ffffffffa044f456>] ? btrfs_wait_ordered_extents+0x50/0x217 [btrfs]
[11642.434431] [<ffffffffa044f6ea>] btrfs_wait_ordered_roots+0xcd/0x191 [btrfs]
[11642.436079] [<ffffffffa0410cab>] btrfs_sync_fs+0xe0/0x1ad [btrfs]
[11642.437009] [<ffffffff81197900>] ? SyS_tee+0x23c/0x23c
[11642.437860] [<ffffffff81197920>] sync_fs_one_sb+0x20/0x22
[11642.438723] [<ffffffff81171435>] iterate_supers+0x75/0xc2
[11642.439597] [<ffffffff81197d00>] sys_sync+0x52/0x80
[11642.440454] [<ffffffff8147fa97>] entry_SYSCALL_64_fastpath+0x12/0x6b
[11642.441533] 3 locks held by fdm-stress/26851:
[11642.442370] #0: (&type->s_umount_key#37){+++++.}, at: [<ffffffff8117141f>] iterate_supers+0x5f/0xc2
[11642.444043] #1: (&fs_info->ordered_operations_mutex){+.+...}, at: [<ffffffffa044f661>] btrfs_wait_ordered_roots+0x44/0x191 [btrfs]
[11642.446010] #2: (&root->ordered_extent_mutex){+.+...}, at: [<ffffffffa044f456>] btrfs_wait_ordered_extents+0x50/0x217 [btrfs]
This happened because under specific timings the path for direct IO reads
can deadlock with concurrent buffered writes. The diagram below shows how
this happens for an example file that has the following layout:
[ extent A ] [ extent B ] [ ....
0K 4K 8K
CPU 1 CPU 2 CPU 3
DIO read against range
[0K, 8K[ starts
btrfs_direct_IO()
--> calls btrfs_get_blocks_direct()
which finds the extent map for the
extent A and leaves the range
[0K, 4K[ locked in the inode's
io tree
buffered write against
range [4K, 8K[ starts
__btrfs_buffered_write()
--> dirties page at 4K
a user space
task calls sync
for e.g or
writepages() is
invoked by mm
writepages()
run_delalloc_range()
cow_file_range()
--> ordered extent X
for the buffered
write is created
and
writeback starts
--> calls btrfs_get_blocks_direct()
again, without submitting first
a bio for reading extent A, and
finds the extent map for extent B
--> calls lock_extent_direct()
--> locks range [4K, 8K[
--> finds ordered extent X
covering range [4K, 8K[
--> unlocks range [4K, 8K[
buffered write against
range [0K, 8K[ starts
__btrfs_buffered_write()
prepare_pages()
--> locks pages with
offsets 0 and 4K
lock_and_cleanup_extent_if_need()
--> blocks attempting to
lock range [0K, 8K[ in
the inode's io tree,
because the range [0, 4K[
is already locked by the
direct IO task at CPU 1
--> calls
btrfs_start_ordered_extent(oe X)
btrfs_start_ordered_extent(oe X)
--> At this point writeback for ordered
extent X has not finished yet
filemap_fdatawrite_range()
btrfs_writepages()
extent_writepages()
extent_write_cache_pages()
--> finds page with offset 0
with the writeback tag
(and not dirty)
--> tries to lock it
--> deadlock, task at CPU 2
has the page locked and
is blocked on the io range
[0, 4K[ that was locked
earlier by this task
So fix this by falling back to a buffered read in the direct IO read path
when an ordered extent for a buffered write is found.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Chris Mason <clm@fb.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux into for-linus-4.6
Btrfs patchsets for 4.6
|
|
|
|
|
|
|
|
|
|
# Conflicts:
# fs/btrfs/file.c
|