summaryrefslogtreecommitdiff
path: root/fs/btrfs/compression.h
AgeCommit message (Collapse)Author
2017-11-27btrfs: Fix wild memory access in compression level parserQu Wenruo
[BUG] Kernel panic when mounting with "-o compress" mount option. KASAN will report like: ------ ================================================================== BUG: KASAN: wild-memory-access in strncmp+0x31/0xc0 Read of size 1 at addr d86735fce994f800 by task mount/662 ... Call Trace: dump_stack+0xe3/0x175 kasan_report+0x163/0x370 __asan_load1+0x47/0x50 strncmp+0x31/0xc0 btrfs_compress_str2level+0x20/0x70 [btrfs] btrfs_parse_options+0xff4/0x1870 [btrfs] open_ctree+0x2679/0x49f0 [btrfs] btrfs_mount+0x1b7f/0x1d30 [btrfs] mount_fs+0x49/0x190 vfs_kern_mount.part.29+0xba/0x280 vfs_kern_mount+0x13/0x20 btrfs_mount+0x31e/0x1d30 [btrfs] mount_fs+0x49/0x190 vfs_kern_mount.part.29+0xba/0x280 do_mount+0xaad/0x1a00 SyS_mount+0x98/0xe0 entry_SYSCALL_64_fastpath+0x1f/0xbe ------ [Cause] For 'compress' and 'compress_force' options, its token doesn't expect any parameter so its args[0] contains uninitialized data. Accessing args[0] will cause above wild memory access. [Fix] For Opt_compress and Opt_compress_force, set compression level to the default. Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> [ set the default in advance ] Signed-off-by: David Sterba <dsterba@suse.com>
2017-11-15Btrfs: add write_flags for compression bioLiu Bo
Compression code path has only flaged bios with REQ_OP_WRITE no matter where the bios come from, but it could be a sync write if fsync starts this writeback or a normal writeback write if wb kthread starts a periodic writeback. It breaks the rule that sync writes and writeback writes need to be differentiated from each other, because from the POV of block layer, all bios need to be recognized by these flags in order to do some management, e.g. throttlling. This passes writeback_control to compression write path so that it can send bios with proper flags to block layer. Signed-off-by: Liu Bo <bo.li.liu@oracle.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2017-11-01btrfs: allow to set compression level for zlibDavid Sterba
Preliminary support for setting compression level for zlib, the following works: $ mount -o compess=zlib # default $ mount -o compess=zlib0 # same $ mount -o compess=zlib9 # level 9, slower sync, less data $ mount -o compess=zlib1 # level 1, faster sync, more data $ mount -o remount,compress=zlib3 # level set by remount The compress-force works the same as compress'. The level is visible in the same format in /proc/mounts. Level set via file property does not work yet. Required patch: "btrfs: prepare for extensions in compression options" Signed-off-by: David Sterba <dsterba@suse.com>
2017-09-14Merge branch 'zstd-minimal' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs Pull zstd support from Chris Mason: "Nick Terrell's patch series to add zstd support to the kernel has been floating around for a while. After talking with Dave Sterba, Herbert and Phillip, we decided to send the whole thing in as one pull request. zstd is a big win in speed over zlib and in compression ratio over lzo, and the compression team here at FB has gotten great results using it in production. Nick will continue to update the kernel side with new improvements from the open source zstd userland code. Nick has a number of benchmarks for the main zstd code in his lib/zstd commit: I ran the benchmarks on a Ubuntu 14.04 VM with 2 cores and 4 GiB of RAM. The VM is running on a MacBook Pro with a 3.1 GHz Intel Core i7 processor, 16 GB of RAM, and a SSD. I benchmarked using `silesia.tar` [3], which is 211,988,480 B large. Run the following commands for the benchmark: sudo modprobe zstd_compress_test sudo mknod zstd_compress_test c 245 0 sudo cp silesia.tar zstd_compress_test The time is reported by the time of the userland `cp`. The MB/s is computed with 1,536,217,008 B / time(buffer size, hash) which includes the time to copy from userland. The Adjusted MB/s is computed with 1,536,217,088 B / (time(buffer size, hash) - time(buffer size, none)). The memory reported is the amount of memory the compressor requests. | Method | Size (B) | Time (s) | Ratio | MB/s | Adj MB/s | Mem (MB) | |----------|----------|----------|-------|---------|----------|----------| | none | 11988480 | 0.100 | 1 | 2119.88 | - | - | | zstd -1 | 73645762 | 1.044 | 2.878 | 203.05 | 224.56 | 1.23 | | zstd -3 | 66988878 | 1.761 | 3.165 | 120.38 | 127.63 | 2.47 | | zstd -5 | 65001259 | 2.563 | 3.261 | 82.71 | 86.07 | 2.86 | | zstd -10 | 60165346 | 13.242 | 3.523 | 16.01 | 16.13 | 13.22 | | zstd -15 | 58009756 | 47.601 | 3.654 | 4.45 | 4.46 | 21.61 | | zstd -19 | 54014593 | 102.835 | 3.925 | 2.06 | 2.06 | 60.15 | | zlib -1 | 77260026 | 2.895 | 2.744 | 73.23 | 75.85 | 0.27 | | zlib -3 | 72972206 | 4.116 | 2.905 | 51.50 | 52.79 | 0.27 | | zlib -6 | 68190360 | 9.633 | 3.109 | 22.01 | 22.24 | 0.27 | | zlib -9 | 67613382 | 22.554 | 3.135 | 9.40 | 9.44 | 0.27 | I benchmarked zstd decompression using the same method on the same machine. The benchmark file is located in the upstream zstd repo under `contrib/linux-kernel/zstd_decompress_test.c` [4]. The memory reported is the amount of memory required to decompress data compressed with the given compression level. If you know the maximum size of your input, you can reduce the memory usage of decompression irrespective of the compression level. | Method | Time (s) | MB/s | Adjusted MB/s | Memory (MB) | |----------|----------|---------|---------------|-------------| | none | 0.025 | 8479.54 | - | - | | zstd -1 | 0.358 | 592.15 | 636.60 | 0.84 | | zstd -3 | 0.396 | 535.32 | 571.40 | 1.46 | | zstd -5 | 0.396 | 535.32 | 571.40 | 1.46 | | zstd -10 | 0.374 | 566.81 | 607.42 | 2.51 | | zstd -15 | 0.379 | 559.34 | 598.84 | 4.61 | | zstd -19 | 0.412 | 514.54 | 547.77 | 8.80 | | zlib -1 | 0.940 | 225.52 | 231.68 | 0.04 | | zlib -3 | 0.883 | 240.08 | 247.07 | 0.04 | | zlib -6 | 0.844 | 251.17 | 258.84 | 0.04 | | zlib -9 | 0.837 | 253.27 | 287.64 | 0.04 | I ran a long series of tests and benchmarks on the btrfs side and the gains are very similar to the core benchmarks Nick ran" * 'zstd-minimal' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs: squashfs: Add zstd support btrfs: Add zstd support lib: Add zstd modules lib: Add xxhash module
2017-08-18btrfs: remove unused BTRFS_COMPRESS_LASTAnand Jain
We aren't using this define, so removing it. Signed-off-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2017-08-16Btrfs: add skeleton code for compression heuristicTimofey Titovets
Add skeleton code for compresison heuristics. Now it iterates over all the pages, but in the end always says "yes, compress please", ie it does not change the current behaviour. In the future we're going to add various heuristics to analyze the data. This patch can be used as a baseline for measuring if the effectivness and performance. Signed-off-by: Timofey Titovets <nefelim4ag@gmail.com> Reviewed-by: David Sterba <dsterba@suse.com> [ enhanced changelog, modified comments ] Signed-off-by: David Sterba <dsterba@suse.com>
2017-08-15btrfs: Add zstd supportNick Terrell
Add zstd compression and decompression support to BtrFS. zstd at its fastest level compresses almost as well as zlib, while offering much faster compression and decompression, approaching lzo speeds. I benchmarked btrfs with zstd compression against no compression, lzo compression, and zlib compression. I benchmarked two scenarios. Copying a set of files to btrfs, and then reading the files. Copying a tarball to btrfs, extracting it to btrfs, and then reading the extracted files. After every operation, I call `sync` and include the sync time. Between every pair of operations I unmount and remount the filesystem to avoid caching. The benchmark files can be found in the upstream zstd source repository under `contrib/linux-kernel/{btrfs-benchmark.sh,btrfs-extract-benchmark.sh}` [1] [2]. I ran the benchmarks on a Ubuntu 14.04 VM with 2 cores and 4 GiB of RAM. The VM is running on a MacBook Pro with a 3.1 GHz Intel Core i7 processor, 16 GB of RAM, and a SSD. The first compression benchmark is copying 10 copies of the unzipped Silesia corpus [3] into a BtrFS filesystem mounted with `-o compress-force=Method`. The decompression benchmark times how long it takes to `tar` all 10 copies into `/dev/null`. The compression ratio is measured by comparing the output of `df` and `du`. See the benchmark file [1] for details. I benchmarked multiple zstd compression levels, although the patch uses zstd level 1. | Method | Ratio | Compression MB/s | Decompression speed | |---------|-------|------------------|---------------------| | None | 0.99 | 504 | 686 | | lzo | 1.66 | 398 | 442 | | zlib | 2.58 | 65 | 241 | | zstd 1 | 2.57 | 260 | 383 | | zstd 3 | 2.71 | 174 | 408 | | zstd 6 | 2.87 | 70 | 398 | | zstd 9 | 2.92 | 43 | 406 | | zstd 12 | 2.93 | 21 | 408 | | zstd 15 | 3.01 | 11 | 354 | The next benchmark first copies `linux-4.11.6.tar` [4] to btrfs. Then it measures the compression ratio, extracts the tar, and deletes the tar. Then it measures the compression ratio again, and `tar`s the extracted files into `/dev/null`. See the benchmark file [2] for details. | Method | Tar Ratio | Extract Ratio | Copy (s) | Extract (s)| Read (s) | |--------|-----------|---------------|----------|------------|----------| | None | 0.97 | 0.78 | 0.981 | 5.501 | 8.807 | | lzo | 2.06 | 1.38 | 1.631 | 8.458 | 8.585 | | zlib | 3.40 | 1.86 | 7.750 | 21.544 | 11.744 | | zstd 1 | 3.57 | 1.85 | 2.579 | 11.479 | 9.389 | [1] https://github.com/facebook/zstd/blob/dev/contrib/linux-kernel/btrfs-benchmark.sh [2] https://github.com/facebook/zstd/blob/dev/contrib/linux-kernel/btrfs-extract-benchmark.sh [3] http://sun.aei.polsl.pl/~sdeor/index.php?page=silesia [4] https://cdn.kernel.org/pub/linux/kernel/v4.x/linux-4.11.6.tar.xz zstd source repository: https://github.com/facebook/zstd Signed-off-by: Nick Terrell <terrelln@fb.com> Signed-off-by: Chris Mason <clm@fb.com>
2017-07-05Merge branch 'for-4.13-part1' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux Pull btrfs updates from David Sterba: "The core updates improve error handling (mostly related to bios), with the usual incremental work on the GFP_NOFS (mis)use removal, refactoring or cleanups. Except the two top patches, all have been in for-next for an extensive amount of time. User visible changes: - statx support - quota override tunable - improved compression thresholds - obsoleted mount option alloc_start Core updates: - bio-related updates: - faster bio cloning - no allocation failures - preallocated flush bios - more kvzalloc use, memalloc_nofs protections, GFP_NOFS updates - prep work for btree_inode removal - dir-item validation - qgoup fixes and updates - cleanups: - removed unused struct members, unused code, refactoring - argument refactoring (fs_info/root, caller -> callee sink) - SEARCH_TREE ioctl docs" * 'for-4.13-part1' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: (115 commits) btrfs: Remove false alert when fiemap range is smaller than on-disk extent btrfs: Don't clear SGID when inheriting ACLs btrfs: fix integer overflow in calc_reclaim_items_nr btrfs: scrub: fix target device intialization while setting up scrub context btrfs: qgroup: Fix qgroup reserved space underflow by only freeing reserved ranges btrfs: qgroup: Introduce extent changeset for qgroup reserve functions btrfs: qgroup: Fix qgroup reserved space underflow caused by buffered write and quotas being enabled btrfs: qgroup: Return actually freed bytes for qgroup release or free data btrfs: qgroup: Cleanup btrfs_qgroup_prepare_account_extents function btrfs: qgroup: Add quick exit for non-fs extents Btrfs: rework delayed ref total_bytes_pinned accounting Btrfs: return old and new total ref mods when adding delayed refs Btrfs: always account pinned bytes when dropping a tree block ref Btrfs: update total_bytes_pinned when pinning down extents Btrfs: make BUG_ON() in add_pinned_bytes() an ASSERT() Btrfs: make add_pinned_bytes() take an s64 num_bytes instead of u64 btrfs: fix validation of XATTR_ITEM dir items btrfs: Verify dir_item in iterate_object_props btrfs: Check name_len before in btrfs_del_root_ref btrfs: Check name_len before reading btrfs_get_name ...
2017-06-19btrfs: reduce arguments for decompress_bio opsAnand Jain
struct compressed_bio pointer can be used instead. Signed-off-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2017-06-09block: switch bios to blk_status_tChristoph Hellwig
Replace bi_error with a new bi_status to allow for a clear conversion. Note that device mapper overloaded bi_error with a private value, which we'll have to keep arround at least for now and thus propagate to a proper blk_status_t value. Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-02-28btrfs: derive maximum output size in the compression implementationDavid Sterba
The value of max_out can be calculated from the parameters passed to the compressors, which is number of pages and the page size, and we don't have to needlessly pass it around. Signed-off-by: David Sterba <dsterba@suse.com>
2017-02-28btrfs: export compression buffer limits in a headerDavid Sterba
Move the buffer limit definitions out of compress_file_range. Reviewed-by: Qu Wenruo <quwenruo@cn.fujitsu.com> Signed-off-by: David Sterba <dsterba@suse.com>
2017-02-28btrfs: merge nr_pages input and output parameter in compress_pagesDavid Sterba
The parameter saying how many pages can be allocated at maximum can be merged with the output page counter, to save some stack space. The compression implementation will sink the parameter to a local variable so everything works as before. The nr_pages variables can also be simply merged in compress_file_range into one. Signed-off-by: David Sterba <dsterba@suse.com>
2017-02-28btrfs: merge length input and output parameter in compress_pagesDavid Sterba
The length parameter is basically duplicated for input and output in the top level caller of the compress_pages chain. We can simply use one variable for that and reduce stack consumption. The compression implementation will sink the parameter to a local variable so everything works as before. Signed-off-by: David Sterba <dsterba@suse.com>
2017-02-28btrfs: constify buffers used by compression helpersDavid Sterba
Signed-off-by: David Sterba <dsterba@suse.com>
2016-11-30btrfs: use bio iterators for the decompression handlersChristoph Hellwig
Pass the full bio to the decompression routines and use bio iterators to iterate over the data in the bio. Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: David Sterba <dsterba@suse.com>
2016-03-11btrfs: move btrfs_compression_type to compression.hAnand Jain
So that its better organized. Signed-off-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2015-02-16btrfs: constify structs with op functions or static definitionsDavid Sterba
There are some op tables that can be easily made const, similarly the sysfs feature and raid tables. This is motivated by PaX CONSTIFY plugin. Signed-off-by: David Sterba <dsterba@suse.cz>
2014-11-30btrfs: zero out left over bytes after processing compression streamsChris Mason
Don Bailey noticed that our page zeroing for compression at end-io time isn't complete. This reworks a patch from Linus to push the zeroing into the zlib and lzo specific functions instead of trying to handle the corners inside btrfs_decompress_buf2page Signed-off-by: Chris Mason <clm@fb.com> Reviewed-by: Josef Bacik <jbacik@fb.com> Reported-by: Don A. Bailey <donb@securitymouse.com> cc: stable@vger.kernel.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-05-06btrfs: make static code static & remove dead codeEric Sandeen
Big patch, but all it does is add statics to functions which are in fact static, then remove the associated dead-code fallout. removed functions: btrfs_iref_to_path() __btrfs_lookup_delayed_deletion_item() __btrfs_search_delayed_insertion_item() __btrfs_search_delayed_deletion_item() find_eb_for_page() btrfs_find_block_group() range_straddles_pages() extent_range_uptodate() btrfs_file_extent_length() btrfs_scrub_cancel_devid() btrfs_start_transaction_lflush() btrfs_print_tree() is left because it is used for debugging. btrfs_start_transaction_lflush() and btrfs_reada_detach() are left for symmetry. ulist.c functions are left, another patch will take care of those. Signed-off-by: Eric Sandeen <sandeen@redhat.com> Signed-off-by: Josef Bacik <jbacik@fusionio.com>
2012-03-22btrfs: return void in functions without error conditionsJeff Mahoney
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
2011-05-02btrfs: rename variables clashing with global function namesDavid Sterba
reported by gcc -Wshadow: page_index, page_offset, new_inode, dev_name Signed-off-by: David Sterba <dsterba@suse.cz>
2010-12-22btrfs: Extract duplicate decompress codeLi Zefan
Add a common function to copy decompressed data from working buffer to bio pages. Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
2010-12-22btrfs: Add lzo compression supportLi Zefan
Lzo is a much faster compression algorithm than gzib, so would allow more users to enable transparent compression, and some users can choose from compression ratio and speed for different applications Usage: # mount -t btrfs -o compress[=<zlib,lzo>] dev /mnt or # mount -t btrfs -o compress-force[=<zlib,lzo>] dev /mnt "-o compress" without argument is still allowed for compatability. Compatibility: If we mount a filesystem with lzo compression, it will not be able be mounted in old kernels. One reason is, otherwise btrfs will directly dump compressed data, which sits in inline extent, to user. Performance: The test copied a linux source tarball (~400M) from an ext4 partition to the btrfs partition, and then extracted it. (time in second) lzo zlib nocompress copy: 10.6 21.7 14.9 extract: 70.1 94.4 66.6 (data size in MB) lzo zlib nocompress copy: 185.87 108.69 394.49 extract: 193.80 132.36 381.21 Changelog: v1 -> v2: - Select LZO_COMPRESS and LZO_DECOMPRESS in btrfs Kconfig. - Add incompability flag. - Fix error handling in compress code. Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
2010-12-22btrfs: Allow to add new compression algorithmLi Zefan
Make the code aware of compression type, instead of always assuming zlib compression. Also make the zlib workspace function as common code for all compression types. Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
2008-10-29Btrfs: Add zlib compression supportChris Mason
This is a large change for adding compression on reading and writing, both for inline and regular extents. It does some fairly large surgery to the writeback paths. Compression is off by default and enabled by mount -o compress. Even when the -o compress mount option is not used, it is possible to read compressed extents off the disk. If compression for a given set of pages fails to make them smaller, the file is flagged to avoid future compression attempts later. * While finding delalloc extents, the pages are locked before being sent down to the delalloc handler. This allows the delalloc handler to do complex things such as cleaning the pages, marking them writeback and starting IO on their behalf. * Inline extents are inserted at delalloc time now. This allows us to compress the data before inserting the inline extent, and it allows us to insert an inline extent that spans multiple pages. * All of the in-memory extent representations (extent_map.c, ordered-data.c etc) are changed to record both an in-memory size and an on disk size, as well as a flag for compression. From a disk format point of view, the extent pointers in the file are changed to record the on disk size of a given extent and some encoding flags. Space in the disk format is allocated for compression encoding, as well as encryption and a generic 'other' field. Neither the encryption or the 'other' field are currently used. In order to limit the amount of data read for a single random read in the file, the size of a compressed extent is limited to 128k. This is a software only limit, the disk format supports u64 sized compressed extents. In order to limit the ram consumed while processing extents, the uncompressed size of a compressed extent is limited to 256k. This is a software only limit and will be subject to tuning later. Checksumming is still done on compressed extents, and it is done on the uncompressed version of the data. This way additional encodings can be layered on without having to figure out which encoding to checksum. Compression happens at delalloc time, which is basically singled threaded because it is usually done by a single pdflush thread. This makes it tricky to spread the compression load across all the cpus on the box. We'll have to look at parallel pdflush walks of dirty inodes at a later time. Decompression is hooked into readpages and it does spread across CPUs nicely. Signed-off-by: Chris Mason <chris.mason@oracle.com>