summaryrefslogtreecommitdiff
path: root/fs/afs/super.c
AgeCommit message (Collapse)Author
2020-10-16Merge tag 'afs-fixes-20201016' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs Pull afs updates from David Howells: "A collection of fixes to fix afs_cell struct refcounting, thereby fixing a slew of related syzbot bugs: - Fix the cell tree in the netns to use an rwsem rather than RCU. There seem to be some problems deriving from the use of RCU and a seqlock to walk the rbtree, but it's not entirely clear what since there are several different failures being seen. Changing things to use an rwsem instead makes it more robust. The extra performance derived from using RCU isn't necessary in this case since the only time we're looking up a cell is during mount or when cells are being manually added. - Fix the refcounting by splitting the usage counter into a memory refcount and an active users counter. The usage counter was doing double duty, keeping track of whether a cell is still in use and keeping track of when it needs to be destroyed - but this makes the clean up tricky. Separating these out simplifies the logic. - Fix purging a cell that has an alias. A cell alias pins the cell it's an alias of, but the alias is always later in the list. Trying to purge in a single pass causes rmmod to hang in such a case. - Fix cell removal. If a cell's manager is requeued whilst it's removing itself, the manager will run again and re-remove itself, causing problems in various places. Follow Hillf Danton's suggestion to insert a more terminal state that causes the manager to do nothing post-removal. In additional to the above, two other changes: - Add a tracepoint for the cell refcount and active users count. This helped with debugging the above and may be useful again in future. - Downgrade an assertion to a print when a still-active server is seen during purging. This was happening as a consequence of incomplete cell removal before the servers were cleaned up" * tag 'afs-fixes-20201016' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs: afs: Don't assert on unpurgeable server records afs: Add tracing for cell refcount and active user count afs: Fix cell removal afs: Fix cell purging with aliases afs: Fix cell refcounting by splitting the usage counter afs: Fix rapid cell addition/removal by not using RCU on cells tree
2020-10-16afs: Add tracing for cell refcount and active user countDavid Howells
Add a tracepoint to log the cell refcount and active user count and pass in a reason code through various functions that manipulate these counters. Additionally, a helper function, afs_see_cell(), is provided to log interesting places that deal with a cell without actually doing any accounting directly. Signed-off-by: David Howells <dhowells@redhat.com>
2020-10-16afs: Fix cell refcounting by splitting the usage counterDavid Howells
Management of the lifetime of afs_cell struct has some problems due to the usage counter being used to determine whether objects of that type are in use in addition to whether anyone might be interested in the structure. This is made trickier by cell objects being cached for a period of time in case they're quickly reused as they hold the result of a setup process that may be slow (DNS lookups, AFS RPC ops). Problems include the cached root volume from alias resolution pinning its parent cell record, rmmod occasionally hanging and occasionally producing assertion failures. Fix this by splitting the count of active users from the struct reference count. Things then work as follows: (1) The cell cache keeps +1 on the cell's activity count and this has to be dropped before the cell can be removed. afs_manage_cell() tries to exchange the 1 to a 0 with the cells_lock write-locked, and if successful, the record is removed from the net->cells. (2) One struct ref is 'owned' by the activity count. That is put when the active count is reduced to 0 (final_destruction label). (3) A ref can be held on a cell whilst it is queued for management on a work queue without confusing the active count. afs_queue_cell() is added to wrap this. (4) The queue's ref is dropped at the end of the management. This is split out into a separate function, afs_manage_cell_work(). (5) The root volume record is put after a cell is removed (at the final_destruction label) rather then in the RCU destruction routine. (6) Volumes hold struct refs, but aren't active users. (7) Both counts are displayed in /proc/net/afs/cells. There are some management function changes: (*) afs_put_cell() now just decrements the refcount and triggers the RCU destruction if it becomes 0. It no longer sets a timer to have the manager do this. (*) afs_use_cell() and afs_unuse_cell() are added to increase and decrease the active count. afs_unuse_cell() sets the management timer. (*) afs_queue_cell() is added to queue a cell with approprate refs. There are also some other fixes: (*) Don't let /proc/net/afs/cells access a cell's vllist if it's NULL. (*) Make sure that candidate cells in lookups are properly destroyed rather than being simply kfree'd. This ensures the bits it points to are destroyed also. (*) afs_dec_cells_outstanding() is now called in cell destruction rather than at "final_destruction". This ensures that cell->net is still valid to the end of the destructor. (*) As a consequence of the previous two changes, move the increment of net->cells_outstanding that was at the point of insertion into the tree to the allocation routine to correctly balance things. Fixes: 989782dcdc91 ("afs: Overhaul cell database management") Signed-off-by: David Howells <dhowells@redhat.com>
2020-10-16afs: Fix rapid cell addition/removal by not using RCU on cells treeDavid Howells
There are a number of problems that are being seen by the rapidly mounting and unmounting an afs dynamic root with an explicit cell and volume specified (which should probably be rejected, but that's a separate issue): What the tests are doing is to look up/create a cell record for the name given and then tear it down again without actually using it to try to talk to a server. This is repeated endlessly, very fast, and the new cell collides with the old one if it's not quick enough to reuse it. It appears (as suggested by Hillf Danton) that the search through the RB tree under a read_seqbegin_or_lock() under RCU conditions isn't safe and that it's not blocking the write_seqlock(), despite taking two passes at it. He suggested that the code should take a ref on the cell it's attempting to look at - but this shouldn't be necessary until we've compared the cell names. It's possible that I'm missing a barrier somewhere. However, using an RCU search for this is overkill, really - we only need to access the cell name in a few places, and they're places where we're may end up sleeping anyway. Fix this by switching to an R/W semaphore instead. Additionally, draw the down_read() call inside the function (renamed to afs_find_cell()) since all the callers were taking the RCU read lock (or should've been[*]). [*] afs_probe_cell_name() should have been, but that doesn't appear to be involved in the bug reports. The symptoms of this look like: general protection fault, probably for non-canonical address 0xf27d208691691fdb: 0000 [#1] PREEMPT SMP KASAN KASAN: maybe wild-memory-access in range [0x93e924348b48fed8-0x93e924348b48fedf] ... RIP: 0010:strncasecmp lib/string.c:52 [inline] RIP: 0010:strncasecmp+0x5f/0x240 lib/string.c:43 afs_lookup_cell_rcu+0x313/0x720 fs/afs/cell.c:88 afs_lookup_cell+0x2ee/0x1440 fs/afs/cell.c:249 afs_parse_source fs/afs/super.c:290 [inline] ... Fixes: 989782dcdc91 ("afs: Overhaul cell database management") Reported-by: syzbot+459a5dce0b4cb70fd076@syzkaller.appspotmail.com Signed-off-by: David Howells <dhowells@redhat.com> cc: Hillf Danton <hdanton@sina.com> cc: syzkaller-bugs@googlegroups.com
2020-09-24bdi: initialize ->ra_pages and ->io_pages in bdi_initChristoph Hellwig
Set up a readahead size by default, as very few users have a good reason to change it. This means code, ecryptfs, and orangefs now set up the values while they were previously missing it, while ubifs, mtd and vboxsf manually set it to 0 to avoid readahead. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Jan Kara <jack@suse.cz> Acked-by: David Sterba <dsterba@suse.com> [btrfs] Acked-by: Richard Weinberger <richard@nod.at> [ubifs, mtd] Signed-off-by: Jens Axboe <axboe@kernel.dk>
2020-06-04afs: Fix afs_statfs() to not let the values go below zeroDavid Howells
Fix afs_statfs() so that the value for f_bavail and f_bfree don't go "negative" if the number of blocks in use by a volume exceeds the max quota for that volume. Signed-off-by: David Howells <dhowells@redhat.com>
2020-06-04afs: Reorganise volume and server trees to be rooted on the cellDavid Howells
Reorganise afs_volume objects such that they're in a tree keyed on volume ID, rooted at on an afs_cell object rather than being in multiple trees, each of which is rooted on an afs_server object. afs_server structs become per-cell and acquire a pointer to the cell. The process of breaking a callback then starts with finding the server by its network address, following that to the cell and then looking up each volume ID in the volume tree. This is simpler than the afs_vol_interest/afs_cb_interest N:M mapping web and allows those structs and the code for maintaining them to be simplified or removed. It does make a couple of things a bit more tricky, though: (1) Operations now start with a volume, not a server, so there can be more than one answer as to whether or not the server we'll end up using supports the FS.InlineBulkStatus RPC. (2) CB RPC operations that specify the server UUID. There's still a tree of servers by UUID on the afs_net struct, but the UUIDs in it aren't guaranteed unique. Signed-off-by: David Howells <dhowells@redhat.com>
2020-06-04afs: Add a tracepoint to track the lifetime of the afs_volume structDavid Howells
Add a tracepoint to track the lifetime of the afs_volume struct. Signed-off-by: David Howells <dhowells@redhat.com>
2020-06-04afs: Detect cell aliases 1 - Cells with root volumesDavid Howells
Put in the first phase of cell alias detection. This part handles alias detection for cells that have root.cell volumes (which is expected to be likely). When a cell becomes newly active, it is probed for its root.cell volume, and if it has one, this volume is compared against other root.cell volumes to find out if the list of fileserver UUIDs have any in common - and if that's the case, do the address lists of those fileservers have any addresses in common. If they do, the new cell is adjudged to be an alias of the old cell and the old cell is used instead. Comparing is aided by the server list in struct afs_server_list being sorted in UUID order and the addresses in the fileserver address lists being sorted in address order. The cell then retains the afs_volume object for the root.cell volume, even if it's not mounted for future alias checking. This necessary because: (1) Whilst fileservers have UUIDs that are meant to be globally unique, in practice they are not because cells get cloned without changing the UUIDs - so afs_server records need to be per cell. (2) Sometimes the DNS is used to make cell aliases - but if we don't know they're the same, we may end up with multiple superblocks and multiple afs_server records for the same thing, impairing our ability to deliver callback notifications of third party changes (3) The fileserver RPC API doesn't contain the cell name, so it can't tell us which cell it's notifying and can't see that a change made to to one cell should notify the same client that's also accessed as the other cell. Reported-by: Jeffrey Altman <jaltman@auristor.com> Signed-off-by: David Howells <dhowells@redhat.com>
2020-06-04afs: Build an abstraction around an "operation" conceptDavid Howells
Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-05-31afs: Rename struct afs_fs_cursor to afs_operationDavid Howells
As a prelude to implementing asynchronous fileserver operations in the afs filesystem, rename struct afs_fs_cursor to afs_operation. This struct is going to form the core of the operation management and is going to acquire more members in later. Signed-off-by: David Howells <dhowells@redhat.com>
2020-02-07fs_parse: fold fs_parameter_desc/fs_parameter_specAl Viro
The former contains nothing but a pointer to an array of the latter... Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2020-02-07fs_parser: remove fs_parameter_description name fieldEric Sandeen
Unused now. Signed-off-by: Eric Sandeen <sandeen@redhat.com> Acked-by: David Howells <dhowells@redhat.com> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2020-02-07fold struct fs_parameter_enum into struct constant_tableAl Viro
no real difference now Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2020-02-07fs_parse: get rid of ->enumsAl Viro
Don't do a single array; attach them to fsparam_enum() entry instead. And don't bother trying to embed the names into those - it actually loses memory, with no real speedup worth mentioning. Simplifies validation as well. Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2019-12-11afs: Fix missing cell comparison in afs_test_super()David Howells
Fix missing cell comparison in afs_test_super(). Without this, any pair volumes that have the same volume ID will share a superblock, no matter the cell, unless they're in different network namespaces. Normally, most users will only deal with a single cell and so they won't see this. Even if they do look into a second cell, they won't see a problem unless they happen to hit a volume with the same ID as one they've already got mounted. Before the patch: # ls /afs/grand.central.org/archive linuxdev/ mailman/ moin/ mysql/ pipermail/ stage/ twiki/ # ls /afs/kth.se/ linuxdev/ mailman/ moin/ mysql/ pipermail/ stage/ twiki/ # cat /proc/mounts | grep afs none /afs afs rw,relatime,dyn,autocell 0 0 #grand.central.org:root.cell /afs/grand.central.org afs ro,relatime 0 0 #grand.central.org:root.archive /afs/grand.central.org/archive afs ro,relatime 0 0 #grand.central.org:root.archive /afs/kth.se afs ro,relatime 0 0 After the patch: # ls /afs/grand.central.org/archive linuxdev/ mailman/ moin/ mysql/ pipermail/ stage/ twiki/ # ls /afs/kth.se/ admin/ common/ install/ OldFiles/ service/ system/ bakrestores/ home/ misc/ pkg/ src/ wsadmin/ # cat /proc/mounts | grep afs none /afs afs rw,relatime,dyn,autocell 0 0 #grand.central.org:root.cell /afs/grand.central.org afs ro,relatime 0 0 #grand.central.org:root.archive /afs/grand.central.org/archive afs ro,relatime 0 0 #kth.se:root.cell /afs/kth.se afs ro,relatime 0 0 Fixes: ^1da177e4c3f4 ("Linux-2.6.12-rc2") Reported-by: Carsten Jacobi <jacobi@de.ibm.com> Signed-off-by: David Howells <dhowells@redhat.com> Reviewed-by: Marc Dionne <marc.dionne@auristor.com> Tested-by: Jonathan Billings <jsbillings@jsbillings.org> cc: Todd DeSantis <atd@us.ibm.com>
2019-12-09afs: Fix SELinux setting security label on /afsDavid Howells
Make the AFS dynamic root superblock R/W so that SELinux can set the security label on it. Without this, upgrades to, say, the Fedora filesystem-afs RPM fail if afs is mounted on it because the SELinux label can't be (re-)applied. It might be better to make it possible to bypass the R/O check for LSM label application through setxattr. Fixes: 4d673da14533 ("afs: Support the AFS dynamic root") Signed-off-by: David Howells <dhowells@redhat.com> Reviewed-by: Marc Dionne <marc.dionne@auristor.com> cc: selinux@vger.kernel.org cc: linux-security-module@vger.kernel.org
2019-11-22afs: Fix large file supportMarc Dionne
By default s_maxbytes is set to MAX_NON_LFS, which limits the usable file size to 2GB, enforced by the vfs. Commit b9b1f8d5930a ("AFS: write support fixes") added support for the 64-bit fetch and store server operations, but did not change this value. As a result, attempts to write past the 2G mark result in EFBIG errors: $ dd if=/dev/zero of=foo bs=1M count=1 seek=2048 dd: error writing 'foo': File too large Set s_maxbytes to MAX_LFS_FILESIZE. Fixes: b9b1f8d5930a ("AFS: write support fixes") Signed-off-by: Marc Dionne <marc.dionne@auristor.com> Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-16afs: Pass pre-fetch server and volume break counts into afs_iget5_set()David Howells
Pass the server and volume break counts from before the status fetch operation that queried the attributes of a file into afs_iget5_set() so that the new vnode's break counters can be initialised appropriately. This allows detection of a volume or server break that happened whilst we were fetching the status or setting up the vnode. Fixes: c435ee34551e ("afs: Overhaul the callback handling") Signed-off-by: David Howells <dhowells@redhat.com>
2019-05-16afs: Make vnode->cb_interest RCU safeDavid Howells
Use RCU-based freeing for afs_cb_interest struct objects and use RCU on vnode->cb_interest. Use that change to allow afs_check_validity() to use read_seqbegin_or_lock() instead of read_seqlock_excl(). This also requires the caller of afs_check_validity() to hold the RCU read lock across the call. Signed-off-by: David Howells <dhowells@redhat.com>
2019-05-16afs: Don't save callback version and type fieldsDavid Howells
Don't save callback version and type fields as the version is about the format of the callback information and the type is relative to the particular RPC call. Signed-off-by: David Howells <dhowells@redhat.com>
2019-05-16afs: Fix application of status and callback to be under same lockDavid Howells
When applying the status and callback in the response of an operation, apply them in the same critical section so that there's no race between checking the callback state and checking status-dependent state (such as the data version). Fix this by: (1) Allocating a joint {status,callback} record (afs_status_cb) before calling the RPC function for each vnode for which the RPC reply contains a status or a status plus a callback. A flag is set in the record to indicate if a callback was actually received. (2) These records are passed into the RPC functions to be filled in. The afs_decode_status() and yfs_decode_status() functions are removed and the cb_lock is no longer taken. (3) xdr_decode_AFSFetchStatus() and xdr_decode_YFSFetchStatus() no longer update the vnode. (4) xdr_decode_AFSCallBack() and xdr_decode_YFSCallBack() no longer update the vnode. (5) vnodes, expected data-version numbers and callback break counters (cb_break) no longer need to be passed to the reply delivery functions. Note that, for the moment, the file locking functions still need access to both the call and the vnode at the same time. (6) afs_vnode_commit_status() is now given the cb_break value and the expected data_version and the task of applying the status and the callback to the vnode are now done here. This is done under a single taking of vnode->cb_lock. (7) afs_pages_written_back() is now called by afs_store_data() rather than by the reply delivery function. afs_pages_written_back() has been moved to before the call point and is now given the first and last page numbers rather than a pointer to the call. (8) The indicator from YFS.RemoveFile2 as to whether the target file actually got removed (status.abort_code == VNOVNODE) rather than merely dropping a link is now checked in afs_unlink rather than in xdr_decode_YFSFetchStatus(). Supplementary fixes: (*) afs_cache_permit() now gets the caller_access mask from the afs_status_cb object rather than picking it out of the vnode's status record. afs_fetch_status() returns caller_access through its argument list for this purpose also. (*) afs_inode_init_from_status() now uses a write lock on cb_lock rather than a read lock and now sets the callback inside the same critical section. Fixes: c435ee34551e ("afs: Overhaul the callback handling") Signed-off-by: David Howells <dhowells@redhat.com>
2019-05-16afs: Make some RPC operations non-interruptibleDavid Howells
Make certain RPC operations non-interruptible, including: (*) Set attributes (*) Store data We don't want to get interrupted during a flush on close, flush on unlock, writeback or an inode update, leaving us in a state where we still need to do the writeback or update. (*) Extend lock (*) Release lock We don't want to get lock extension interrupted as the file locks on the server are time-limited. Interruption during lock release is less of an issue since the lock is time-limited, but it's better to complete the release to avoid a several-minute wait to recover it. *Setting* the lock isn't a problem if it's interrupted since we can just return to the user and tell them they were interrupted - at which point they can elect to retry. (*) Silly unlink We want to remove silly unlink files if we can, rather than leaving them for the salvager to clear up. Note that whilst these calls are no longer interruptible, they do have timeouts on them, so if the server stops responding the call will fail with something like ETIME or ECONNRESET. Without this, the following: kAFS: Unexpected error from FS.StoreData -512 appears in dmesg when a pending store data gets interrupted and some processes may just hang. Additionally, make the code that checks/updates the server record ignore failure due to interruption if the main call is uninterruptible and if the server has an address list. The next op will check it again since the expiration time on the old list has past. Fixes: d2ddc776a458 ("afs: Overhaul volume and server record caching and fileserver rotation") Reported-by: Jonathan Billings <jsbillings@jsbillings.org> Reported-by: Marc Dionne <marc.dionne@auristor.com> Signed-off-by: David Howells <dhowells@redhat.com>
2019-05-07Merge tag 'afs-next-20190507' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs Pull AFS updates from David Howells: "A set of fix and development patches for AFS for 5.2. Summary: - Fix the AFS file locking so that sqlite can run on an AFS mount and also so that firefox and gnome can use a homedir that's mounted through AFS. This required emulation of fine-grained locking when the server will only support whole-file locks and no upgrade/downgrade. Four modes are provided, settable by mount parameter: "flock=local" - No reference to the server "flock=openafs" - Fine-grained locks are local-only, whole-file locks require sufficient server locks "flock=strict" - All locks require sufficient server locks "flock=write" - Always get an exclusive server lock If the volume is a read-only or backup volume, then flock=local for that volume. - Log extra information for a couple of cases where the client mucks up somehow: AFS vnode with undefined type and dir check failure - in both cases we seem to end up with unfilled data, but the issues happen infrequently and are difficult to reproduce at will. - Implement silly rename for unlink() and rename(). - Set i_blocks so that du can get some information about usage. - Fix xattr handlers to return the right amount of data and to not overflow buffers. - Implement getting/setting raw AFS and YFS ACLs as xattrs" * tag 'afs-next-20190507' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs: afs: Implement YFS ACL setting afs: Get YFS ACLs and information through xattrs afs: implement acl setting afs: Get an AFS3 ACL as an xattr afs: Fix getting the afs.fid xattr afs: Fix the afs.cell and afs.volume xattr handlers afs: Calculate i_blocks based on file size afs: Log more information for "kAFS: AFS vnode with undefined type\n" afs: Provide mount-time configurable byte-range file locking emulation afs: Add more tracepoints afs: Implement sillyrename for unlink and rename afs: Add directory reload tracepoint afs: Handle lock rpc ops failing on a file that got deleted afs: Improve dir check failure reports afs: Add file locking tracepoints afs: Further fix file locking afs: Fix AFS file locking to allow fine grained locks afs: Calculate lock extend timer from set/extend reply reception afs: Split wait from afs_make_call()
2019-05-07afs: Log more information for "kAFS: AFS vnode with undefined type\n"David Howells
Log more information when "kAFS: AFS vnode with undefined type\n" is displayed due to a vnode record being retrieved from the server that appears to have a duff file type (usually 0). This prints more information to try and help pin down the problem. Signed-off-by: David Howells <dhowells@redhat.com>
2019-05-01afs: switch to use of ->free_inode()Al Viro
debugging printks left in ->destroy_inode() and so's the update of inode count; we could take the latter to RCU-delayed part (would take only moving the check on module exit past rcu_barrier() there), but debugging output ought to either stay where it is or go into ->evict_inode() Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2019-04-25afs: Provide mount-time configurable byte-range file locking emulationDavid Howells
Provide byte-range file locking emulation that can be configured at mount time to one of four modes: (1) flock=local. Locking is done locally only and no reference is made to the server. (2) flock=openafs. Byte-range locking is done locally only; whole-file locking is done with reference to the server. Whole-file locks cannot be upgraded unless the client holds an exclusive lock. (3) flock=strict. Byte-range and whole-file locking both require a sufficient whole-file lock on the server. (4) flock=write. As strict, but the client always gets an exclusive whole-file lock on the server. Signed-off-by: David Howells <dhowells@redhat.com>
2019-04-25afs: Add more tracepointsDavid Howells
Add four more tracepoints: (1) afs_make_fs_call1 - Split from afs_make_fs_call but takes a filename to log also. (2) afs_make_fs_call2 - Like the above but takes two filenames to log. (3) afs_lookup - Log the result of doing a successful lookup, including a negative result (fid 0:0). (4) afs_get_tree - Log the set up of a volume for mounting. It also extends the name buffer on the afs_edit_dir tracepoint to 24 chars and puts quotes around the filename in the text representation. Signed-off-by: David Howells <dhowells@redhat.com>
2019-04-25afs: Implement sillyrename for unlink and renameDavid Howells
Implement sillyrename for AFS unlink and rename, using the NFS variant implementation as a basis. Note that the asynchronous file locking extender/releaser has to be notified with a state change to stop it complaining if there's a race between that and the actual file deletion. A tracepoint, afs_silly_rename, is also added to note the silly rename and the cleanup. The afs_edit_dir tracepoint is given some extra reason indicators and the afs_flock_ev tracepoint is given a silly-delete file lock cancellation indicator. Signed-off-by: David Howells <dhowells@redhat.com>
2019-03-12Merge branch 'work.mount' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs Pull vfs mount infrastructure updates from Al Viro: "The rest of core infrastructure; no new syscalls in that pile, but the old parts are switched to new infrastructure. At that point conversions of individual filesystems can happen independently; some are done here (afs, cgroup, procfs, etc.), there's also a large series outside of that pile dealing with NFS (quite a bit of option-parsing stuff is getting used there - it's one of the most convoluted filesystems in terms of mount-related logics), but NFS bits are the next cycle fodder. It got seriously simplified since the last cycle; documentation is probably the weakest bit at the moment - I considered dropping the commit introducing Documentation/filesystems/mount_api.txt (cutting the size increase by quarter ;-), but decided that it would be better to fix it up after -rc1 instead. That pile allows to do followup work in independent branches, which should make life much easier for the next cycle. fs/super.c size increase is unpleasant; there's a followup series that allows to shrink it considerably, but I decided to leave that until the next cycle" * 'work.mount' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (41 commits) afs: Use fs_context to pass parameters over automount afs: Add fs_context support vfs: Add some logging to the core users of the fs_context log vfs: Implement logging through fs_context vfs: Provide documentation for new mount API vfs: Remove kern_mount_data() hugetlbfs: Convert to fs_context cpuset: Use fs_context kernfs, sysfs, cgroup, intel_rdt: Support fs_context cgroup: store a reference to cgroup_ns into cgroup_fs_context cgroup1_get_tree(): separate "get cgroup_root to use" into a separate helper cgroup_do_mount(): massage calling conventions cgroup: stash cgroup_root reference into cgroup_fs_context cgroup2: switch to option-by-option parsing cgroup1: switch to option-by-option parsing cgroup: take options parsing into ->parse_monolithic() cgroup: fold cgroup1_mount() into cgroup1_get_tree() cgroup: start switching to fs_context ipc: Convert mqueue fs to fs_context proc: Add fs_context support to procfs ...
2019-03-12mm: refactor readahead defines in mm.hNikolay Borisov
All users of VM_MAX_READAHEAD actually convert it to kbytes and then to pages. Define the macro explicitly as (SZ_128K / PAGE_SIZE). This simplifies the expression in every filesystem. Also rename the macro to VM_READAHEAD_PAGES to properly convey its meaning. Finally remove unused VM_MIN_READAHEAD [akpm@linux-foundation.org: fix fs/io_uring.c, per Stephen] Link: http://lkml.kernel.org/r/20181221144053.24318-1-nborisov@suse.com Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: Matthew Wilcox <willy@infradead.org> Reviewed-by: David Hildenbrand <david@redhat.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Eric Van Hensbergen <ericvh@gmail.com> Cc: Latchesar Ionkov <lucho@ionkov.net> Cc: Dominique Martinet <asmadeus@codewreck.org> Cc: David Howells <dhowells@redhat.com> Cc: Chris Mason <clm@fb.com> Cc: Josef Bacik <josef@toxicpanda.com> Cc: David Sterba <dsterba@suse.com> Cc: Miklos Szeredi <miklos@szeredi.hu> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-02-28afs: Use fs_context to pass parameters over automountDavid Howells
Alter the AFS automounting code to create and modify an fs_context struct when parameterising a new mount triggered by an AFS mountpoint rather than constructing device name and option strings. Also remove the cell=, vol= and rwpath options as they are then redundant. The reason they existed is because the 'device name' may be derived literally from a mountpoint object in the filesystem, so default cell and parent-type information needed to be passed in by some other method from the automount routines. The vol= option didn't end up being used. Signed-off-by: David Howells <dhowells@redhat.com> cc: Eric W. Biederman <ebiederm@redhat.com> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2019-02-28afs: Add fs_context supportDavid Howells
Add fs_context support to the AFS filesystem, converting the parameter parsing to store options there. This will form the basis for namespace propagation over mountpoints within the AFS model, thereby allowing AFS to be used in containers more easily. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2018-10-24afs: Increase to 64-bit volume ID and 96-bit vnode ID for YFSDavid Howells
Increase the sizes of the volume ID to 64 bits and the vnode ID (inode number equivalent) to 96 bits to allow the support of YFS. This requires the iget comparator to check the vnode->fid rather than i_ino and i_generation as i_ino is not sufficiently capacious. It also requires this data to be placed into the vnode cache key for fscache. For the moment, just discard the top 32 bits of the vnode ID when returning it though stat. Signed-off-by: David Howells <dhowells@redhat.com>
2018-06-15afs: Display manually added cells in dynamic root mountDavid Howells
Alter the dynroot mount so that cells created by manipulation of /proc/fs/afs/cells and /proc/fs/afs/rootcell and by specification of a root cell as a module parameter will cause directories for those cells to be created in the dynamic root superblock for the network namespace[*]. To this end: (1) Only one dynamic root superblock is now created per network namespace and this is shared between all attempts to mount it. This makes it easier to find the superblock to modify. (2) When a dynamic root superblock is created, the list of cells is walked and directories created for each cell already defined. (3) When a new cell is added, if a dynamic root superblock exists, a directory is created for it. (4) When a cell is destroyed, the directory is removed. (5) These directories are created by calling lookup_one_len() on the root dir which automatically creates them if they don't exist. [*] Inasmuch as network namespaces are currently supported here. Signed-off-by: David Howells <dhowells@redhat.com>
2018-06-02Merge tag 'afs-fixes-20180514' into afs-procAl Viro
backmerge AFS fixes that went into mainline and deal with the conflict in fs/afs/fsclient.c Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2018-05-23afs: Implement network namespacingDavid Howells
Implement network namespacing within AFS, but don't yet let mounts occur outside the init namespace. An additional patch will be required propagate the network namespace across automounts. Signed-off-by: David Howells <dhowells@redhat.com>
2018-05-14afs: Fix whole-volume callback handlingDavid Howells
It's possible for an AFS file server to issue a whole-volume notification that callbacks on all the vnodes in the file have been broken. This is done for R/O and backup volumes (which don't have per-file callbacks) and for things like a volume being taken offline. Fix callback handling to detect whole-volume notifications, to track it across operations and to check it during inode validation. Fixes: c435ee34551e ("afs: Overhaul the callback handling") Signed-off-by: David Howells <dhowells@redhat.com>
2018-05-14afs: Fix directory page lockingDavid Howells
The afs directory loading code (primarily afs_read_dir()) locks all the pages that hold a directory's content blob to defend against getdents/getdents races and getdents/lookup races where the competitors issue conflicting reads on the same data. As the reads will complete consecutively, they may retrieve different versions of the data and one may overwrite the data that the other is busy parsing. Fix this by not locking the pages at all, but rather by turning the validation lock into an rwsem and getting an exclusive lock on it whilst reading the data or validating the attributes and a shared lock whilst parsing the data. Sharing the attribute validation lock should be fine as the data fetch will retrieve the attributes also. The individual page locks aren't needed at all as the only place they're being used is to serialise data loading. Without this patch, the: if (!test_bit(AFS_VNODE_DIR_VALID, &dvnode->flags)) { ... } part of afs_read_dir() may be skipped, leaving the pages unlocked when we hit the success: clause - in which case we try to unlock the not-locked pages, leading to the following oops: page:ffffe38b405b4300 count:3 mapcount:0 mapping:ffff98156c83a978 index:0x0 flags: 0xfffe000001004(referenced|private) raw: 000fffe000001004 ffff98156c83a978 0000000000000000 00000003ffffffff raw: dead000000000100 dead000000000200 0000000000000001 ffff98156b27c000 page dumped because: VM_BUG_ON_PAGE(!PageLocked(page)) page->mem_cgroup:ffff98156b27c000 ------------[ cut here ]------------ kernel BUG at mm/filemap.c:1205! ... RIP: 0010:unlock_page+0x43/0x50 ... Call Trace: afs_dir_iterate+0x789/0x8f0 [kafs] ? _cond_resched+0x15/0x30 ? kmem_cache_alloc_trace+0x166/0x1d0 ? afs_do_lookup+0x69/0x490 [kafs] ? afs_do_lookup+0x101/0x490 [kafs] ? key_default_cmp+0x20/0x20 ? request_key+0x3c/0x80 ? afs_lookup+0xf1/0x340 [kafs] ? __lookup_slow+0x97/0x150 ? lookup_slow+0x35/0x50 ? walk_component+0x1bf/0x490 ? path_lookupat.isra.52+0x75/0x200 ? filename_lookup.part.66+0xa0/0x170 ? afs_end_vnode_operation+0x41/0x60 [kafs] ? __check_object_size+0x9c/0x171 ? strncpy_from_user+0x4a/0x170 ? vfs_statx+0x73/0xe0 ? __do_sys_newlstat+0x39/0x70 ? __x64_sys_getdents+0xc9/0x140 ? __x64_sys_getdents+0x140/0x140 ? do_syscall_64+0x5b/0x160 ? entry_SYSCALL_64_after_hwframe+0x44/0xa9 Fixes: f3ddee8dc4e2 ("afs: Fix directory handling") Reported-by: Marc Dionne <marc.dionne@auristor.com> Signed-off-by: David Howells <dhowells@redhat.com>
2018-04-09afs: Split the dynroot stuff out and give it its own ops tablesDavid Howells
Split the AFS dynamic root stuff out of the main directory handling file and into its own file as they share little in common. The dynamic root code also gets its own dentry and inode ops tables. Signed-off-by: David Howells <dhowells@redhat.com>
2018-02-06afs: Support the AFS dynamic rootDavid Howells
Support the AFS dynamic root which is a pseudo-volume that doesn't connect to any server resource, but rather is just a root directory that dynamically creates mountpoint directories where the name of such a directory is the name of the cell. Such a mount can be created thus: mount -t afs none /afs -o dyn Dynamic root superblocks aren't shared except by bind mounts and propagation. Cell root volumes can then be mounted by referring to them by name, e.g.: ls /afs/grand.central.org/ ls /afs/.grand.central.org/ The kernel will upcall to consult the DNS if the address wasn't supplied directly. Signed-off-by: David Howells <dhowells@redhat.com>
2017-12-01afs: Properly reset afs_vnode (inode) fieldsDavid Howells
When an AFS inode is allocated by afs_alloc_inode(), the allocated afs_vnode struct isn't necessarily reset from the last time it was used as an inode because the slab constructor is only invoked once when the memory is obtained from the page allocator. This means that information can leak from one inode to the next because we're not calling kmem_cache_zalloc(). Some of the information isn't reset, in particular the permit cache pointer. Bring the clearances up to date. Signed-off-by: David Howells <dhowells@redhat.com> Tested-by: Marc Dionne <marc.dionne@auristor.com>
2017-11-27Rename superblock flags (MS_xyz -> SB_xyz)Linus Torvalds
This is a pure automated search-and-replace of the internal kernel superblock flags. The s_flags are now called SB_*, with the names and the values for the moment mirroring the MS_* flags that they're equivalent to. Note how the MS_xyz flags are the ones passed to the mount system call, while the SB_xyz flags are what we then use in sb->s_flags. The script to do this was: # places to look in; re security/*: it generally should *not* be # touched (that stuff parses mount(2) arguments directly), but # there are two places where we really deal with superblock flags. FILES="drivers/mtd drivers/staging/lustre fs ipc mm \ include/linux/fs.h include/uapi/linux/bfs_fs.h \ security/apparmor/apparmorfs.c security/apparmor/include/lib.h" # the list of MS_... constants SYMS="RDONLY NOSUID NODEV NOEXEC SYNCHRONOUS REMOUNT MANDLOCK \ DIRSYNC NOATIME NODIRATIME BIND MOVE REC VERBOSE SILENT \ POSIXACL UNBINDABLE PRIVATE SLAVE SHARED RELATIME KERNMOUNT \ I_VERSION STRICTATIME LAZYTIME SUBMOUNT NOREMOTELOCK NOSEC BORN \ ACTIVE NOUSER" SED_PROG= for i in $SYMS; do SED_PROG="$SED_PROG -e s/MS_$i/SB_$i/g"; done # we want files that contain at least one of MS_..., # with fs/namespace.c and fs/pnode.c excluded. L=$(for i in $SYMS; do git grep -w -l MS_$i $FILES; done| sort|uniq|grep -v '^fs/namespace.c'|grep -v '^fs/pnode.c') for f in $L; do sed -i $f $SED_PROG; done Requested-by: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-13afs: Get rid of the afs_writeback recordDavid Howells
Get rid of the afs_writeback record that kAFS is using to match keys with writes made by that key. Instead, keep a list of keys that have a file open for writing and/or sync'ing and iterate through those. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-13afs: Overhaul volume and server record caching and fileserver rotationDavid Howells
The current code assumes that volumes and servers are per-cell and are never shared, but this is not enforced, and, indeed, public cells do exist that are aliases of each other. Further, an organisation can, say, set up a public cell and a private cell with overlapping, but not identical, sets of servers. The difference is purely in the database attached to the VL servers. The current code will malfunction if it sees a server in two cells as it assumes global address -> server record mappings and that each server is in just one cell. Further, each server may have multiple addresses - and may have addresses of different families (IPv4 and IPv6, say). To this end, the following structural changes are made: (1) Server record management is overhauled: (a) Server records are made independent of cell. The namespace keeps track of them, volume records have lists of them and each vnode has a server on which its callback interest currently resides. (b) The cell record no longer keeps a list of servers known to be in that cell. (c) The server records are now kept in a flat list because there's no single address to sort on. (d) Server records are now keyed by their UUID within the namespace. (e) The addresses for a server are obtained with the VL.GetAddrsU rather than with VL.GetEntryByName, using the server's UUID as a parameter. (f) Cached server records are garbage collected after a period of non-use and are counted out of existence before purging is allowed to complete. This protects the work functions against rmmod. (g) The servers list is now in /proc/fs/afs/servers. (2) Volume record management is overhauled: (a) An RCU-replaceable server list is introduced. This tracks both servers and their coresponding callback interests. (b) The superblock is now keyed on cell record and numeric volume ID. (c) The volume record is now tied to the superblock which mounts it, and is activated when mounted and deactivated when unmounted. This makes it easier to handle the cache cookie without causing a double-use in fscache. (d) The volume record is loaded from the VLDB using VL.GetEntryByNameU to get the server UUID list. (e) The volume name is updated if it is seen to have changed when the volume is updated (the update is keyed on the volume ID). (3) The vlocation record is got rid of and VLDB records are no longer cached. Sufficient information is stored in the volume record, though an update to a volume record is now no longer shared between related volumes (volumes come in bundles of three: R/W, R/O and backup). and the following procedural changes are made: (1) The fileserver cursor introduced previously is now fleshed out and used to iterate over fileservers and their addresses. (2) Volume status is checked during iteration, and the server list is replaced if a change is detected. (3) Server status is checked during iteration, and the address list is replaced if a change is detected. (4) The abort code is saved into the address list cursor and -ECONNABORTED returned in afs_make_call() if a remote abort happened rather than translating the abort into an error message. This allows actions to be taken depending on the abort code more easily. (a) If a VMOVED abort is seen then this is handled by rechecking the volume and restarting the iteration. (b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is handled by sleeping for a short period and retrying and/or trying other servers that might serve that volume. A message is also displayed once until the condition has cleared. (c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the moment. (d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to see if it has been deleted; if not, the fileserver is probably indicating that the volume couldn't be attached and needs salvaging. (e) If statfs() sees one of these aborts, it does not sleep, but rather returns an error, so as not to block the umount program. (5) The fileserver iteration functions in vnode.c are now merged into their callers and more heavily macroised around the cursor. vnode.c is removed. (6) Operations on a particular vnode are serialised on that vnode because the server will lock that vnode whilst it operates on it, so a second op sent will just have to wait. (7) Fileservers are probed with FS.GetCapabilities before being used. This is where service upgrade will be done. (8) A callback interest on a fileserver is set up before an FS operation is performed and passed through to afs_make_call() so that it can be set on the vnode if the operation returns a callback. The callback interest is passed through to afs_iget() also so that it can be set there too. In general, record updating is done on an as-needed basis when we try to access servers, volumes or vnodes rather than offloading it to work items and special threads. Notes: (1) Pre AFS-3.4 servers are no longer supported, though this can be added back if necessary (AFS-3.4 was released in 1998). (2) VBUSY is retried forever for the moment at intervals of 1s. (3) /proc/fs/afs/<cell>/servers no longer exists. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-13afs: Overhaul cell database managementDavid Howells
Overhaul the way that the in-kernel AFS client keeps track of cells in the following manner: (1) Cells are now held in an rbtree to make walking them quicker and RCU managed (though this is probably overkill). (2) Cells now have a manager work item that: (A) Looks after fetching and refreshing the VL server list. (B) Manages cell record lifetime, including initialising and destruction. (B) Manages cell record caching whereby threads are kept around for a certain time after last use and then destroyed. (C) Manages the FS-Cache index cookie for a cell. It is not permitted for a cookie to be in use twice, so we have to be careful to not allow a new cell record to exist at the same time as an old record of the same name. (3) Each AFS network namespace is given a manager work item that manages the cells within it, maintaining a single timer to prod cells into updating their DNS records. This uses the reduce_timer() facility to make the timer expire at the soonest timed event that needs happening. (4) When a module is being unloaded, cells and cell managers are now counted out using dec_after_work() to make sure the module text is pinned until after the data structures have been cleaned up. (5) Each cell's VL server list is now protected by a seqlock rather than a semaphore. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-13afs: Overhaul permit cachingDavid Howells
Overhaul permit caching in AFS by making it per-vnode and sharing permit lists where possible. When most of the fileserver operations are called, they return a status structure indicating the (revised) details of the vnode or vnodes involved in the operation. This includes the access mark derived from the ACL (named CallerAccess in the protocol definition file). This is cacheable and if the ACL changes, the server will tell us that it is breaking the callback promise, at which point we can discard the currently cached permits. With this patch, the afs_permits structure has, at the end, an array of { key, CallerAccess } elements, sorted by key pointer. This is then cached in a hash table so that it can be shared between vnodes with the same access permits. Permit lists can only be shared if they contain the exact same set of key->CallerAccess mappings. Note that that table is global rather than being per-net_ns. If the keys in a permit list cross net_ns boundaries, there is no problem sharing the cached permits, since the permits are just integer masks. Since permit lists pin keys, the permit cache also makes it easier for a future patch to find all occurrences of a key and remove them by means of setting the afs_permits::invalidated flag and then clearing the appropriate key pointer. In such an event, memory barriers will need adding. Lastly, the permit caching is skipped if the server has sent either a vnode-specific or an entire-server callback since the start of the operation. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-13afs: Overhaul the callback handlingDavid Howells
Overhaul the AFS callback handling by the following means: (1) Don't give up callback promises on vnodes that we are no longer using, rather let them just expire on the server or let the server break them. This is actually more efficient for the server as the callback lookup is expensive if there are lots of extant callbacks. (2) Only give up the callback promises we have from a server when the server record is destroyed. Then we can just give up *all* the callback promises on it in one go. (3) Servers can end up being shared between cells if cells are aliased, so don't add all the vnodes being backed by a particular server into a big FID-indexed tree on that server as there may be duplicates. Instead have each volume instance (~= superblock) register an interest in a server as it starts to make use of it and use this to allow the processor for callbacks from the server to find the superblock and thence the inode corresponding to the FID being broken by means of ilookup_nowait(). (4) Rather than iterating over the entire callback list when a mass-break comes in from the server, maintain a counter of mass-breaks in afs_server (cb_seq) and make afs_validate() check it against the copy in afs_vnode. It would be nice not to have to take a read_lock whilst doing this, but that's tricky without using RCU. (5) Save a ref on the fileserver we're using for a call in the afs_call struct so that we can access its cb_s_break during call decoding. (6) Write-lock around callback and status storage in a vnode and read-lock around getattr so that we don't see the status mid-update. This has the following consequences: (1) Data invalidation isn't seen until someone calls afs_validate() on a vnode. Unfortunately, we need to use a key to query the server, but getting one from a background thread is tricky without caching loads of keys all over the place. (2) Mass invalidation isn't seen until someone calls afs_validate(). (3) Callback breaking is going to hit the inode_hash_lock quite a bit. Could this be replaced with rcu_read_lock() since inodes are destroyed under RCU conditions. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-13afs: Push the net ns pointer to more placesDavid Howells
Push the network namespace pointer to more places in AFS, including the afs_server structure (which doesn't hold a ref on the netns). In particular, afs_put_cell() now takes requires a net ns parameter so that it can safely alter the netns after decrementing the cell usage count - the cell will be deallocated by a background thread after being cached for a period, which means that it's not safe to access it after reducing its usage count. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-13afs: Note the cell in the superblock info alsoDavid Howells
Keep a reference to the cell in the superblock info structure in addition to the volume and net pointers. This will make it easier to clean up in a future patch in which afs_put_volume() will need the cell pointer. Whilst we're at it, make the cell and volume getting functions return a pointer to the object got to make the call sites look neater. Signed-off-by: David Howells <dhowells@redhat.com>