Age | Commit message (Collapse) | Author |
|
These macros are no longer in module.h and module.h is no longer
present everywhere. Call out export.h for the real users who
are making use of these macros, or else we'll get things like:
CC drivers/uwb/umc-drv.o
drivers/uwb/umc-dev.c:42: warning: data definition has no type or storage class
drivers/uwb/umc-dev.c:42: warning: type defaults to ‘int’ in declaration of ‘EXPORT_SYMBOL_GPL’
drivers/uwb/umc-dev.c:42: warning: parameter names (without types) in function declaration
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
|
|
Fixes generated by 'codespell' and manually reviewed.
Signed-off-by: Lucas De Marchi <lucas.demarchi@profusion.mobi>
|
|
implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
|
|
This fixes an oops when uwbd thread continues running after a failed
radio controller start.
Signed-off-by: David Vrabel <david.vrabel@csr.com>
|
|
The UWB radio manager coordinates the use of the radio between the
PALs that may be using it. PALs request use of the radio with
uwb_radio_start() and the radio manager will start beaconing if its
not already doing so. When the last PAL has called uwb_radio_stop()
beaconing will be stopped.
In the future, the radio manager will have a more sophisticated channel
selection algorithm, probably following the Channel Selection Policy
from the WiMedia Alliance when it is finalized. For now, channel 9
(BG1, TFC1) is selected.
The user may override the channel selected by the radio manager and may
force the radio to stop beaconing.
The WUSB Host Controller PAL makes use of this and there are two new
debug PAL commands that can be used for testing.
Signed-off-by: David Vrabel <david.vrabel@csr.com>
|
|
Always use del_timer_sync() before freeing nehs. Destroy all nehs after
stopping the radio controller and before cleaning up the reservation
manager. Handle the timer running after an event has removed the neh.
This fixes various oopses that may occur if a radio controller is removed
while a neh timer is still active.
Signed-off-by: David Vrabel <david.vrabel@csr.com>
|
|
Use an event thread per-radio controller so processing events from one
radio controller doesn't delay another.
A radio controller shouldn't have information on devices seen by a
different radio controller (they may be on different channels) so make the
beacon cache per-radio controller.
Signed-off-by: Stefano Panella <stefano.panella@csr.com>
Signed-off-by: David Vrabel <david.vrabel@csr.com>
|
|
ECMA-368 requires that IEs in a beacon must be sorted by element ID. Most
hardware uses the ordering in the Set IE URC command so get the ordering
right on the host.
Also refactor the IE management code:
- use uwb_ie_next() instead of uwb_ie_for_each().
- remove unnecessary functions.
- API is now only uwb_rc_ie_add() and uwb_rc_ie_rm().
Signed-off-by: David Vrabel <david.vrabel@csr.com>
|
|
The current identification IE doesn't include any useful information
(the vendor ID is from the EUI-48) and it causes problems with certain
hardware/firmware so don't transmit one.
Signed-off-by: David Vrabel <david.vrabel@csr.com>
|
|
UWB device and radio controller device and event management.
Signed-off-by: David Vrabel <david.vrabel@csr.com>
|